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Abstract
A gambler (or stochastic controller) selects the distribution for the

stochastic process x,Xχ,X2,... from those available in a given gam-
bling house. An optimal stopper selects a stop rule t and pays the
gambler the expected value of u(Xt), where u is a bounded, real-valued
function. Under certain measurability assumptions, this game has a
value and there is a transfinite algorithm for calculating it.

1 Introduction

Suppose a gambler begins play with fortune x in the state space S. The
gambler selects a strategy σ from those available in the gambling house Γ and
thereby determines the distribution of the process of fortunes x, -XΊ, X25
on S. In the classical Dubins and Savage theory, the gambler would also
select a stop rule t and receive as reward the expected value of u(Xt), where
u is a bounded, real-valued utility function. However, we assume that the
stop rule is chosen by a second player, called the stopper, who seeks to
minimize the gambler's reward.

Under measurability conditions on £, Γ, u, σ, and t which are speci-
fied in the next section, we show that this two-person, zero-sum game has a
value and we give a transfinite algorithm for calculating the value. Technical
difficulties arise in the proof largely because the set of stop rules is a com-
plicated set for which there seems to be no nice measurable structure when
5 is uncountable. These difficulties are surmounted by the use of effective
descriptive set theory. The effective theory allows us to replace the set of
stop rules at each state a; by a countable set of recursive stop rules.

The gambler and stopper game is related to the "leavable games" studied
in [9], [10], and [11]. In the special case where S is countable, the fact that
the gambler and the stopper game has a value follows from Theorem 4.7 of

[H]
The next section is devoted to definitions and preliminaries. Section 3

presents the effective theory we need to prove the main results which are
in Section 4. In Section 5 an application is given to gambling problems in
which the gambler's reward is the expected value of liminfn^(-X'n).
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2 Definitions and Notation

Let 5 be a nonempty Borel subset of a Polish space and let P(5) be the
collection of countably additive probability measures defined on the Borel
subsets of S. Give P(S) its usual weak topology so that it too has the
structure of a Borel subset of a Polish space (see Parthasarathy [14] for
information about the weak topology on P(S)). An analytic gambling house
Γ is a mapping which assigns to each rr € S a nonempty subset Γ(x) of P(5)
in such a way that the set

Γ = { ( x , 7 ) € 5 x P ( 5 ) : 7 € Γ ( x ) }

is analytic.
For each n > 1, equip Sn with the σ-field generated by the analytic

subsets of 5 n . Functions measurable with respect to this σ-field will be
called analytically measurable. Starting at some initial state x G £, a gam-
bler in the house Γ chooses an analytically measurable strategy σ available
at x, which means a sequence σ = (σo,σ i , . . . ) , where σo € Γ(x) and, for
n > 1, σ n is an analytically measurable function from Sn to P ( 5 ) such that
ffnO&i,^,.-- , z n ) G T(xn) for every (xι,x2,... , z n ) € Sn. Every analyti-
cally measurable strategy σ determines a probability measure, also denoted
by σ, on the Borel subsets of the space H of histories:

The probability measure σ can be regarded as the distribution of the co-
ordinate process h = (Ai,h2> )> where hi has distribution σo and Λn+χ
has conditional distribution σn(xι,X2, iχn) given that hi = £1,^2 =
#2i 1 hn = xn. For x € 5, let Σ(#) be the set of all analytically measur-
able strategies available at x. Set

Σ = {(*, σ) € 5 x F(H): σ e Σ(x)}.

It is known that Σ is an analytic subset of 5 x P(#) , where H is given the
product of copies of the topology on 5 and P(ff) the usual weak topology.
(See Dellacherie [1] and Sudderth [15].) The reason for considering analyt-
ically measurable strategies is that there may not be a Borel measurable
selector for Γ, so that it is possible for the set of Borel measurable strate-
gies to be vacuous. (A selector for Γ is a function φ : 5 —> P(5) such that
φ(x) € Γ(#) for all x € 5.) In case Γ does admit a Borel measurable selector,
we can restrict the gambler to Borel measurable strategies without changing
Σ.

Suppose that σ € Σ(:r) and p 6 Sm. We define the conditional strategy
σ[p] as follows:
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and, for n > 1,

where px\x<ι . . . xn is the element of Sm+n obtained by catenating p and
0EI5#2J . . . ,xn)- It is easily checked that σ[p] G Σ((p)m), where (p)m is the
rath coordinate of p. Furthermore, the measures (induced by) σ[p], p G 5 m ,
are versions of the conditional σ-distributions of (Λm+i, ftm+2j.. ) given that
(Λi, Λ25 - > Λm) = p. If 5 is a bounded, analytically measurable function on
if, 5p will denote the section of g at p, that is

gp(h)=g(ph), heH,

where ph is the history obtained by catenating p and h = (Λi,/&2> )
Plainly, pp is an analytically measurable function on H. The usual formula
stating that the expectation of a conditional expectation is the expectation
takes the form

(2.1) Jgdσ = J[j(gpm(h))(h') σ\pm(h))(dh')} σ(dh),

where pm(h) = (Λi, Λ2,... , hm).
A function t on H to ω, the set of natural numbers, is a stop rule if

t(Λ) = n and Λ = n ti -* ί(Λ') = n,

where Λ, = n Λ' means that the histories h and h! agree through the first
n coordinates. If ί is a stop rule such that t(h) = 0 for some Λ, then it
follows from the definition that t is identically zero. Stop rules which are
not identically zero will be called proper stop rules. Let T be the set of Borel
measurable stop rules and Ύ\ the set of Borel measurable stop rules that are
proper.

If t G 71, we define pt as the function on H whose value at h is the finite
sequence (Λi, Λ-2, - -. , Λt(/ι)) Next we define, for an analytically measurable
strategy σ, σ[pt] as the function whose value at h is σ\pt(h)]. Formula (2.1)
extends to stop rules t as follows:

(2.2) Jgdσ = J[J(gPt(h))(h')σ\pt(h)}(dh')}σ(dh).

Formula (2.2) remains true for t = 0 if we define pt(h) to be the empty
sequence and σ\pt{h)\ — σ for each h G H.

If p = (#1, X25 5 Xm) £ 5 m and < G T, we define <[p] on fl" by

t\p](h) = t(αi, rc2,... , x m , Λi, Λ2,.. ) - rn.
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Note that, if £(xi,X2,... , x m ? - -) > ™, then t\p] G T. When p = (a?), we
write t[x] for £[p].

There is a natural way to associate with every t G T an ordinal number
j(ί), called the index of ί, by setting j(t) = 0 if t is the identically zero stop
rule and requiring that

j(t) = sup{j(t[x]) + l : x G S }

for every £ G T\. The concept of index was introduced by Dellacherie and
Meyer [3].

We say that σ(x), x G 5, is a measurable family of strategies if σ(x) G
Σ(x) for every x G 5 and, for every π > 0, σ(x)n(xi,X2,... >#n) is an
analytically measurable function from S x Sn to Ψ(S). A measurable family
σ(x), x G S, of strategies is said to be Markov if for each n > 0 there is an
analytically measurable selector 7 n for Γ such that

for all n > 0 and x,xi, X2> %n € 5.
We define the operator Γ1 on bounded, analytically measurable functions

v on S by setting

(Γxt;)(x) = sup / υdj, x G 5.
jer(x) J

Say that v is excessive (deficient) if Γxv < v (Γxv > v). A function v is
invariant if it is both excessive and deficient.

A real-valued function v on S is upper analytic if {x G S : v(x) > α}
is analytic for every real number α. It is not hard to prove that v is upper
analytic iff the set {(x, o) G S x R : v(x) > α} is analytic.

If v is a bounded, upper analytic function on 5, σ G Σ(xo) and ί € 7χ,
formula (2.1) in the special case g = v(ht^)) a n d m = 1 becomes

(2.3) I v(Λt)Λr = J[J v(hf

t[χ])σ[x](dti)]dσ0(x)

where we write Λ* for ht(h) and define Λjuj = x when t[x] = 0.

3 Effective Descriptive Set Theory

Effective descriptive set theory takes place in Polish spaces which admit a
smooth recursion theory. This is made precise in the next definition.

We say that a topological space Z is ^-recursively presented \iZ admits
a complete metric d and a dense sequence (rn)neω such that the relations

d(rn,rm) < —f- and d(rn,rm) < -2—
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are Δ} in αΛ Examples of such spaces are {0,1}", ωω, [0,1], [0, l ] ω , R, etc.
(See Moschovakis ([13], pp. 128-135).)

Suppose now that Zι, Z<ι are Δ|-recursively presented spaces. Then Z\ x
Z2 is Δj-recursively presented. If Z is a Δj-recursively presented compact
metric space, then so is P(Z), the set of probability measures on Z. In what
follows, our terminology and notation, pertaining to concepts in effective
descriptive set theory, are taken from Moschovakis [13].

For the rest of this section, the state space S will be {0, l}ω and the
history space H is therefore ( { 0 , l } ω ) N . Both these spaces are Δj-recursively
presented, compact metric spaces, as are the spaces of probability measures
on S and H.

We now need to describe a coding of Borel measurable functions on H
to ω. To do this, fix a coding (W, C) of the Borel subsets of H x ω, that is,

(a) W is a U\ subset of ωω x ω;

(b) C is a Π* subset of ωω x ω x H x ω\

(c) the set {(α, n, Λ, m) € ωω x ω x H x α;: (α, n) G W and (α, n, Λ, m) £
C) is Π};

(d) for fixed (α,n) e ωω x ω, the section Cα,n = {(Λ,m) e H x ω :
(α,n,Λ,m) G C} is Δ}(α); and

(e) if B C H x ω is Δj(α), then there is n € α; such that B = CQ ) n.

See Louveau (5, p. 13) for this coding.
We now define a partial function on ωω x ω x H as follows: U is defined at

(α, n, Λ) (we write J7(α, n, Λ) [) iff there exists a unique m such that (α, n) €
W and (α,n,h,m) G C If i7(α,n,Λ) | , set I7(α,n,Λ) = m (described
above). Consequently,

C/(α,n,Λ) |<-> (3m)[(α,n) G PF and (α,n,h,m) G C

and (VJb)(t / m ^ ( α , n ) ^ and (α, n, Λ, Jk) ^ C)]

Hence, the domain of U isU\. Moreover, on its domain, U is "computed" (in
the sense of [13, p.175]) by C, so that U is a Πj-recursive partial function.
The following properties of U are easy to verify by using the analogous
properties of the coding (W, C):

(i) for fixed (α,n) G W, C/(α,n, ) is a Δi(α)-recursive partial function;
and

(ii) if g is a Δ|(α)-recursive partial function from (a subset of) H to α;,
then there is n G ω such that g = U(α, n, •). In this case, we say that
(α,n) "codes" g.
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Let ^ be a gambling house on 5 and let M be a mapping that assigns
to each x € 5 a nonempty subset MXχ) of F(H). Assume that {(2,7) €
5 x F(S) : 7 G K(x)} and {(z, μ) G 5~x P ( # ) : μ G M(z)} are Σj subsets of
5 X P(5) and 5 x P(#) , respectively. Further, suppose that if μ G M ( S Q ) ,

then

l Mo € i^(xo)? where μo is the distribution of h\ under μ; and

2. μo({z G 5 : μ[x] G M(^)}) = 1> where μ[x] is a version of the regular
conditional distribution of (/12, Λ3,...) given h\ = x under μ such that
the function (μ, x) —> μ[x] on F(H) x 5 to P(iί) is Borel measurable
(see [6, Lemma 22]).

Let i bea bounded, nonnegative function on 5 such that the set

{(#, α) G 5 X K-j. : t?(x) > α}

isΣj.

Define, for x G 5,

i2(x) = inf sup / v(ht) dμ(h),

where the infimum is over all Δ}(x)-recursive stop rules on if; and

R'(x) = inf sup / v(ht

ueM(x) J

where the infimum is over all Δ}(x)-recursive, proper stop rules.
We will now establish some properties of the functions R and Rf. In

the sequel, we will use without explicit mention results of Kechris [4] on the
evaluation of the level of the analytical hierarchy to which definable sets of
probability measures belong. Also in what follows we think of S as being a
Πj subset of ωw.

Let Γ be the set of codes of Borel measurable stop rules, that is,

T = {(x, i) € 5 x ω : (7(x, i, •) is a stop rule}.

Similarly, let

T1 = {(x, i) G 5 x ω : U(x, i, •) is a proper stop rule}.

Lemma 3.1 T and V are Π\ subsets of S xω.
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Proof. Observe that

(x,i)eT++xeωω and (VΛ)(lΓ(a?,i,Λ) | )

and (Vh)(Vti)(Vj)(U(x,i,h) = j and Λ =,- Λ' -> U{x,i,ti) = j).

It now follows from the closure properties of the pointclass Πj and the prop-
erties of the coding U that T is a ΐl\ set. One proves that T" is Πj similarly.
D

Lemma 3.2 The sets {(#,α) G 5 x R+ : iί(a ) < α} and {(z,a) G 5 x R+ :
a;) < a} are 6oίΛ Π}.

Proof: Note that

R(x) < α π (3r)(3n)[r G Q and r < α and (z,n) G T

and (Vμ)((s,μ) € &^> Jvihu^Jdμih) < r)],

where Q is the set of nonnegative rationale. Once again it follows from the

closure properties of the pointclass Π} and the equivalence above that the
hypograph of R is Π}.

A similar proof, with the set T replaced by T", works to show that the
hypograph of Rf is Ώ\. D

The next result will be critical in the proof that the game defined in the
Introduction has a value.

Theorem 3.3 For each x G S,

R'(x)< sup I R{J)dη{rf).

Proof. Let E = {(x,α) G S x ! + : β(x) > α}. By Lemma 3.2, E is Σj.
Fix xo G 5 and 6 > 0 rational. Since the set {7 x λ : 7 G jV(a?o)}, where

λ is Lebesgue measure, is Σj(xo)j it follows from [7, Lemma 4.3] that there
is a Δ\(XQ) subset B of S x R+ such that B D E and

(3.4) sup (7 x λ)(B) < sup (7 x λ)(E) + |

— Qiin I 7?ι Φ 1 ///vί i 1 -4- —

Set

p(a?) = λ(Bx), a; 6 X
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Then

g(x) > λ(Ex) = R(x).

Moreover, g is a Δi(rro)-recursive function. Prom (3.4), we have

(3.5) sup fg(x)dΊ(x)< sup [ R(x)dΊ(x) + J.

Next, define a set P C S x ω as follows:

(x,n) G P H

(x,n) e T and (Vμ G M(*)) ( / ^ (%(χ,n,.)) dμ(Λ) < ff(^) + f ) -

Then P is Πi(xo) It follows from the definition of ϋ and the fact that g > R
that

(Vx)(3n)((rr,n)GP).

By the Kreisel selection theorem ([13, p.203]), there is a Δj(a:o)-recursive
function / : S —> ω such that

(Vx)((x,f(x))eP).

Define a stop rule t such that

(3.6) t[x] = U(xJ(x),.).

Then t is a Δi(#o)-recursive, proper stop rule. It follows that

(3.7) R'(x0) < sup / υ(ht) dμ(h).

Now, for any μ € M(xn)<

(3.8) Jv(ht)dμ(h) = I yV (h't[x]) μ[x](dti)\ μo(dx)

< I g(χ) μo(dχ) + ̂

< sup / g(x) j(dx) + J
7€£(xo) •/ 2

< sup / R(x) η{dx) + c,
76N(xo) ^
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where the first inequality holds by virtue of the definition of t and the fact
that μ[x] G Mix) for almost all (μo)#, the second inequality follows from
the fact that μo £ K(xo) and the last inequality is by virtue of (3.5). Since
(3.8) holds for every μ G M_(xo) and e is arbitrary, we have

(3.9) sup v(ht)dμ(h)< sup / R(x)dη(x).

Hence, from (3.7),

R'(x0) < sup / R(x

4 The Gambler and Stopper Game

Let Γ be an analytic gambling house on a Borel subset 5 of a Polish space.
Suppose that u is a bounded, upper analytic function on 5. We now formu-
late the game described in the Introduction in precise terms. There are two
versions of the game.

For each x G 5, G(x) is the zero sum, two person game where the gambler
(player I) chooses a strategy σ G Σ(#) and, simultaneously, the stopper
(player II) chooses a stop rule ί 6 T; the payoff from II to I is / u(ht) dσ(h).
The game G'{x) is similar, except that the stopper is allowed to choose only
proper stop rules.

Theorem 4.1 Suppose that Q is a bounded, upper analytic, deficient (w.r.t.
Γ) function such that Q <u. Then, for each x G S

(a) supσeΣ(a.) infί€T Ju(ht)dσ(h) > Q(x),

0>) supσ € Σ ( x )inf t G T l Ju(ht)dσ(h) >

Proof. Fix € > 0 and choose δn > 0, n > 0, such that Σ™=0 δn < e. By
a well-known selection theorem (see, for example, [7, Lemma 2.1]), we can
choose, for each n > 0, an analytically measurable selector % : S —> P(5)
for Γ such that

(4.2)

for each x G S.
For each m > 0, let

(σm(*))o=7m(z),



200 A. P. Maitra and W. D. Sudderth

and, for n > 1,

(x))n{xι, X2, . , Xn) =

Then, for each m > 0, σ m (x), x £ 5, is a Markov family of strategies. We
will now prove by induction on the index j(t) that

(4.3) [u(ht)σm(x)(dh)>Q(x)-Σδn

for all m > 0, x G S and ί e T .
If j(t) = 0, ί is the improper stop rule, so that

u(ht)σm(x)(dh) = u(x)

>Q(x)

> Q(X) - f; sn.
n=m

Now suppose that j(t) > 0 and that (4.3) is true for all s € T such that
j(s) < j{t). Then

(4.4) Ju(ht)σm(x)(dh) =

-I
ηm{x){dxι)

ηm(x){dx{)

oo

n=ra+l

1 V ^

n—m
00

> o( \ — Y^ δ
n=m

where the first inequality is by virtue of the inductive hypothesis, the second
is by (4.2) and the final equality follows from the fact that Q is deficient.
This proves (4.3).

Let σ{x) - σ°(x), x G S. Then, by (4.3),

inf ίu(ht)σ{x){dh) >Q(x) - e

for every a; 6 5. As e is arbitrary, we have established assertion (a).
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An inspection of (4.4) shows that

mf ίu(ht)σ(x)(dh) > (TιQ)(x) - e

for every x G S. As € is arbitrary, this proves (b). D

Theorem 4.5 (α) For each x E S, the game G(x) has a value L(x).

(b) The function L is upper analytic.

(c) For each e > 0, the gambler (player I) has an e-optimal Markov family
of strategies in the games G(x), x G S .

(d) L is the largest bounded, upper analytic, deficient function Q such that
Q<u.

Proof. The case where X is countable is easy and we omit the proof. So
suppose that S is uncountable. By the Borel isomorphism theorem, we may
further assume that S = {0,1}^. Also without loss of generality, we can
assume that u > 0.

Since Γ, Σ and the epigraph of u are all analytic sets, we can choose
a e ωω such that these sets are Σj(α) (see [13, 3E.4]). Let v = u, ^ = Γ,
M = Σ and let

R(x) =x) = inf sup / v(ht) dμ(h), x 6 S ,
μeM(χ) J

where the infimum is over all Δ}(α,a;)-recursive stop rules on H.
We now relativize Lemma 3.2 and Theorem 3.3 to a. It follows that R is a

bounded, upper analytic, deficient function such that R <u. Consequently,
for each i G S ,

inf sup / u(ht) dσ(h) < R(x)
t^rσ€Σ(x)J

< sup inf u(ht)dσ(h),
σeΣ(x)t^rJ

where the first inequality holds because every Δ}(α;, α)-recursive stop rule
is Borel measurable, and the second is by virtue of Theorem 4.1. This
establishes that the game G(x) has value 12(x), so that assertions (a) and
(b) are proved. Assertion (c) is true because, as in the proof of Theorem
4.1, a Markov family of strategies σ(a ), x € 5, can be constructed, for each
e > 0, such that

inf ίu(ht)σ(x)(dh) > R{x) -
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for each x e S. Finally, (d) follows from Theorem 4.1 and the fact that R is

the value function of the games G{x), x G S. •

The analogous result for the games G'(x), x G S, is as follows.

Theorem 4.6 (α) For each x 6 S, the game G'(x) has value ( Γ 1 ^ ) ^ ) .

(b) For each e > 0, the gambler (player I) has an e-optimal Markov family

of strategies in the games G'(x), x 6 S.

(c) L = (ΓXL) Λ u, where the right side is the pointwise minimum of the

functions ΓXL and u.

Proof. Assertions (a) and (b) are proved in a manner similar to the proof
of Theorem 4.5. To prove (c), use Theorem 4.5(d) to see that L < (Γ1L)Λτz.
Suppose now that L(x) < (Γ1L)(a;) for some x G S. In this case, the stop
rule t = 0 is clearly optimal for player II in G(a ), so L(x) = u(x). On the
other hand, if L(x) < u(x), then there is no incentive for player II to choose
the stop rule t = 0 in the game G(x). Indeed, he is better off choosing a
stop rule ί > 1. But then L(x) = (Γ1L)(x), which completes the proof. •

Theorem 4.6(c) suggests how we may calculate the functions L and Γ1!,.
Towards this end, define an operator T on bounded, analytically measurable
functions on S as follows:

Tv = (Γ1^) Λ u.

Note that L is the largest bounded, upper analytic fixed point of T. It
follows, courtesy of a result of Moschovakis in the theory of inductive defin-
ability [13, 7C.8], that L can be calculated in accordance with the following
transfinite scheme:

Let

and for each ordinal ξ > 0,

Then

— Lωi,

where ω\ is the first uncountable ordinal.
Similarly, one can define an operator T1 on bounded, analytically mea-

surable functions on 5, thus

= Γ1(vΛu).
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It is not difficult to see that YιL is the largest, bounded, upper analytic
fixed point of T". So, by the result of Moschovakis cited above, TXL can be
calculated as follows:

and for each ordinal ξ > 0,

Then

We conclude this section with some remarks.
First, it is easy to make up examples of games G{x) (or Gr(x)) where

neither player has an optimal strategy.
Second, there are gambling and dynamic programming problems for

which the optimal reward function can be realized as the value function
of the games Gr(x), x E S. In gambling, an example is provided by the
problem where the gambler wishes to maximize the probability of staying
in a set forever (see [7] for details). The optimal reward function for nega-
tive dynamic programming can also be realized as the value function of the
games G'(x), x E X, though to do so we have to relax the condition that u
is bounded below. This can be done because of the special nature of u in
negative dynamic programming (see [8]).

5 The Liminf Gambling Problem

In this section, results of the previous section will be used to calculate the
optimal reward function of the gambler whose aim is to maximize the ex-
pected value of the liminf of utilities evaluated along histories. The liminf
gambling problem was introduced by Sudderth [17].

Let, then, 5, Γ and u be as described in the first paragraph of the previous
section. Define u* on H by

u*{h) = liminf u(hn).
n

Regard u*(h) as the payoff to the gambler when he experiences the history h.
The aim of the gambler is to choose a strategy σ G Σ(x) so as to maximize
his expected payoff fu*dσ. The optimal reward function for this problem is
therefore

W(x) = sup / u*dσ, x E S.
σeΣ(x) J



204 A. P. Maitra and W. D. Sudderth

Since Σ is analytic, W is an upper analytic function. Our calculation of W
will be based on the following result. Recall that TXL is the value function
of the games G'(x), x G S.

Theorem 5.1 For each x G S,

(5.2) W(x) = sup /(Γ1L)(/ιt) dσ{h),
π J

where the supremum is taken over all measurable policies π = (σ, t) available
at x, that is, over all (σ,£) such that σ G Σ(x) and t eT.

Proof. Fix XQ G X and e > 0. Choose a policy (0"°,s) available at xo such
that

(5.3)

where Q denotes the function on the right side of (5.2). Let σ1(x), x G -X",
be an e/2-optimal family of strategies for the gambler in the games Gf(x),
x G X. Define σ G Σ(XQ) as follows:

and for n > 1

= σn-s(
hs+i, hs+2, . , K), otherwise.

Thus, σ is the strategy that starts out by following σ° and then switches to
σ1 at time s. Now calculate as follows:

u*(ti)σ\ps(h)](dti)]dσ(h)

= J[J ^(ti

> J mit[J

> Q(χo) - 6,

where the first inequality is a consequence of the Fatou equation ([16]), the
second inequality holds by virtue of the fact that σ1(Λ5) is e/2-optimal for the
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gambler (player I) in the game G;(Λ5), and the final equality holds because
of the choice of σ° and s. Hence

W{xo)> Ju.dσ

> Q(XQ) - e.

Since e is arbitrary, this proves that W > Q.
For the reverse inequality, let

wn(h)= inf u(hm), n = 0,1,2,... .
m>n+l

For any Borel measurable stop rule t, let

wt(h) = wt(h)(h).

The section wtpt(h) of the function wt can be calculated as follows:

(5.4) wtpt(h)(h')=wt(pt(h)h')

inf«(/C)
TO>1

Now let σ G Σ(x0). Then

/
u*dσ = sup / Wfdσ

teT'J

= sup [[wtpt(h){ti)σ\pt(h))(dti)σ(dh)
teτf J J

= sup / / { inf tz(θ) σ[pt(Λ)]«

< sup / inf f u(tis)σ\pt(h)](dti)σ(dh)

<sup [{YιL){ht)σ{dh).
teT'J

< Q(χo),

where the first equality is by virtue of the fact that wn | ?z*, the third
equality is by (5.4), and the second inequality is by virtue of the fact that
(Γ1L)(Λ<) is the value of the game G'(ht). Since σ € Σ(#o) was arbitrary,
we have:

W(x0) < Q(xo).

This completes the proof. Π



206 A. P. Maitra and W. D. Sudderth

The right side of (5.2) is the optimal reward function of a leavable gam-
bling problem, in the sense of Dubίns and Savage [3], with utility function
ΓXL. Now Dubins and Savage have given a scheme for calculating the opti-
mal reward function of a leavable problem. We will now apply this scheme
to the deficient function ΓιL to calculate W. Set

Wo = TXL

and

Wn+1 = Γ1Wn, n>0.

Then

W = supWn.
n

The next result is an immediate consequence of the fundamental theorem
of gambling [3, Corollary 2.14.1].

Corollary 5.5 The function W is the least bounded, excessive function v
such that υ >ΓιL. Hence, W is an invariant function.

We will now characterize W directly in terms of the utility function u.
This result is proved for countable 5 in [12, 4.10.9(i)].

Theorem 5 6 The function W is the least bounded, excessive function υ
such that J v*dσ > J u+dσ for all σ G Σ(a ) and x € X.

Proof. Fix x G X and σ € Σ(x). Let t be a Borel measurable stop rule in
V. Now

/ u m d σ — I I u+dσ[pt] d σ

< ίw(ht)dσ.

Hence,

[u*dσ< \iminf ί\V(ht)dσ

where the liminf is taken over the directed set V of stop rules and the
equality is by virtue of the Fatou equation ([16]).

Suppose next that υ is a bounded excessive function such that / v+dσ >
J u*dσ for every σ G Σ(x). Since v is excessive, it is easy to verify that
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v(x), v(Λi), v(hz),... is a bounded supermartingale under σ 6 Σ(x). So, by
the Optional Sampling Theorem,

/ v(ht) dσ < υ(x)

for any t eT' and σ €Σ(x). Hence,

liminf / v(ht)dσ < v(x),

so that by the Fatou equation, for any σ € Σ(x),

/ υ*dσ < v(x).

It follows that

/ u*dσ < v(x).

Taking the sup over σ G Σ(x), we get

W(x) < v(x).

This completes the proof. D
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