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Li-tests in linear models: Tests with

maximum relative power

Christine Mϋller

Free University of Berlin, Germany

Abstract: In a linear model YnN = x^Nβ+ZnN, n = 1,..., TV, the problem
of testing the hypothesis Ho : Lβ = I versus Hi : Lβ φ I is considered.
As tests Wald-type tests based on asymptotically linear estimators are
used. For such tests the asymptotic efficiency at the ideal model and
the asymptotic bias caused by outliers or other deviations from the ideal
model depend only on the influence function of the underlying estimator.
As for estimation most efficient robust tests can be found by maximizing
the efficiency under the side condition that the bias is bounded by some
bias bound b. But this has the disadvantage that the solutions depend
on the bias bound b. To determine b one can regard measures which are
composed by the efficiency and the bias. For estimation such measure is
the mean squared error while for testing the power relative to the bias
is used. It is shown that the Li-tests, i.e. Wald-type tests based on the
Li-estimator, maximize this relative power. This result is in opposition
to that for estimation where the Li-estimators do not maximize the mean
squared error.
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1 Introduction

A general linear model

YN = XNβ + ZN

is considered, where YN = (YIN, ,YNN)T is the vector of observations,
β E Mr an unknown parameter vector, XN — (XIN, ,XNN)T € MNxr

the known design matrix with regressors X\N, ... ,XNN E Mr and ZN =
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(ZiN,..., ZNN)T the vector of errors. A realization of the random vector
YN is denoted by y^ — (yiN, ,2Mw)T In this linear model a hypothesis
of the general form

H0:Lβ = l

shall be tested versus the alternative

Z,

where Z G Ms and φ{β) = Lβ is a linear aspect of the unknown parameter
vector β with given matrix L G Msxr of rank s.

A large class for testing the hypothesis Ho : L/3 = Z is the class of Wald-
type tests based on asymptotically linear estimators, briefly called ALE-
tests (see Mϋller, 1992a,b, 1995a,b; Rieder, 1994, p.153). To define these
tests we assume that the ideal distribution of the standardized errors Zn^/σ
is P and that the design X\N > , XNN is converging to an asymptotic design
measure δ in the following sense:

lim —

for all x G supp (<!>), where supp(<5) is the support of δ and ex is the Dirac
measure on x G Mr. Then the ALE-tests have a test statistic of the form

TN{yN,XN) = N(φN(yN,XN) -l)TCN{yN,XN)~ι{φN{yN,XN) -Z),

where <̂ v is an asymptotically linear estimator for φ(β) — Lβ with influ-
ence function ψ and C^yN^X^) is a consistent estimator for the asymptotic
covariance matrix of ψN, i.e. of σ2C(ψ,δ) with

= /φ(z,x)φ(z,x)τP{dz)δ(dx).

Thereby an estimator φ^ for φ(β) = Lβ is called asymptotically linear
with influence function ψ : JR x FT -• Ms if / \ψ(z,x)\2 P(dz) δ(dx) < oo,
/ ψ(z, x) P(dz) = 0 for all x G supp(5), / ψ(z, x) xτ z P{dz) δ(dx) = L and

lim

^ V ^ -ώ (ynN ~ X

, XnN >e Π=0

for all € > 0, σ G iR+ and /?# = β+N'^β with β,βeMr and L/3 = Z. The
set of all influence functions is denoted by Φ. Many wellknown estimators
as M-estimators and R-estimators are asymptotically linear.
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In particular the classical F-test is an ALE-tests, where φN is the Gauss-
Markov estimator and ψ(z,x) = LI(δ)~xz. Thereby M~ denotes the
generalized inverse of the matrix M, i.e. M M~M = M, and I(δ) the
information matrix, i.e.

= ίxxτδ(dx).

If ψ(z, x) = ψ1 (2, x) := L I(δ) x sgn(z) J\ then it is the influence function
of the Li-estimator and the corresponding ALE-test is called Li-test.

If the standardized errors Z\^jσ,..., ZNN/V are independent and iden-
tically distributed according to the ideal distribution P, then under HQ the
ALE-test statistic TN has asymptotically a central chi-squared distribution
with s degrees of freedom. Hence, the critical value of an asymptotic level a
ALE-test can be determined as the (1—a) quantile of the chi-squared distri-
bution. Under contiguous alternatives of the form βjq — β + N~ι/2β £ Mr

with Lβw = I + ΛΓ~1/27 the ALE-test statistic has asymptotically a chi-
squared distribution with noncentrality parameter 7T[σ2 C(φ^δ)]~1/y so
that the power of the test is an increasing function of r)TC{rφ,δ)~ιη.

If the errors Z\^jσ,..., Z^^/σ have instead of the ideal distribution P
distributions which are contaminated by outliers and other deviations, then
under Ho the asymptotic error probability can exceed the level a. The max-
imum bias of the level, which is possible under contaminated distributions,
is an increasing function of

||VTC(V, δ)~ VH« == max(z,s)€Λxβupp(6)V>(s, x)TC(ψ, δ)~ιφ{z, x) (1)

SeeMϋller (1992a,b, 1995a,b), Rieder (1994), Heritier andRonchetti (1994).
Let the ideal distribution P be the standard normal distribution. In

Mύller (1995a,b) the question was considered which ALE-test has maximum
power under the side condition that the maximum bias is bounded by some
bias bound. Expressed by influence functions this means: Which ψ G Φ
maximizes jτC(φ,δ)~lrγ for all 7 G Ms under the side condition

w^d'ψjr^wssb, (2)

where b is some given bias bound. But this means that the matrix C(ψ, δ)"1

should be maximized in the positive definite sense under the side condition
(2). In general this optimization problem has no solution (see Krasker and
Welsch, 1982). To find solutions one can regard instead of the whole matrix
C(ψ,δ)~ι functional of the matrix. An appropriate functional for testing
is the determinant of the matrix. In Mύller (1995a,b) it was shown that for
maximizing det(C('0,^)~1) under the side condition (2) solutions can be
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derived if the design δ is D-optimal, i.e. δ G argmin{det(L/(<5)~Lτ); δ G
Δ}. But the solutions depend on the bias bound b so that the question exists
how to choose b. Here in Section 2 we propose a criterion for choosing b
based on a relative power value. We show that the best ALE-tests with
respect to this criterion is the Lχ-test. In Section 3 we compare this result
with a corresponding result for estimation, and in Section 4 we give an
example.

2 Tests with maximum relative power
Mύller (1995a,b) showed that the influence function ψb given by

L I(δ)~x sgn(z) yjl, for b = s,

{ i ί W - χ S g n W = | ί l ^ , lolb>s,

with

= -g(y/byb)>0
S

is a solution of the problem of maximizing the power criterion det(C(ψ, δ)~λ)
under the bias side condition (2) if δ is a D-optimal design. Thereby Φ de-
notes the distribution function of the standard normal distribution and g
is given by

g(y):= J mm{\z\,y}2P(dz).

Note that ψb with b = s is the influence function ψ1 of the Li-test and that
s = b m i n := m i n d l ^ C ^ , ^ ) " 1 ^ ! ^ ; Ψ € Φ} Recall that 5 is the rank of
the matrix L G iR s x r .

For every solution ψb we have that the quantity (1) providing the max-
imum bias satisfies

and that the power criterion satisfies

("("))'
^ / (3)

Thereby u : [1, oo) —• (0, oo) is defined by

(2Φ(w(a))-D2

 ΐ o τ a > 1

9(w(a)) lorα>l,

for a = 1,
u(a) = \ 91 z
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where w(a) > 0 is implicitly given by ag(w(a)) — w(a)2 = 0. In particular
we have w(^) = Vbyb With the implicit function theorem it can be shown
that u is an increasing function (see Mϋller, 1995a). This means that the
power of the ALE test based on φb increases when the maximum bias value
b increases, and vice versa.

For an appropriate choice of the bias bound b we can set the power
value det(C('06,^)~1) in relation to the maximum bias given by (1). There
are in principle two possibilities: b should be chosen so that the difference
between the power value and the bias value is maximized, or b should
be chosen so that the ratio of the the power value and the bias value is
maximal. Maximizing the difference

debiCfa,*)-1) - |h#C(iM)-Vk||ί = d e t^} (y_L T ) - b (4)

has the disadvantage that the solution would depend on the formulation of
the hypotheses. Namely, if we use instead of the hypothese Ho : Lβ = I
the equivalent hypotheses HQ : XLβ = XI with λ φ 1, then we have to
use φ\y := \φb instead of φb. While the bias value (1) is invariant with
respect to λ, this is not the case for the power value so that a solution of
maximizing a difference like (4) would depend on λ. This problem does not
appear if we use the ratio of the power value and the bias value. Hence, b
should be chosen so that the relative power value

\\ΨΪC(-ψb,δ)-iψb\\6 b

is maximized. Thereby we take the 5th root of the determinant of the
covariance matrix to ensure that an improvement of the covariance matrix
by a factor c provides also an improvement of the relative power value by
the factor c. Note also that the 5th root of the determinant is often used as
a measure for the entropy and that it is the geometric mean of the diagonal
elements if the covariance matrix is a diagonal matrix.

The following theorem shows that the Ll-test, i.e. the ALE-test based
on ψi, with 6 = 5, has the maximum relative power.

Theorem 1 6 = 5 maximizes the relative power value (5) with respect to
b, i.e. the L\-test has maximum relative power.

Proof: Using (3) maximizing of (5) is equivalent to minimizing

6 det(C{φb, <5)) ' s = 6
U I

= t(t) • > • det( i/( ί )-L τ ) 1 /
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where

t(a) := a —7—r for a > 1.
u(a)

By calculating the first and second derivative of t : [l,oo) —> (0,oo) it can

be shown that t is a convex function with limα | i t'{a) = 0, where t' denotes

the first derivative of t. This means that M f) is minimized by b = s. To

calculate the first and the second derivative of t it is helpful to calculate the

derivatives of u. At first note that the implicit function theorem provides

-// x = w(α) g{w(a))
W 2 a [2Φ(ώ(α)) - 1 - 2w(a) Φ'(ώ(α))]

Then, with h(y) :— y Φ(—y) — Φ'(y), it can be shown that

u"(a) < 0 and

u"{a)a + 2u\a) <0

is satisfied for all a > 1 (see Mύller, 1995a, Lemma 12.7). The rule of

LΉospital provides limα | i w(a) — 0 and limα | i u{a) — ̂  so that

1
l α j ~ «(α + 2Φ(ώ(o)) -

is converging to 0 for a [ 1 (see Muller 1995a, Lemma 12.8). •

3 Comparison with estimation problems

An asymptotically linear estimator ^̂ v for estimating φ(β) = Lβ with
influence function Ψ is under contaminated distributions asymptotically
normally distributed. The asymptotic covariance matrix is C(φ, δ) and the
maximum asymptotic bias is given by

\\ψ\\δ := max ( z > a, ) G i R x s u p p ( (5 ) \ψ(z,x)\ (6)

(see Bickel, 1981, 1984; Rieder, 1985, 1987, 1994). Solutions Vf which
minimize the trace of the covariance matrix C(ψ,δ) under the bias side
condition | |^| |$ < b can be characterized explicitly if the design δ is based
on linearly independent regressors or if the design δ is A-optimal, i.e. δ G
argmin{tr(L/(<5)-Lτ); δ e A} (see Kurotschka and Mύller, 1992; Mύller,
1994a). As for testing the optimal influence function ψξ depends heavily
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on the bias bound b. Moreover, only the solution ψξ with b = 6^in :=
min{||^||$; ψ G Φ} corresponds to the Li-estimator, i.e. satisfies ψ% — i\)λ.

Similarly to testing an optimal bias bound can be found by combining
the efficiency criterion tτ(C(ψ%,δ)) with the bias value ||Vf||$- A natural
combined criterion is the asymptotic mean squared error

Ms(b) := UtWί + tr(C(V|,<5)) - b2 + tτ(C(-ψξ,δ)). (7)

It can be shown that as for testing Ms is convex. But in opposition to
testing Ms attains its minimum for a value b > 6^in so that the Li-estimator
does not minimize the mean squared error. See Muller (1994b,c).

Hence, we have the following situation: The approaches for estimation
and testing look very similar and leads to similar constrained optimization
problems of maximizing the efficiency under a bias bound b. Nevertheless
the problem of finding an optimal bias bound by using a natural criterion
which combines efficiency and bias leads to qualitative different results.
For testing the best bias bound is b = bm[n = s so that the Lχ-test is
optimal while for estimation the best bias bound is b > fo^in so that the Li-
estimator is not optimal. Moreover, for estimation the optimal bias bound
depends strongly on the model, the design and the aspect Lβ and it can be
calculated only per computer. For testing the optimal bias bound is simply
5, the rank of L.

4 Example
Consider a one-way lay-out model with four levels, i.e. we have four samples
with unknown means β\, /%, /?3,/?4 so that the observations are given by

YnN = βi +

if the observation Ynw belongs to the sample z, i — 1,2,3,4. This model
can be expressed as a linear model with β = (/3i,^2,/?3,^4)T G JRA and

Often one sample, say sample 1, is a controll group. Then an interesting
aspect of β is the linear aspect φ(β) = (β2 - βi.βs - βι:βϊ - βi)T e Ms.
Then testing Ho : φ(β) = 0 against Hi : ψ{β) Φ 0 is equivalent with
testing Ho : β\ = /?2 = βs = β± A D-optimal design for ψ{β) is δ =
\(eχ(i) + eχ(2) + eχ(3) + eχ(4)) which means that the four samples are of
equal size. At this design the influence function of the Lχ-test for Ho and
the Li-estimator for ψ(β) has the form
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According to Theorem 1 this influence function provide the maximum rela-
tive power within all ALE-tests for HQ. But this influence function does not
provide the minimum mean squared error within all asymptotically linear
estimators for φ(β). The influence function providing the minimum mean
squared error has the form

farί-1,

forz/1,

where b « 8.7213, wb « 0.0186 and υb « 0.2411 (see Mύller, 1994c).
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