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Abstract

The existence of stationary Blackwell optimal policies is proved
in denumerable dynamic programming models satisfying compactness-
continuity conditions and a uniform Doeblin condition. The latter is
given in terms compatible with periodic chains.

1. Introduction and Summary. Dekker and Hordijk (1988), (1992)
studied the existence of stationary Blackwell optimal policies in denumerable
Markov decision chains with compact action sets and continuous in action
transition probabilities and rewards. In the first of the cited works, their
most complete result is proved under a uniform geometric convergence con-
dition which excludes periodic chains. Recently Tijms (1994) developed an
elegant way to treat the periodicity in connection with the average optimality
equation: namely, to substitute the given controlled chain by a perturbed
chain with a same geometric sitting time at all states. In this short note
we show that Tijms' (1994) idea, combined with the Dekker and Hordijk's
(1988) results, can be used in connection with the Blackwell optimality too.
In the second of the cited publications, Dekker and Hordijk substitute the
uniform geometric convergence condition by a uniform geometric recurrence
condition which does not exclude periodic chains. However, the relation be-
tween the latter condition and the Tijms' condition we use here is not clear.
It is a great pleasure to contribute this paper to a volume in the honor
of David Blackwell, whom the author considers as his teacher in dynamic
programming.

A dynamic programming model is determined by a state space X, action
sets A(x), a transition function p(x, α, £?), and a real-valued reward function
r(x,a), a £ A(x), x £ X, B C X (we omit measurability assumptions
and other formalities in this preliminary paragraph). The selection of an
initial state x and a policy π defines a probability distribution PJ in the
space of sequences XQCLIX^ . . . of consecutively visited states xt and actions
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at+ι G A(xt) applied at them; the corresponding expectation is EJ. Denote
by Π the set of all (in general, randomized and history dependent) policies,
and by Φ the set of all stationary (non-randomized) policies. Elements of
Φ are identified with functions ψ : x —> a = φ(x) G A(a ), x e X. Under
suitable convergence conditions, for every discount factor 0 < β < 1 the
expected total discounted reward

v(x,π) = E;£j9*r(s t l α f + i ) J x G X,π G Π, (1)
t=o

is well-defined, and the following definition makes sense.

DEFINITION 1. Given a class Π; C Π of policies, a policy π* is said to be
Blackwell optimal within Π' if for every x € X and TΓGΠ there exists some
βo(x,π) < 1 such that

vβ{x, O > vβ(x, TΓ), βo(x, π)<β<l. (2)

In the case Π' = Π, TΓ* is called Blackwell optimal

This definition, up to mentioning IT, is due to Dekker and Hordijk (1988),
(1992), whose works remain the main sources on Blackwell optimality in the
denumerable models. If one may choose βo <1 independent of x and π (as it
is in the case of finite sets X and A(x) treated in the basic BlackwelΓs (1962)
work), then (2) reduces to the original BlackwelΓs definition of optimality:

υβ(x,π*) = υβ(x), xeX,βo<β<l (3)

where Vβ(x) = supπ 6 Π Vβ(x, TΓ), X G X is the value function of the model. In
the case of an infinite space X, the definition (3) appears to be too strong
to work with. For a further discussion of concepts and more survey we refer
the reader to Dekker and Hordijk (1988) and Yushkevich (1994).

Let || || be the supremum norm. We make the following

ASSUMPTION 1. (i) X is a denumerable space, and the transition function
is given by transition probabilities p(x,α,y) > 0 satisfying the condition
ΣyP(x,*,v) = 1 (* € X, a G A(x\ y G X);

(ii) A(x) are non-empty compact sets in a Polish space (x E I ) ;
(iii) p(x,a,y) and r(x,a) are continuous in a (x G X, ye X)]
(iv) || r || < oo.

Parts (i) - (iii) are standard in the denumerable dynamic programming,
when dealing with sensitive criteria. As to part (iv), Dekker and Hordijk
(1988), (1992) consider a more general case of rewards bounded with respect
to some positive weight function μ(x) > 0, x G X : || £ | |< oo. This leads to
additional conditions, such as convergence and continuity in a of the sums
of series ^2yp(x^a^y)μ(y) etc. We restrict ourselves to the case μ = 1.
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Dekker and Hordijk's (1988) work contains a scrupulous analysis of var-
ious steps leading to stationary Blackwell optimal policies via the Laurent
expansions technique developed for finite models by Veinott (1969). As to
the concluding results, the most complete one is the existence of such policies
under a uniform geometric convergence condition, which we formulate for
μ = 1. Given ψ G Φ, let pφ{x,y) = p(x,φ(x),y), x 6 l , j / G l . The matrix
pφ _ (pV^x^yY) i s the transition matrix of the corresponding Markov chain
on X. Consider its t-step transition probabilities pf (x, y), t = 1,2, As in
every countable Markov chain, when t —> oo, the matrix {Pφ)1 = (pf (x,y))
converges, at least in the Cesaro sense, to a limiting (sub)stochastic matrix

φ

CONDITION UGC. There are constants c > 0 and 7 G (0,1) such that
uniform i n x G X and ψ G Φ

This condition excludes periodic chains (but not a decomposition into
several ergodic classes). On the page 409 of their work Dekker and Hordijk
(1988) mention that the above condition "can be altered to include periodic
chains by introducing an initial distribution but we will not elaborate this
here". As far as we know, this approach was not elaborated elsewhere. We
make the following assumption, equivalent to Condition Cl in Tijms (1994).

ASSUMPTION 2. There exist a number ε > 0 and an integer T > 0 such
that for every φ G Φ one may find a state yφ G X with

Pΐ(χ,vφ) +Pί(χ,yφ) + ••• +vϊ{χ,yφ) >ε, xex. (4)

This assumption does not exclude periodicity (although it excludes more
than one ergodic class). We prove the following

THEOREM 1. Under Assumptions 1 and 2 there exists a stationary
Blackwell optimal policy.

The uniform geometric recurrence condition introduced in Dekker and
Hordijk (1992) requires, in the case μ = 1, the existence of a fixed finite set
M of states such that for all initial states x G X and all policies ψ G Φ the
probability not to hit M in t steps decays exponentially fast as t —> oo, uni-
form in x and φ. Tijms (1994) makes a conjecture about the equivalence of
a so called simultaneous Doeblin condition (which is essentially the same as
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t h e uniform geometric recurrence condit ion), a n d his Condit ion C l (equiv-

alent to Assumpt ion 2). As far as we know, this still remains to be only a

conjecture.

2. P r o o f s . In t h e first two lemmas we summarize some results following

more or less directly from Dekker and Hordijk (1988).

L E M M A 1. Assumption 1 and Condition U G C imply that:

(i) for every ψ G Φ a Laurent series expansion

oo 1 — /?
vβ(x, ψ) = (1 + p) £ K(x)pn, x G X, 0 < p = — ϊ < po (5)

n = - l "

holds with |Λ£| < Cn+2(n > -1), where p0 > 0 and C < oo are ίΛe same
/or a// rr and φ;

(ii) if ψk € Φ(k > 1) and ίΛe ίiraiί y?(n;) = lim W ( # ) errΐ̂ ίθ /or every

x G X, ίΛen <p G Φ and

= lim Λ^(rc), x G X, n > - 1 ;

(iii) there exists a policy φ* Blackwell optimal within Φ.

PROOF. Part (i) follows from ibid., Theorems 4.8 to 4.1, with bounds
for Λj£ obtained as in Theorem 4.4 (the continuity of Pφμ in φ and other
conditions besides UGC present in those theorems become trivial in the case
μ = 1). Part (ii) follows from the continuity in φ of the deviation matrix Dφ

(ibid.. Theorem 4.8) and of the function

rφ(χ) = r(x,φ(x)), x G X,

from the resulting continuity in φ of Pφrφ and (Dφ)nrφ (ibid., Lemmas 4.5
and 4.6), and from formulas relating /$ with Ψp,Dφ and rφ (ibid., (4.5)).
To get part (iii), follow along ibid., Theorems 4.8 to 4.7 to 3.1 to 3.2. D

LEMMA 2. Assumption 1 and parts (i), (ii) of Lemma 1 imply that a

policy φ* Blackwell optimal within Φ is also Blackwell optimal within Π.

Proof. See ibid, Theorem 5.4, with two adjustments. Firstly, instead of
the continuity of Dφ we assume parts (i)-(ii) of Lemma 1. One may see that
the above continuity is used only to obtain what is stated in Lemma 1 (i,
ii). Secondly, Theorem 5.4 states only that

i.e. that φ* is n-discount optimal for each n = —1,0,1,2,... in the ter-

minology of Veinott (1969). This is weaker than the Blackwell optimality
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(2), because the Laurent expansion (5) is not known for Vβ(x,π). In fact, as
shown for another model in Yushkevich (1994), in the case of bounds for h%
given in Lemma l(i), essentially the same reasoning gives for φ* the relation
(2) too. D

Next, following Tijms (1994), we select a number 0 < 6 < 1 and consider
a perturbed model with the same X, A(x) and r but with the transition
probabilities changed to

q ( x , α , y ) = bp{x, α , y ) + ( 1 - b)δ{x, y ) , x G X , α G A ( x ) , y e X ( 6 )

(δ is the Kronecker symbol). Let qφ(x, y), qf (x, y), ^ ( x , y), Q^ and Wβ(x, π)
have the same meaning in the perturbed model as pφ(x, y), pf (x, y), p^(x, y),
P^ and Vβ(x,π) do in the original model. Then

Qf> = bP* + (1 - 6)/, φ e Φ (7)

where / is the identity matrix. The following lemma is a key one.

LEMMA 3. For linear operators P with \\ P \\< 1 (acting in some Banach
space), let the resolvent RP(P) be defined by

(I is the identity operator). Then

RP(P) = γ^γp

Rbp(bP + (1 ~ &)/), 9 > 0, 0 < b < 1. (9)

PROOF. Using (8) and (9), verify that

LEMMA 4. Assumptions 1 oncί 2 /or the original model imply Assumption

1 and Condition UGC /or the perturbed model

PROOF. Assumption 1 is evident. As to Condition UGC, by (6) we have

qφ(x,y) > bpφ(x,y) for every x,y and φ, and hence, by an induction in ί,

qΐ(χ,v) > ϊpΐ&y), x G x , y G x , * = 1,2,..., ^ G Φ.

In a similar way qφ(x,x) > 1 — 6, and hence
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Therefore for every t = 1,2,..., T

«?(*,») > qΐ(*,v)β-t(v,v) > Hi - *)Γ-'rf(*,v) > &Γ(i - *) Γ PΓ(^»)

Now a summation over t and (4) yield the following uniform Doeblin condi-
tion for the perturbed model:

qUx,yφ)><*=ψbτ(l-b)τ, xeX,φeΦ. (10)

Condition (10) implies the existence of the limits ψ^iy) = \imt-+oo qf O Ĵ/)
(#, y E X) and uniform in a?, y? and B C X geometric bounds

Σ [#(*»»)- (11)

(see, for example, Doob (1953), page 197, case (b) (take Doob's measure φ
on X equal to 1 at the state yφ)). Another reference is Meyn and Tweedy
(1993), p. 384, Theorem 16.02, part (v), formula (16.11). Condition UGC
for the perturbed model follows from (11), with 7 = \/l — α. D

PROOF OF THEOREM 1. In the case of a stationary policy </?, formula
(1) for Vβ(x,φ) reduces, in the vector notations, to

trφ> ° < β <!. φ e Φ,
t=0

or, in the resolvent notations (8), to

vβ(φ) = Rp{Pφ)r*, β = ̂ i - , p > 0, φ € Φ.

According to (7), in the perturbed model

wβ(φ) = Rp(bPφ + (1 - b)l)rφ.

Therefore by Lemma 3

It follows from (12) and Definition 1 that a policy Blackwell optimal within
Φ in the perturbed model is also Blackwell optimal within Φ in the original
model. By Lemmas 4 and 1, there is such a policy φ*, and moreover, parts
(i) - (ii) of Lemma 1 also hold in the perturbed model. In particular, for
every ψ E Φ

ws(φ) = (1 + bp) f ) k%(x)(pb)n, 0<bp<p'o,φeΦ (13)
n=-l
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with || kl | |< (C')n+2 etc. A comparison of (5), (12) and (13) shows that in
the original model the relation (5) also holds, with

and with po = ^ , C = ^ . Since Λ£ differ from k% by constant coefficients
only, part (ii) of Lemma 1 extends from the perturbed to the original model.
By Lemma 2, φ* is Blackwell optimal within Π in the original model. D
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