
Z, -Statistical Procedures and Related Topics

IMS Lecture Notes - Monograph Series (1997) Volume 31

Exact algorithms for computing the least
median of squares estimate in multiple
"Ilinear regression

Jose Agullό

Universidad de Alicante, Spain

Abstract: We propose two finite algorithms to compute the exact least
median of squares (LMS) estimates of parameters of a linear regression
model with p coefficients. The first algorithm is similar to Stromberg's
(1993) exact algorithm. It is based on the exact fit to subsets of p cases
and uses impossibility conditions to avoid unnecessary calculations. The
second one is based on a branch and bound (BAB) technique. Empirical
results suggest that the proposed algorithms are faster than the finite
exact algorithms described earlier in the literature.

Key words: Branch and bound, exact algorithms, high breakdown regres-
sion, least median of squares, robust regression

AMS subject classification: 62F35, 62J05, 65U05.

1 Introduction

In this paper we consider the multiple linear regression model

Y = ZΘ + e, (1)

where Y is an n x 1 vector of dependent variables, θ is a p x 1 vector of
unknown parameters, Z is an n x p design matrix of predictors, and e is
a n n x l vector of true residuals. We denote the ith component of Y and
the ith row of Z by yi and zj, respectively. We suppose that the design
matrix Z is fixed and has rank p. Sometimes we also assume that any
p x p submatrix of Z is nonsingular; in this case we say that Z verifies
the Haar condition, or that the observations are in general position. An
estimate of θ, say θ, gives n residuals e;(0) = yi — zjθ. The most well-known

134 Jose Agullό

estimator of θ is the Least Squares (LS) estimator. The LS estimator is
optimal in several situations but it is severely affected by outliers. It also
suffers from the problem of masking, which occurs when a data set contains
multiple outliers and, at the same time, these outliers are not detected
by the usual LS diagnostic procedures. To get a reliable outlier detection
and estimation, a high breakdown point estimator should be used. Such
an estimator is the Least Median of Squares (LMS) estimator, introduced
by Rousseeuw (1984). The LMS estimator, which we denote by ΘLMS, is
defined by

ΘLMS = argmin^{ I ei(l9) | }h:n,

where the subscript h: n denotes the hth order statistic of n numbers. To
achieve the maximum breakdown point when the observations are in general
position, the coverage h is chosen as h = [n/2] + [(p+l)/2], where [] denotes
the greatest integer function. For h = n, the LMS estimator is equal to the
Chebyshev estimator, denoted by ΘQ, and defined by

θc = argmin^jmax |βi(0)|}.
i

The minimal value of the objective function which defines θc will be called
the Chebyshev criterion.

The computation of the LMS estimate is difficult. The most widely used
algorithm to approximate the LMS estimate is the PROGRESS algorithm
(Rousseeuw and Leroy, 1987). This algorithm computes the exact fit of
several elemental sets (subsets of size p) of the data set. The exact fit
with smallest hth absolute residual gives an approximate LMS estimate.
The considered elemental sets can be either all (n) possible such sets, or
a random subsample of them. If the regression model has intercept, the
intercept of each exact fit can be adjusted to yield a smaller hth absolute
residual. For a simple regression model (p = 2), Steele and Steiger (1986)
prove that an algorithm which examines all elemental sets and adjusts the
intercept for each of them, obtains the exact LMS estimate. However, for p
greater than 2 such an algorithm does not necessarily yield the exact LMS
estimate.

Stromberg (1993) proposes an exact algorithm based on the fact that
the exact LMS estimate is a Chebyshev estimate for some subset of size
p + 1 of the data. Any set of p + 1 indices from {1,..., n} will be called
here a reference set. Stromberg's algorithm examines all reference sets,
computes the Chebyshev estimate for each of them, and then sets ΘLMS as
the Chebyshev estimate with smallest hth absolute residual.

In this paper we develop two algorithms to compute the exact LMS esti-
mate that are computationally feasible for small or moderate size samples.

Exact algorithms for computing the least median of squares ... 135

Section 2 describes some properties of the Chebyshev fit and discusses its
computation. In Section 3 we propose an algorithm to find the optimal
reference set. This algorithm differs from Stromberg's in some important
features: It is based on exact fits of elemental sets; it uses accelerations
based on impossibility conditions, and it also avoids completely sorting of
residuals. In Section 4 we propose a finite exact algorithm based on a branch
and bound (BAB) technique. The BAB algorithm finds the subset of size h
whose Chebyshev estimate gives the exact LMS estimate without exhaus-
tive enumeration of all /i-subsets. We describe the basic BAB algorithm
and some strategies to improve its efficiency. An empirical comparison of
the LMS algorithms is described in Section 5.

2 Chebyshev regression

In this Section we describe some properties of the Chebyshev fit and dis-
cuss its computation. Osborne and Watson (1967) proved that, if the design
matrix Z of model (1) has rank p and n > p, then: First, there exists a
Chebyshev estimate that is equal to a Chebyshev estimate for some ref-
erence set of the data; second, the Chebyshev criterion is identical to the
Chebyshev criterion for the optimal reference set; third, all cases of the
optimal reference set have residuals whose absolute value is equal to the
Chebyshev criterion, and fourth, the rank of the design matrix of the opti-
mal reference set is p. It is well known that the Haar condition is sufficient
(but not necessary) for uniqueness of the Chebyshev estimate.

For a reference set, both the Chebyshev criterion and a Chebyshev
estimate can be explicitly computed. Assume that n = p + 1 and the
design matrix Z verifies the Haar condition. In this case two methods
to obtain the Chebyshev estimate are available. The first method (see,
e.g., Cheney, 1966; Meicler, 1968) is based on the LS estimate §LS —
(ZtZ)~1ZtY. Let e* = (ei,..., βp+i) be the LS residual vector, and denote
5* = (sgn(ei),... ,sgn(ep+i)), where "sgn" represents the sign function.
Then the Chebyshev criterion is

\ Σ?=i l gf/Σ?=il^| otherwise w

and the Chebyshev estimate is

ΘC = ̂ L5 - ^ (Z ^) - 1 ^ ^ = (^ Z) " 1 ^ ^ - CJ5). (3)

The second method (see, e.g., Meicler, 1969; Armstrong and Kung, 1980)
is based on the exact fit to one of p + 1 possible elemental sets. The set

136 Jose Agullό

{1,... ,p + 1} is partitioned into an elemental set J and its complement.

Suppose (without loss of generality) that J contains the first p indices,

and let r = p + 1 be the complementary index. Denote by Zj and Yj

the respective submatrices of Z and Y formed with the rows indexed by

J. As Zj is nonsingular, θj = ZJλYj is the exact fit to the elemental

set J, and β{ — yι — z\θj is the zth residual based on the exact fit. Let

ξ = (ξi, -,ξp)= 4ZJ\ and σ* - -sgn(eP)(sgn(ξi),...,sgn(ξp)). Then

the Chebyshev criterion is

and the Chebyshev estimate is

θc = θj- ωZΫσ = ZJ\YJ - ωσ). (5)

Remark 1 Although for a given reference set both methods give the same ω
and θc, an implementation based on the second method is more convenient
to compute the exact LMS estimate. To our knowledge, no exact algorithm
to compute the LMS estimator using the second method has yet appeared in
the literature. The exact LMS algorithm of Stromberg (1993) computes the
Chebyshev estimates of reference sets using the first method.

Remark 2 Assume n — p + 1 and ω > 0. // the matrix Z has rank p but
it does not verify the Haar condition, then there exist multiple Chebyshev
estimates (see, e.g., Cheney, 1966, p. 4.2, problems 6, 7). For our purposes,
the search can be restricted to those Chebyshev estimates for which allp + 1
residuals are equal in magnitude to ω. Using the first method, if multiple
Chebyshev estimates exist, at least one έ{ will be equal to zero. For these null
residuals, the respective components of s may be set equal to 1 or -1, and
using (3), multiple Chebyshev estimates are obtained. In the second method,
an elemental set J with nonsingular design matrix has to be selected from
the reference set. For this method, when multiple Chebyshev estimates exist,
some ξi will be equal to zero. Changing conveniently the values assigned to
the signs of such ξi 's, expression (5) yields multiple Chebyshev estimates.

When n > p + 1, a naive algorithm computing the Chebyshev estimate
examines all possible reference sets: For each reference set, it computes
the Chebyshev criterion ω through (2) or (4), and selects the reference
set which yields the greatest ω. Afterwards, it computes the Chebyshev
estimate using (3) or (5). However, several nonexhaustive algorithms have
been proposed in the literature for this purpose. These algorithms are based

Exact algorithms for computing the least median of squares ... 137

on a linear programming formulation of the Chebyshev regression problem
that consists of

Minimize ω, s. t.: - ω < y{ - z\θ < ω, i = 1,..., n. (6)

We prefer the algorithm of Armstrong and Kung (1980) (AK) which uses
the dual form of (6). The source code of a FORTRAN implementation of
the AK algorithm appears in Armstrong and Kung (1979). (The published
code contains one harmful misprint which is corrected in Agullό, 1994).
The AK algorithm obtains a finite sequence of reference sets that converges
to the optimal reference set. In this sequence, consecutive reference sets
only differ in one index. In each iteration, the index to be added to the
current reference set would be that associated with the maximum absolute
residual. The index to be dropped is selected using a rule that increases
the objective function value. Notice that the AK algorithm obtains in
each iteration a lower and an upper bound for the Chebyshev criterion.
The lower and upper bounds are, respectively, the objective function value
and the maximum absolute residual. When both bounds are identical,
convergence is achieved.

3 Exhaustive LMS algorithm
Assume that matrix Z in model (1) verifies the Haar condition. Since the
exact LMS estimate minimizes the hth smallest absolute residual, it must
minimize the maximum absolute residual for some subset of size h of the
data (i.e., ΘLMS is the Chebyshev estimate to some /ι-subset). Moreover,
from the properties of the Chebyshev regression (see Section 2), we conclude
that the exact LMS estimate is equal to the Chebyshev estimate of some
reference set. Further, the minimized hth absolute residual is the same as
the Chebyshev criterion of this optimal reference set. Consequently, in or-
der to compute the exact LMS estimate we can use an exhaustive algorithm
that examines all reference sets. For each reference set the algorithm com-
putes the Chebyshev estimate, and sets ΘLMS as the Chebyshev estimate
with smallest hth absolute residual.

It is possible to carry out some fast preliminary tests to discard those
reference sets which cannot be optimal. The tests are based on the following
fact. Suppose we know that the optimal hth absolute residual is not greater
than ω*. Then a reference set (with Chebyshev criterion ω and Chebyshev
estimate θc) cannot be optimal if it verifies any of the following three

138 Jose Agullό

impossibility conditions:

[I] ω > ω*,

[//] #{l<i<n,\ei(θc)\>ω} > n-h,

[III] #{l<i<n,ei(θc)\>ω*} > n-h,

where we use the symbol # to denote the cardinal of a set.
Stromberg's exact algorithm examines all reference sets, and computes

the Chebyshev estimate ΘQ for each one using (3). It uses impossibility
condition [///] to avoid the computation of all absolute residuals and/or
their sorting for some Chebyshev estimates. When a reference set does not
verify the impossibility condition [///], its Chebyshev estimate becomes
the potentially best estimate and the absolute residuals are sorted to find
the /ith smallest absolute residual. This absolute residual becomes ω*.

We describe next an exact LMS algorithm based also on an exhaustive
enumeration of reference sets. It uses impossibility conditions [/] and [//]
to avoid unnecessary calculations. Initially the algorithm sets ω*: — oo, and
i?*: = 0. Then it considers all elemental sets J = {ji,..., jp} C {1,..., n}
with 1 < jι < . . . < j p < n — 1. For each elemental set J, it computes the
exact fit θj = ZjλYj. Then it examines the reference sets formed by adding
an index r to J , where j p < r < n. For each reference set R = J U {r},
the Chebyshev criterion ω is computed using (4). If R verifies impossibility
condition [/], then R cannot be optimal and it is discarded. Otherwise,
the algorithm computes the Chebyshev estimate §c of R using (5), and
calculates the Chebyshev residuals until either a) the number of absolute
residuals greater than ω equals n — h + 1, or b) the number of absolute
residuals that are not greater than ω becomes equal to h. When a) occurs,
R cannot be optimal (because R verifies impossibility condition [//]) and
it is discarded. When b) occurs, the algorithm sets ω* := ω, R*:= i?, and
θ*:= θc> When the algorithm stops, ω* yields the optimal criterion, R*
the optimal reference set, and θ* the exact LMS estimate.

Matrix inversion is not needed to implement this algorithm using, for
instance, an LU decomposition of Zj. Notice that the same LU decompo-
sition is used for evaluating, on average, n/(p + 1) reference sets and it is
only updated when the elemental set changes.

Our algorithm differs from Stromberg's in many important respects. In
Stromberg's algorithm the Chebyshev fits are based on the LS fits of refer-
ence sets. However, in our proposal the Chebyshev fits are based on exact
fits of elemental sets. So, our algorithm uses the same exact fit to examine
several Chebyshev fits, and it can be implemented adapting the available
LMS algorithms based on elemental sets. A further benefit of our approach

Exact algorithms for computing the least median of squares ... 139

is that the computation of an approximate high breakdown multivariate
estimate for matrix Z (such as Rousseeuw's (1985) minimum volume ellip-
soid estimate) can be done at the same time as the exact LMS computation
with little additional cost (see Hawkins and Simonoff, 1993). Stromberg's
algorithm requires the computation of the Chebyshev estimators for all ref-
erence sets. However, our algorithm uses impossibility condition [I] to avoid
the computation of the Chebyshev estimate and the Chebyshev residuals
for a significant fraction of all reference sets. Moreover, when the com-
putation of Chebyshev residuals has to be started, it seldom requires to
compute all residuals and always completely avoids sorting of residuals.

The proposed algorithm examines (™χ) — O(npJtl) reference sets. At its
worst, it must compute n residuals for each reference set, therefore requiring
at most O(np+2) time. On the other hand, Stromberg's algorithm requires
O{np+2 log n) time, but if the /ith smallest absolute residual is found in O(n)
time, it also requires O(np^2) time. Notice that although both algorithms
have the same computational complexity, this does not imply that their
true computer times are the same, since the involved constant factors can
be very different. Empirical results suggest that our proposal is about five
times faster than Stromberg's algorithm (see Section 5).

Remark 3 To analyse data sets whose design matrix has rank p and does
not necessarily verify the Haar condition, the proposed algorithm requires
two modifications. The first modification is concerned with the possibility of
any nonsingular matrix Zj. For each elemental set J, the numerical rank
of Zj should be checked. If the rank of Zj is p no problem arises. When
the rank of Zj is smaller than p — 1, the next elemental set in the list is
examined. If both matrices Zj and ZR have rank p—1, the next reference set
in the list is examined. Finally, if the rank of Zj equals p—1 and the rank
of ZR is p, then the algorithm selects an elemental set from R whose design
matrix has rank equal to p. Now, the complementary index of the elemental
set plays the role of r. The second modification deals with the possibility
of having some R with multiple Chebyshev estimates. The multiplicity of
Chebyshev estimates occurs when some ξi in (4) is equal to zero. If this
occurs, we must examine all Chebyshev estimates whose residuals indexed
by R are equal in magnitude to ω (see Remark 2).

4 Branch and bound algorithm
As we noted earlier, the exact LMS estimate coincides with the Chebyshev
estimate of some /ι-subset. In fact, the optimal h-subset is the one with
smallest Chebyshev criterion. In this Section we propose a Branch And

140 Jose Agullό

Bound (BAB) algorithm to find this optimal /ι-subset.

Given an index set Jm = (j i , . . . , jm) C {1,..., n} with size ra, let Z j m

and Yjm be, respectively, the submatrices of Z and Y formed by the rows
indexed by J m . For the regression of Yjm on Z j m , we denote the sum of
squared LS-residuals by φ(Jm), the sum of absolute values of LS-residuals
by φf(Jm), and the Chebyshev criterion by ω(Jm). It is easy to prove that:

JcJ'=>ω{J)<ω{J'), (7)

B(Jm)<ω(Jm), (8)

φ(Jm) > 0 = * B(Jm) < B\Jm) < ω(Jm), (9)

where B{Jm) = y/φ(Jm)/m and B\Jm) = φ(Jm) / f (Jm).
Note that the monotonicity property (7) implies that the Chebyshev

criterion cannot decrease if one or several cases are added to the current
set of cases.

In the search of the optimal /ι-subset, the BAB algorithm considers
subsets whose size is not greater than h. The current subset will be denoted
by Jm = (ji, , jm)' We start by considering sequences that verify

h < < jm (10)

The generation of subsets is organized through a tree of nested subsets
with h node levels. In each node, a further index is added from the original
n indices. We use the tree described in Narendra and Fukunaga (1977).
Figure 1 shows a tree for n = 6 and h = 3. A node at level m is labeled
with the value of jm and represents a subset of size ra. Terminal nodes
represent the (̂) possible subsets of h observations. When an exhaustive
inspection of the tree is carried out, the tree is examined by moving down
each branch, working from right to left. When a terminal node is reached,
the inspection continues from the most recent node that has unexplored
branches.

The efficiency of the BAB algorithm follows from the possibility of jump-
ing in the exhaustive inspection sequence of the tree. In any stage of the
search, let ω* be the smallest Chebyshev criterion for a /ι-subset so far ob-
tained. If the subset being considered is J m , 1 < ra < h, and if it verifies
that ω(Jm) is greater than ω*, then, as a consequence of the monotonicity
property, all /ι-subsets that contain Jm can be rejected implicitly.

Exact algorithms for computing the least median of squares ... 141

Figure 1: Tree for n = 6 and h = 3. Labels at nodes denote the case that
is added there.

LEVEL 1

LEVEL 2

LEVEL:

We describe now the basic BAB algorithm. Initially it sets ω*: = oo and
J * : = 0. If the current subset Jm verifies that B(Jm) is greater than ω*,
then, from (7) and (8), the optimal Λ,-subset cannot contain J m , and the
exploration can be continued from the most recent node that has unexplored
branches. In this case, a jump occurs in the exhaustive sequence. When
the current node is terminal (i.e., m = h) and it verifies that B(Jh) is not
greater than ω*, the bound B'(Jh) is computed. If Bf(Jh) > CJ*, by (7) and
(9), Jh cannot be optimal, and the exploration of the tree continues. When
B'(Jh) < ω*, the iterative computation oΐω(Jh) (using the AK algorithm)
starts. If, in some iteration of this computation, the objective function
value is greater than or equal to ω* (what implies ω(Jh) > ω*), then the
iterative process stops and the exploration of the tree continues. When the
AK algorithm converges (i.e., ω{Jh) is smaller than ω*), the BAB algorithm
sets ω*:= cj(Jh) and J*:= J^, and the exploration of the tree continues.
When the BAB algorithm stops, J* is the optimal /ι-subset and ω* is the
minimal value of the LMS objective function.

The computation of the bound B requires the sum of squared LS-
residuals. This computation is carried out by using an orthogonal decom-
position procedure (Gentleman, 1974) applied to (ZJ.YJ). When a case
is added to the current subset, the orthogonal factors are updated. When
the algorithm operates descending by a branch of the tree, the orthogo-
nal factors of each level are saved. In this way, the algorithm can reselect
the adequate factors when it returns to a smaller level node. This permits
updating the orthogonal factors when the inspection continues by an unex-

142 Jose Agullό

plored branch. When a terminal node is reached and it verifies B(Jh) < ω*,
then the computation of the bound B\Jh) is required. This computation
is carried out quickly from the orthogonal factors. If Bf(Jh) > ω*, the
computation of α (J^) is avoided, because Jh is not optimal.

We describe now two strategies to improve the computational efficiency
of the basic BAB algorithm. Suppose that m < h, rank(Zjm) = p, and 0 <
B(Jm) < ω*' Since the orthogonal decomposition of (ZJ,YJ) is available,
the bound B'(Jm) can be quickly computed. If B'(Jm) > ω*, then, by (7)
and (9), a jump is justified. Notice that if m = p + 1 , then ω(Jm) = B\Jm),
by (2), whereas if m > p + 1, then ω(Jm) > B'(Jm). If m > p + 1
and B'i^Jrn) < ω(Jm), then the iterative AK algorithm to compute ω(Jm)
can be started and continued until either a) the current objective function
value is greater than or equal to α;*, or b) the current greatest absolute
residual is smaller than ω*. From the properties of the AK algorithm (see
Section 2), when a) occurs, we conclude that ω(Jm) is greater than α;*,
and consequently, a jump in the exhaustive sequence is justified. However,
when b) occurs, ω(Jm) is smaller than CJ*, and a jump cannot be justified.

In a node jm at level m with ancestor nodes ji, ..., j m _ i only certain
indices can be selected as successors in level m + 1. All indices selected at
nodes with labels ji, . . ., jm and all indices that appear in the "brother"
nodes to the left of nodes ji, ..., and jm are not available. Assume that the
current node has ns successors at level m + 1. The basic BAB algorithm
selects the first ns available indices and assigns them to the successors by
order from left to right in the tree. If we do not impose restriction (10)
in the subset generation process, we can use a sorting rule for assigning
available indices to the successors. Suppose that the current design matrix
Zj m has rank p. For each available index i we can compute the increase in
the sum of squared LS-residuals caused by adding the index i to J m . This
increase, which we call zth partial increment, is

The sorting rule selects the ns available indices with greatest partial in-
crements and assigns them to the successors according to the decreasing
magnitude of the partial increment from left to right in the tree. If the
BAB algorithm uses that sorting rule and the current subset Jm verifies
that B(Jm) is greater than ω*, then the subtree emanated from the cur-
rent node does not have to be examined. This follows from (7) and (8).
Furthermore, if the design matrix of the previous level has rank p, as a
consequence of the sorting rule all brother nodes to the left of the current
node and the subtrees descending from such nodes can also be discarded.

Exact algorithms for computing the least median of squares ... 143

Remark 4 Denote 7* = (m + l)(ω*)2 - φ(Jm), and let 7' = ηnsma be
the nsth greatest partial increment from the na available indices. Ify is
greater than 7% it is not necessary to assign indices to successors, because
the optimal h-subset cannot contain the current subset Jm. Sometimes the
computation of partial increments for all available indices and its partial
sorting can be avoided. Suppose that we proceed to compute the partial
increments and maintain simultaneously a counter, nr, to determine the
number of partial increments that are not smaller than 7*. //, at some
stage of this process, nr equals ns, then 7' will necessarily be greater than
7* ; and a jump in the exhaustive sequence is justified.

Even if the tree is enumerated through the sorting rule, the efficiency of
the BAB algorithm depends on the initial ranking of cases in the data set.
Notice that for nodes at low levels, the sorting rule assigns the first available
indices to the successors. The empirical tests we have carried out suggest
the convenience of reassigning the indices 1,... ,n to the cases according
to the decreasing magnitude of residuals based on an approximate LMS
estimate. In this way, the first /ι-subset evaluated by the BAB algorithm
gives the approximate LMS estimate and a good upper bound for the opti-
mal value of the objective function is found quickly. The approximate LMS
estimate is computed by the BAB algorithm before starting to inspect the
tree. For this task, we use a modification of the Feasible Subset Algorithm
(FSA) described in Hawkins (1993).

5 Empirical comparison of the LMS algorithms
To compare the efficiency of the LMS algorithms, we have considered the
following FORTRAN implementations:

• MVELMS, code of Hawkins and Simonoίf (1993). We use the option
that examines all elemental sets and adjusts the intercept for each elemental
set.

• EXTLMS, implementation of Stromberg's exact algorithm due to Haw-
kins, Simonoff and Stromberg (1994).

• LULMS, our implementation of the algorithm described in Section 3.
It uses an LU decomposition of the basis as described by Bartels and Golub
(1969) to obtain solutions of square systems. The used code implements
the first modification described in Remark 3, but not the second one.

• MVELMS1, our modification of the MVELMS code. This modification
is based on the algorithm explained in Section 3, and omits from the search
those elemental sets whose design matrix is singular.

• BABLMS, our implementation of the BAB algorithm described in Sec-

144 Jose Agullό

tion 4. It obtains the exact LMS estimate without exhaustive enumeration
of /^-subsets.

Table 1: Comparison of CPU times (in seconds) for LMS algorithms.

DATA SET
Aircraft
Coleman
Delivery
Educat
Hawkins
Races
Salinity
Stacklos
Wood

Total

n

23
20
25
50
75
35
28
21

20

P
5
6

3
4
4
3
4
4

6

h

14
13
14
27
39
19
16
12

13

EXTLMS
42.69
43.13

2.97
804.18

7774.73
13.46
31.92

6.48
43.02

8762.58

CPU TIME (in seconds)
MVELMS1

13.30
9.95
0.88

343.08
4823.85

4.01
8.85
1.65
9.78

5215.35

LULMS
8.30
7.09
0.50

159.01
1905.11

2.25
5.38
1.21
7.09

2095.94

MVELMS
8.35

10.44
0.44

102.31
834.07

1.75
5.16
1.15

10.33
974.00

BABLMS
0.66
0.32
0.11

10.82
531.31

0.27
0.43
0.11
0.38

544.90

From these algorithms, MVELMS gives only an approximate LMS es-
timate, whereas the remaining algorithms are exact. EXTLMS, LULMS
and MVELMS 1 guarantee an exact LMS estimate when the observations
are in general position, and BABLMS obtains a true LMS estimate when
the design matrix has rank p, which is a much weaker condition. In our
implementations, we use subroutines of Armstrong and Kung (1979), Miller
(1992), Miller and Nguyen (1994), Ridout (1988), and Wichmann and Hill
(1982). All source codes were compiled with FTN77 for 486 and were run
on a 90 MHz Pentium computer. The central processor unit (CPU) times
for several data sets are shown in Table 1. All data sets, excluding the one
labeled "Races", can be found in Rousseeuw and Leroy (1978). The Races
data set is from Atkinson (1986). Figure 2 shows the multiple boxplot of
relative efficiencies, measured using the ratio of CPU time to EXTLMS
CPU time.

Table 1 and Figure 2 show that for the used data sets the BABLMS
algorithm dominates all other algorithms. On average, the BABLMS al-
gorithm is about 65 times faster than the EXTLMS one, and at least one
order of magnitude faster than the exhaustive MVELMS algorithm that is
approximate. This may be surprising, because BABLMS searches a subset
within a collection of size (]J), and this number will, in general, be much
greater than, for instance, (^ χ) , which is the number of subsets inspected
by EXTLMS. The reason why the BABLMS algorithm is more efficient
is because the number of subsets explicitly visited by it is usually smaller
than the number of reference sets.

Notice that the exact LULMS algorithm is about five times faster than

Exact algorithms for computing the least median of squares ... 145

the EXTLMS algorithm, and it does not need much more computer time
than the approximate MVELMS algorithm based on exhaustive search over
all elemental sets.

Figure 2: Multiple boxplots of relative efficiency of LMS algorithms. The
baseline corresponds to the EXTLMS algorithm.

14
0

12
0

10
0

FI
C

IE
N

C

80

IV
E

E
F

60

R
E

L
A

Ί

4
0

8 -

0

0

£

o .

CO -

<o -

CM -

O -

1
1 T

1 1 1

i

0

BABLMS MVELMS LULMS MVELMS1 MVELMS LULMS MVELMS1

To sum up, we can conclude that for small or moderate sample sizes the
proposed algorithms are more efficient than the other finite exact algorithms
proposed in the literature.

References
[1] Agullό, J. (1994). A remark on algorithm AS 135. Mimeo.
[2] Armstrong, R.D., and Kung, D.S. (1979). Algorithm AS135. Min-max

estimates for a linear multiple regression problem. Appl. Statist 28
93-100.

[3] Armstrong, R.D., and Kung, D. (1980). A dual method for discrete
Chebychev curve fitting. Mathematical Programming 19 186-199.

[4] Atkinson, A.C. (1986). Aspects of diagnostic regression analysis. Sta-
tistical Science 1 397-402.

[5] Bartels, R.G., and Golub, G.H., (1969). The simplex method of linear
programming using LU decomposition, Commun. of the ACM 12 266-

268.
[6] Cheney, E.W. (1966). Introduction to Approximation Theory. New

York: McGraw-Hill.
[7] Gentleman, W.M. (1974). Algorithm AS75. Basic procedures for large,

sparse or weighted linear least squares problems. Appl Statist. 23

146 Jose Agullό

448-454.
[8] Hawkins, D.M. (1993). The feasible set algorithm for least median of

squares regression. Comput. Statist and Data Anal. 16 81-101.
[9] Hawkins, D.M., and Simonoff, J.S. (1993). Algorithm AS 282. High

breakdown regression and multivariate estimation. Appl. Statist. 42
423-441.

[10] Hawkins, D.M., Simonoff, J.S., and Stromberg, A. (1994). Distributing
a computationally intensive estimator: the case of exact LMS regres-
sion. Comput Statist 9 83-95.

[11] Meicler, M. (1968). Chebyshev solution of an inconsistent system of n+
1 linear equations in n unknowns in terms of its least-squares solution.
SIAM Rev. 10 373-375.

[12] Meicler, M. (1969). A steepest ascent method for the Chebyshev prob-
lem. Mathematics of Computation 23 813-817.

[13] Miller, A.J. (1992). Algorithm AS 274. Appl. Statist. 41 458-478.

[14] Miller, A.J., and Nguyen, N. (1994). Algorithm AS 295. A Fedorov
exchange algorithm for D-optimal design. Appl. Statist. 43 669-678.

[15] Narendra, P.M., and Pukunaga, K. (1977). A branch and bound algo-
rithm for feature subset selection. IEEE Transactions on Computers
26 917-922.

[16] Osborne, M.R., and Watson, G.A. (1967). On the best linear Cheby-
shev approximation. Computer Journal 10 172-177.

[17] Ridout, M.S. (1988). Algorithm AS 233. An improved branch and
bound algorithm for feature subset selection. Appl. Statist. 37 139-
147.

[18] Rousseeuw, P.J. (1984). Least median of squares regression. J. Am.
Statist Soc. 79 871-880.

[19] Rousseeuw, P.J. (1985). Multivariate estimation with high breakdown
point. In Mathematical Statistics and Applications, B, Eds. W. Gros-
mann, G. Pflug, and W. Wertz, pp. 283-297. Dordrecht: Reidel Pub-
lishing.

[20] Rousseeuw, P.J., and Leroy, A. (1987). Robust Regression and Outlier
Detection. New York: Wiley.

[21] Steele, J.M., and Steiger, W.L. (1986). Algorithms and complexity for
LMS regression. Discrete Applied Mathematics 14 93-100.

[22] Stromberg, A. (1993). Computing the exact least median of squares
estimate and stability diagnostics in multiple linear regression. SIAM
J. Scient Comput. 14 1289-1299.

[23] Wichman, B.A., and Hill, I.D. (1982). Algorithm AS 183. An efficient
and portable pseudorandom number generator. Appl. Statist. 31 188-
190.

