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A NON-MEASURABLE TAIL SET

DAvID BLACKWELL AND PERSI DIACONIS
University of California and Stanford University

Rosenthal [3] constructed a non-measurable tail invariant set by an in-
teresting transfinite induction argument. This note shows that an earlier
argument of Sierpinski [4] leads to the same result when translated from the
real line to a product space.

Let X; be the two point set {0,1}. Define a measure p; on X; by
1i({0}) = pi({1}) = 3. Let X = []X; have the usual product measure
p = [1 pi. We write p.(-) for the induced inner measure. A subset A of X
is a tail set if (a;) € A, a; = b; for all but finitely many ¢ implies (b;) is in A.

If Sis a set, a filter U is a collection of subsets of S which does not
contain the empty set, is closed under finite intersections and such that if
AelU,AC BCS,then B €lU. A filter U is an ultrafilter if A C .S implies
either A € U or A® € U (A€ is the complement of A). An ultrafilter U is
called free if NaeyyA = 0. The existence of free ultrafilters is strictly weaker
than the axiom of choice [2].

For the construction, fix U, a free ultrafilter on the positive integers.
Each point (a;) € X determines a set of integers N, = {i : a; = 1}. Let F
be the set of all (a;) € X such that N, € Y. Thus E€ is the set (a;) € X
such that N, ¢ U.

Theorem F is non-measurable tail subset of X. In fact
pa(E) = pu(E€) = 0,

Proof: For (a;) € X let (a!) = (1 — a;). Clearly u(A’) = p(A) for
measurable sets A. Note that E/ = EC. If E was measurable, u(E) =
p(E") = p(EC) > 0. If (a;), (b;) € X, a; = b; for all but finitely many i, then
N, € U if and only if Ny € Y. This implies E and E€ are tail sets. The
Kolmogorov zero-one law [1] implies p(E) = p(E€) = 1. This contradiction
show that F is not measurable.

We now show that the set E introduced above has p.(E) = p.(E€) = 0.
Let a transformation T': X — X be called a tail transformation if there is
an n such that for all z, T'(z) and z only differ in their first n coordinates.
The collection of tail transformations is countable and for any set B C X,
B* = UrT(B) is a tail set. Suppose E has a measurable subset B of positive
measure. Then since T(B) C E for any tail transformation T, B* C E.
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But B* is a measurable tail set containing a set of positive measure, so
B* has measure 1. This implies p*(E) > p«(E) > p(B*) = 1 so that E'is
measurable. Hence E does not have a measurable subset of positive measure
50 pix(E) = 0. The same arguments apply to EC so p.(E) = pe(E€) = 0.
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Postscript

This short paper was written in 1975. The following notes and comments
may help the reader.

1. In recent years there has been increasing interest in the use of finitely
additive measures in probability and statistics. This begins with de Finetti
and Savage who realized that natural axiom systems for probability did not
guarantee countable additivity. They set out to see what can be done with
finite additivity.

There are some gains: any finitely additive measure on a sub-algebra can
always be extended to all sets so that there is no need for non-measurable
sets. Further, there are natural statistical procedures which are not Bayes
rules for any countably additive prior but are Bayes for a finitely additive
prior. Interesting examples connected to the t-test can be found in [6], [7],
[11].

On the other hand, one loses quite a bit when giving up countable ad-
ditivity; Fubini’s theorem and the Radon-Nikodym theorem fail in a finitely
additive setting (there are finitely additive substitutes, see [4], [10]). The
failure of standard results isn’t necessarily a disaster; but it can require a
fairly serious rethinking.

One serious loss is the constant interplay of finitely additive measures
with the axiom of choice; this renders the whole subject unreal. Here is an
example. Take the basic space as the positive integers: Q = {1,2,3,---}
take B to be the set of integers that have first digit

1:B={1,10,11,---,19,100,101---}

suppose we begin an approach to “picking an integer at random” by us-
ing the number theoretic natural density. Thus even numbers are assigned
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probability %, square free numbers are assigned probability ;62—, the primes
are assigned probability 0, and so on. A standard result says that there
are “Banach limits”: finitely additive probabilities P which are invariant,
extend density, and are defined for all subsets of integers. The existence of
such P is very roughly equivalent to the axiom of choice. The question now
is, what is P(B)? There can be no answer; P(B) can be assigned any value
in [%,% ! and then extended. Thus, the existence of Banach limits is no
real help. It gives the illusion of a concrete useful construction with little
content.

2. A standard result in classical measure theory says that any probability
P on the Borel sets of the real line can be decomposed into P = P, + P, + P3
with P; atomic, P, absolutely continuous with respect to Lebesgue measure
and P; purely singular. There is a parallel for finitely additive measures due
to de Finneti [3, chapter 7]. For clarity, let us stick to the positive integers Q.
The result says that any finitely additive measure P defined on all subsets of
Q can be decomposed as P = P, + P, + P3, with P; atomic, P, a countable
mixture of free ultra-filter measures and Pz ‘diffuse’.

Here P, is an ordinary measure on 2. Pj diffuse means for every E of
positive P3 measure sup{P;(E;)/P5(F) : 0 < P5(E,) < P5(E)/2} = % For
example, Banach limits are diffuse. We describe the ultrafilter measures
more carefully.

Recall, that a filter on € is a collection of sets which doesn’t contain the
empty set, is closed under finite intersection and contains supersets. Two
examples: the subsets containing a fixed non-empty set B form a filter (said
to be fixed at B). The subsets with finite complement form a filter (said to
be free). A maximal filter is called an ultrafilter. Free ultrafilters exist if the
axiom of choice is assumed. Given a free ultrafilter U/, define a set function
Q(A) = one or zero as A is in U or not. It is easy to see that @ is a finitely
additive probability and thus the countable mixture of such zero/one free
Q); is also a finitely additive probability.

One point to be drawn from the theorem above: the existence of a single
free ultrafilter gives a construction of a very non-measurable set in [0, 1].

3. The connection between non-measurable sets in [0,1] and finitely
additive non-atomic measures on € is classical. For example, if P is a Banach
limit extending natural density on (2, define a function f on [0,1] by

f(@)=P{i:z; =1}

The argument in the note shows that f is not Borel measurable. Remark 4
below shows f does not have the property of Baire. The result is delicate in
the following sense: according to Christensen [2], assuming the continuum
hypothesis, there are Banach limits extending density which are universally
(and so Lebesgue) measurable.
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4. The note above constructs a set F that is not Lebesgue measurable
based on the Kolmogorov zero-one law. A similar argument shows that E is
not Baire measurable (see [9] for a lovely discussion of the Baire property).
The argument can be based on the ‘category-zero-one law’ which says that
a tail set with the property of Baire in a product of Polish spaces is residual
or has residual complement.

The category analogue of the Hewitt-Savage zero-one law also holds see
[1]. For a uniform theory, covering both measure and category, see [8].

5. Ashok Maitra and Bill Sudderth have shown how the theorem above
can be extended to give non-measurable sets with fairly general invariance
properties. Let R be an equivalence relation on the polish space Y such that
R is a Borel subset of Y x Y. Let Z be the o-field of Borel subset of Y that
are unions of R-equivalence classes. For example, if Y is coin tossing space
and R is tail equivalence, 7 is the usual tail o-algebra. Taking R to be shift
equivalence or permutation equivalence gives further examples. Recall that
for all of these examples, Z is not countably generated.

Theorem IfZ is not countably generated, then there is a probability mea-
sure v on the Borel o-field of Y and a subset M of Y such that (1) v is
zero-one valued on I, (2) v vanishes on R-equivalence classes, (3) M is a
union of R-equivalence classes, (4) v.(M)=0=v*(Y — M).

Proof: Let X be coin tossing space. By Theorem 1.1 of Harrington et
al. [5], there is a 1-1 Borel map f : X — Y such that for all a,b € X,a and
b are tail equivalent if and only if f(a)Rf(b). Let M be the union of all R-
equivalence classes that have a non-empty intersection with f(E), where F
is the non-measurable tail set constructed above. Notice that E = f~1(M)
and set v = puf1.
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