
Bayesian Robustness

IMS Lecture Notes - Monograph Series (1996) Volume 29

MARKOV RANDOM FIELD PRIORS FOR
UNIVARIATE DENSITY ESTIMATION1

BY ROBERT L. WOLPERT AND MICHAEL LAVINE

Duke University Institute of Statistics & Decision Sciences

We model the unknown distribution function F of a sequence
of independent real-valued random variables by partitioning the
real line into intervals {/;} and modeling the vector p = {pi} of
probabilities assigned to the intervals using Markov random field
priors (MRFPs). We argue and illustrate that many commonly-
expressed prior opinions about the shape and form of F can be
expressed as statements about the joint distribution of neighboring
p2 's, leading to simple MRFP expressions for prior beliefs that are
awkward to express in other models. In particular, we will show
how to model beliefs about continuity, monotonicity, log concav-
ity, and unimodality of a density function / for F. The posterior
distributions of the p^s in our models (and hence the approximate
predictive distributions for subsequent observations) are readily
computed using Markov chain Monte-Carlo methods.

1. Introduction. We consider the problem of making inferences
about or predictions of observations from an unknown probability distri-
bution .F( ), on the basis of expressed prior belief or opinion about the na-
ture of F( ) and also of some number n > 0 of independent observations
X n = {#!,... 9 χn} from the distribution.

1.1. Conventional Approaches. Under the assumption that F(-) has
a probability density function (pdf) /(•) with respect to Lebesgue mea-
sure, with / G {fθ ' θ £ Θ} for some parametric family, predictive
inference might be based on the "plug-in" predictive density f§ (x), the

parametric pdf evaluated at the maximum likelihood estimator 0n; or on
a Bayesian predictive distribution /π(&|Xn) oc J θ fθ(x)ein^π(dθ); even
without the parametric assumption, predictive inference might be based on
the (degenerate) empirical distribution fn(x) = ^ ΣΓ=i ^ . (x)> w ^ h m a s s

1/n at each of the n observed points {xi}, or a kernel density estimate
fn(x) — - ΣΓ=i kt(x - Xi) = fn * &e(aθ, ̂ he convolution of the empirical
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distribution with a scaled kernel function ke(x) = e 1k(x/e) for some posi-
tive k(-) with unit integral. But each of these four conventional approaches
understates the predictive uncertainty: both /g (x) and f7V(x\'Kn) by fail-
ing to reflect uncertainty about the parametric model / G {fβ ' θ G Θ},
and both fn(x) and fn(x) for suggesting that each future observation must
equal or lie within about ±e of an earlier observation.

1.2. Nonparametric Bayesian Approaches. For any partition of R into
k + 1 intervals I{ = (&;_!,&;] with boundaries 6_χ = -oo < 60 < < b^ =
oo, the probabilities pi = F(b{) — F(&;_i) are uncertain, nonnegative, and
sum to one:

Partition of F( ) into k + 1 cells

In an early nonparametric Bayesian approach Ferguson (1973) placed Diri-
chlet prior distributions p ~ D(a) on the vector of cell occupation proba-
bilities p = {pi = F(bi)—F(bi-ι)}, consistently over all possible partitions,
by setting ô  = «(/«) for some finite positive Borel measure α( ) on R; he
called this the Dirichlet Process prior, denoted F G DP(a). Analysis and
inference are particularly simple in this approach, because the posterior
distribution is again of the same form, now with F\Xn G DP [a + ΣδXi( )).
The predictive distribution of Xn+i under prior F G DP (a) is simply the
normalized posterior measure α, i.e.,

X n +i|X n

a weighted average of the prior predictive distribution a(dx)/a(K) and
the degenerate empirical pdf fn(x) dx\ in particular, under this model the
probability of ties among the first n observations converges to one as n
increases, contradicting the prior assertion that F should have a density
function. More alarming, perhaps, is the negative prior correlation between
each pair of neighboring cell probabilities pi and Pi+i; indeed the model
doesn't distinguish between neighboring cells and distant ones, so the joint
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prior distribution of pi and pj depends only on α(/ ί ), α(/j), and α(R), and
not at all on |i - j \ or the distance between 1{ and Ij. Dirichlet process
priors offer no avenue for expressing prior belief in the continuity, modal-
ity, or even existence of a density function /(#). These difficulties can be
ameliorated or at least disguised by introducing measurement-error into
the model (the so-called Dirichlet Mixture of Normals model; see Escobar
1994), regarding the observations X{ as sums of independent mean-zero
normal deviates and the unobserved sample from F, but this offers only
very limited opportunity for expressing prior beliefs about the shape and
features of the sampling distribution at a cost of considerable computa-
tional complexity.

2. The Markov Random Field Prior approach. We propose a
Markov random field prior (MRFP) for the vector p of cell probabilities,
because many beliefs about shape can be expressed as statements about
the joint distribution of neighboring p^s. We would like to specify the
prior by giving the complete conditionals {[p;|p_^]} (where p_i denotes the
vector of all pjS except the ith); unfortunately, Σpi = 1 and so each [pt|i>-i]
is the degenerate point mass at pi = 1 - Σj^iPj.

There are many possible schemes for avoiding this degeneracy while
using the Markov random field idea. One that we use throughout this pa-
per is to introduce a new parameter λ+ > 0, set λ; = P;λ+, and model
explicitly prior beliefs about the nonnegative but otherwise unconstrained
vector λ = (λo,..., λ^); of course this induces an implicit prior distribution
on the derived quantities pi = λ;/λ_j_. For constant βi = β this scheme
also arises upon regarding the number n of observations as the observed
value of a random variable N with a Poisson prior distribution; the result-
ing likelihood function for the {pi} is identical to the usual multinomial
one.

Ferguson's Dirichlet Process can now be recovered by assigning inde-
pendent gamma distributions to the {λ;}, with arbitrary precision (inverse
scale) parameter β > 0 and shape parameters αz = OL{II) for a nonnegative
measure α( ) on the Borel sets of R,

this will be a special case of the class of priors we now introduce.

2.1. Markov Random Fields. It is more convenient for us to model
the probability distribution of the logarithms V{ = logλ; (0 < i < k + 1),
and recover later the distributions of the λ 's or pz 's. In an unpublished
1971 manuscript Hammersley and Clifford characterized all Markov prob-
ability distributions on the set {0, , k + 1}; each has the form 7r(ί/) =
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ce^") where

for arbitrary functions Gij...* subject to the constraint that Gs φ 0 only
if 5 is a clique, i.e., a set of indices each pair (i, j ) of which are neighbors
in the sense that the conditional distribution [i/»|i/_i] depends on Vj and
[z/j|z/_j] on V{\ see Besag (1974) for a proof and discussion. The simplest
nontrivial examples are the "auto" models in which cliques are singletons
{i} and neighboring pairs {i, i + 1}, so, in one dimension,

k k-1

i=0 i=0

Continuity. Prior belief in the continuity of / would suggest that the
average value of /(#) over the interval /^, Pi/(bi — &Ϊ_I), should be close
to the average value over /t+i! upon taking logarithms, the requirement is
that

bi - 6i_i
pt = log —.

t> 0

This can be expressed by including a term — | Σ i T * ^ * ~~ ̂ + i ~~ Pi)2 m

the log prior, for suitable ηι > 0. In Hammersley-Clifford form, for any
nonnegative {oti,βi)Ίi}o<i<k satisfying 7^ = 0, we can set 7_i = 0 and
define e(x) = (ex - l)/x"(and e(0) = 1),

,i/i+i) = 7 ;

to get

τr(i/) oc exp ί J^αii/i - J ^ ^ ^ ~ 2 Σ 7 i ( ^ " ^ + 1 " ^ M ' o r

(2.1) π ( λ ) ( )

This is similar to classes of prior distributions considered by Lenk (1992)

and Hjort (1995). The Dirichlet process prior arises from the case of con-

stant βi = β and absent 7; = 0, but (2.1) allows the precision parameter

βi to vary from cell to cell and includes a penalty -^-(log ^ pi) —

^ (log -2* pi) for large proportional changes in probability density be-

tween neighboring cells; larger values for 7; express stronger prior beliefs in

the continuity of f(x) at or near bi.
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Monotonicity. A non-linear bi-clique term G{j also allows one to ex-
press the prior belief that f(x) should be monotonically increasing or de-
creasing at a particular point or over some interval, without specifying or
even suggesting a functional form or slope. Monotonic increase of the den-
sity function at bi requires only that pi/(b{ - &;_i) < pi+i/(δi+i - δt ) or,
equivalently, that

Λ bi - bi-ι
pi = log -

(in the equal-width case this simplifies to V{ < V{+\, of course); this can be
encouraged or nearly enforced by including in Q{y) = c + logτr(z/) a term of
the form - £ \ eM".-".+i-p.) for suitable δ{ > 0. The Hammersley-Clifford
form requires terms Gij = ... + δf e~δipi e(δiUi)e(-δiUi+ι) for j = i + 1 and
Gi = ... + δieδiPie(-δiVi)-δi-ιeδi-lPi-1e(δi-ιi'i). Monotone decrease would
follow from δi < 0; monotonicity in either direction can be imposed at a
single point bi (for example, in the presence of the log concavity restriction
below, to express conviction that the function is unimodal with a mode
to the right of bi) or over an interval, either finite or not (to express the
conviction that the density function is monotonic over that interval).

Log Concavity. Introducing a non-vanishing tri-clique term G{μ al-
lows one to express the prior belief that f(x) should be log concave (and,
in particular, unimodal) without restricting the location of the mode. Log
concavity of the density function at the ith cell requires that the slope of
the log density be decreasing,

or equivalently that

0 < (δ ί +i - δi_i)(ι/i - Vi-ι + pi-ι) - (bi - δi_ 2)(^+i - v{ + pi).

In the (common) case of equal-width cells the requirement simplifies to
Ui > (vi-ι + i/i+i)/2; in any case it is a simple restriction on consecu-
tive *Vs, a lower bound on Vi given by a convex affine combination v% >
(hvi-ι + mi + riVi+i) of its left and right neighbors (with U + r» = 1),
which can be encouraged if not enforced by including in the log-density
Q{y) a term that might take a simple form such as:

ί
—€jViVjV£ if ί = j — 1, I — j -f 1, and

Uj < (ljUi + rrij +

0 otherwise
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for suitably large βj (the product V{V^vι merely ensures that the term
ViV^vtGi^ι{yi^v^Vi) will be negative, even for λ; less than one). Or, more
elaborately, we might choose numbers βj > 0 and set τr(i/) oc e^y\ with

(2.2) Q{y) = c+ Σ cw £ fte £

- pi))

virtually forcing i/j > (/2^_i + ra; + r ^ + i ) if 6; is large but otherwise act-
ing exactly like (2.1). Calculating the Hammersley-Clifford terms Gi(vi),
Gij{vi,Vj), and Gijt(vi,Vj,vι) from (2.2) is tedious but straightforward.

3. Computations. We have described in detail our prior distri-
butions for the vector λ of cell rates (and, implicitly, for the vector p of
probabilities assigned to the cells U by the unknown distribution F); upon
observing X\ = x i , . . . ,X n — χn w e approximate the posterior distribu-
tion by regarding the "evidence" of X n to be only the counts n o , . . . , Πk
of observations in the (k + 1) cells. Our priors are conjugate for data
of this form, leading only to an increase of each o^ by the corresponding
ni — Σ m = i lii(χm)i a n d βi by one. Thus the problems of integrating our
prior and posterior distributions are identical.

The Gibbs sampling algorithm, in which successive λ '̂s (or, equiv-
alently, V{ = logλ;) are drawn successively from their complete condi-
tional distributions [λi|λ_j], is simple to implement for our Markov priors
and posteriors, because only members of z's cliques appear in i/ 's com-
plete conditionals; for the usual case of bounded cliques, where i and j are
never in a common clique if \i - j \ > b for some integer b > 0, there is
even a simple parallel implementation, since for each fixed 0 < a < 6,
all the va^-bi (f°Γ i G N) have conditionally independent complete condi-
tional distributions and may be sampled simultaneously (on a parallel or
vector computer, for example), for successive values of α. Unfortunately
the Gibbs scheme's convergence is glacially slow, in our examples, making
it virtually useless for problems in which the number of cells is large and
the degree of dependence among neighboring cells non-negligible—to move
a segment containing many u^s takes a very large number of individually
very unlikely Gibbs steps.

Fortunately a Metropolis scheme is available. We think of the state
as a function, not merely a vector of log intensities V{, and select proposed
Metropolis moves from a mixture distribution intended to take us rapidly
around the space of possible intensity functions. One component of our
mixture draws randomly two indices i and k, and adjusts the intensity be-
tween bi and bk {i.e., all the z/j's for i < j < k) by a randomly-drawn
multiplicative factor (with mean one); whole segments of the graph can
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move up or down in one step. We also include Gibbs draws of randomly-
chosen z/2 's from their complete conditionals, and other steps as well. The
magnitude of our steps is chosen to maintain a moderate acceptance rate
of 20-50% for each of our kinds of moves, using the Hastings/Metropolis
acceptance criterion. Convergence remains slow (for our 52-cell example),
but adequate.

4. Example . Let F(-) be the distribution of personal income of peo-
ple at least eighteen years old who were members of the U.S. civilian non-
institutional population in March 1989; we wish to make inferences about
and predictions from JF1, on the basis of sample data from the March 1989
Current Population Survey (reproduced in Freedman et α/., 1991).

We use fifty-two cells with &o=0,.. .,6 5 O = 100 (in thousands of dollars)
and construct our prior probabilities {pi : i = 0, . . . , 51} for the cells by
thinking separately about workers and nonworkers, guessing that about 1/3
of the population would be employed. Our prior guess at the distribution
of employed persons' incomes is lognormal (10.3, .75) (with median about
$30,000 and quartiles around $18,000 and $50,000; see dashed curve in
Figure 2). For nonworkers our guess is an exponential distribution with
mean (3000/log 2) « $4,300, making the fraction of incomes that exceed
x fall by half for each $3,000 increase in x (solid curve, Figure 2). We also
expect about 0.1% of the population to have (otherwise unspecified) neg-
ative incomes. These distributions and their mixture are displayed in Fig-
ures 2 and 3, respectively (unemployed individuals are represented by the
solid line in Figure 2 and the lower portion of each bar in Figure 3); both
mixture portions were elicited before considering the data, by fitting con-
ventional distributional forms to hand-drawn curves. Probabilities for the
two extremal cells 70 and I51, each a half-infinite interval, are (somewhat
misleadingly) represented in Figure 3 by thin solid bars at x = — 1 and
x = 101, respectively.

Prior Mean Income Distributions by Employment Status

I f i I I I I I T T i I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I [ I I I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100

Income (thousands)
Figure 2

We believe that F is fairly smooth, but we don't believe strongly in
log concavity, so we choose a prior distribution of form (2.1). With δi =
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Mixture Prior Mean for Income Distribution, 1980

0 . 2 0 -

0 . 1 0 -

0.00
10 20 30 40 50 60 70 80

1 i i
90 100

Income (thousands)
Figure 3

€i - 0 for all i, we need only assess α = ( α 0 , . . . , α 5 i ) , /? = (/?0,...,

and 7 = (70,.. .,7δθ)
Our approach is to use rough heuristic arguments to find trial val-

ues for the α^, βi and 7,; use those trial values in a Metropolis chain to
generate draws from our prior; and see whether those draws reflect accu-
rately our prior beliefs. If they don't, we adjust the parameters and try
again. We think of (2.1) as the product of a gamma term, expressing be-
liefs about individual λ 's, and a lognormal term, expressing beliefs about
interactions among neighboring λ^'s.

Let rrti denote the mass of the ith cell according to the mixture de-
scribed above. To assign a prior probability of V2 to densities within a
factor of about 2 of the mixture, we use gamma distributions with shape
parameters 0^ = 2 for i = 0, . . . , 51,. For sample-size N we expect about
Nrrii observations to fall in the ίth cell, so we choose a prior with mean
Oίi/βi = Nrrii by setting βi = ai/(Nrrii).

That makes the mixture distribution equal to the mean of the gamma
part of our prior, and implicitly expresses the prior expectation E(λ+) =
Σi αi/βi f°Γ the sample-size N = Σ ni- ^ the {βi} are not all constant
(as in this example), then λ+ and pi = λ;/λ+ are not independent, so
casual misspecification of prior beliefs about λ+ would (and did, in our
early explorations) affect inference about the probabilities {pi}. Possible
ways of accommodating this include:
(1) Selecting a prior distribution tailored to a specific sample-size, TV, as

above;
(2) Reparametrizing to p = {po? ->Pk} s o the issue does not arise; and
(3) Selecting a prior distribution as above for an individual observation

(i.e., for N — 1, setting βi = αi/nii), and updating it for each succes-
sive observation.

For the present example we implemented the third alternative.
For the interaction (i.e., Markov or spatial) part of the prior we set

cells 0 and 51 in cliques of their own by setting 70 = 750 = 0.; it remains
to determine 7 1 , . . . ,749. For incomes above about $20,000 we held strong
beliefs in monotonicity. In fact, we believed with probability 0.9 that the



Markov Random Field Priors for Univariate Density Estimation 261

density would decrease monotonically above $20,000. There are 39 cells
in this range. If each cell had a probability of 0.0026 of increase, inde-
pendently of one another, then the probability of decrease (and hence no
mode) beyond $20,000 would be 0.99739 « 0.90.

The complete conditional distribution of V{ (= logλ^) given V-i =
{UJ : j φ i} depends only on the j = i ± 1 terms. Typically the adjacent
7i's will be nearly equal, and the z/̂ 's will be close to their modes ύ{ =
log(7V rrii) = Oίijβ{\ a second-order Taylor expansion of ex near v\ gives the
approximate conditional log density:

| i / ) c + oV β e V i ( y p f θ ^ ) 2

so V{ has approximately a normal complete conditional [j/t |i/_i] r

with mean and variance

a* \og(Nrrii) + 7i_i^_i + 7^4.1 9 1
μ. — ^ ί ί ί—z_ σ f —

Oii + 7i-i + Ίi <*i + 7i_i + Ίi

so (to this approximation)

7t

We can achieve P r ( ^ G (!/»_!, i/i+i)|i/_i) « (0.90)1/3 9 « 0.997 by arranging
that the first argument of Φ(z) above be Z* = Φ " 1 (0.997) « 2.97 and the
second —Z*; if each α t is much smaller than (7^-1 + 7;), then the require-
ment is satisfied for

2 % 2
Ίi « 71—7 7 \\2" for i = 1 1 , . . . , 49,

while for non-negligible but constant αj = α the computation is tedious
but routine. We reasoned similarly for incomes less than $20,000 but with
a weaker belief in monotonicity. The result was

o

Ίi ~ n—1 / v̂ 2" for i = 1, . . . , 10.
( l o g ί m / m ) ) 2
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10 Samples from Each of 4 Priors for Personal Income

Our Prior Weak Spatial Prior

0 20 40 60 80 100

thousands of dollars
(a)

Dirichlet Prior with Mass 200

0 20 40 60 80 100

thousands of dollars
(b)

Dirichlet Prior with Mass 1

0 20 40 60 80 100 0 20 40 60 80 100

thousands of dollars
(c)

thousands of dollars
(d)

Figure 4

Figure 4 (a) displays 10 draws from our prior. Each draw is repre-
sented as a density linearly interpolated between cells. For comparison we
also examined three other priors. Figure 4 (b) shows 10 draws from a prior
using our original α; and βi but in which ηi has been divided by 20. As
expected, draws from this prior are a bit more wiggly than draws from our
prior. Figures 4 (c) and (d) show, respectively, draws from Dirichlet priors
whose means are equal to the mixture distribution displayed in Figure 3.
The prior in Figure 4 (c) has total mass parameter 200; the prior in Fig-
ure 4 (d) has total mass 1. As we hoped, realizations from the MRFP's
have fewer bumps than realizations from the Dirichlet priors. Note that
the vertical scale of Figure 4 (d) had to be enlarged to accommodate large
spikes because the Dirichlet prior with mass one expresses a belief that
much of the mass is concentrated in only a few points. Note also that the
points at x = — 1 and x = 101, for all four priors, are a bit misleading;
they represent mass in semi-infinite intervals.

Figure 5 shows the full sample of incomes (n = 12669) from Freedman
et al. (1991) and our subsamples of sizes n = 50 and n = 2000, from
which we compute posteriors. Each histogram is overlayed with a plot of
the mixture prior density.
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Histograms of income, our prior modal density

Population, n=12669 Sample, n=5O Sample, n=2OOO
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Figure 5

10 Samples from Each of 4 Posteriors for Personal Income
Sample Size = 50

Our Posterior Posterior from Weak Spatial Prior

0 20 40 60 80 100

thousands of dollars
(a)

Dirichlet Posterior with Mass 250

0 20 40 60 80 100

thousands of dollars
(b)

Dirichlet Posterior with Mass 51

0 20 40 60 80 100 0 20 40 60 80 100

thousands of dollars
(c)

thousands of dollars
(d)

Figure 6

Figure 6 shows draws from the posteriors after a sample of n = 50. As
hoped, draws from our posterior are smoother than others. The Dirichlet
posteriors contain apparently spurious bumps that are especially notice-
able at incomes greater than about $20,000. The Dirichlet posterior with
mass 51 is especially egregious. The three posteriors in (b), (c) and (d)
show bumps around $16,000-$18,000, probably due to the three large his-
togram bars for those incomes in Figure 5 (b). Draws from our posterior
tend not to have modes in that region, but they do diverge, indicating a
bit more uncertainty there than elsewhere.
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10 Samples from Each of 4 Posteriors for Personal Income
Sample Size = 2000

Our Posterior Posterior from Weak Spatial Prior
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(b)

Dirichlet Posterior with Mass 2200 Dirichlet Posterior with Mass 2001
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(c)

thousands of dollars

(d)

Figure 7

Figure 7 shows draws from the posteriors after a sample of n = 2000.
Draws from all four posteriors exhibit roughly the same shape. Ours are
much smoother, especially above $20,000 where we expressed a strong
prior belief in smoothness. Draws from the other three posteriors all have
modes at $25,000, as does the histogram of the sample, Figure 5 (c); our
posterior does not have these modes. Our posterior reflects our beliefs
about incomes; but the data are reported incomes. In retrospect, we made
the beginner's mistake of expressing too much certainty in our beliefs—
this time, beliefs about smoothness.

5. Discussion. We believe this class of models offers a flexible and
easy-to-use method of generating plausible prior distributions in difficult
problems. It is far more flexible than Dirichlet process methods or logistic-
normal methods, both of which it subsumes, by offering a wide range of
local expressions of behavior (via the Hammersley-Clifford Gi...ι functions)
that can be tailored to common expressions of prior belief (in continuity,
monotonicity, log concavity, etc.) without forcing any particular form on
the unknown distribution. It also subsumes earlier more specific propos-
als including nearest-neighbor models; Markov-chain, random-walk, and
auto-regressive process models; and logistic normal models. The methods
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generalize easily to higher dimension (where our intervals are replaced by
squares, triangles, or hexagons in two dimensions, for example, and appro-
priate polyhedra in higher dimensions, with corresponding cliques) or to
more complex settings (manifolds, graphs, etc.)

Even one-dimensional density estimation leads to high-dimensional
statistical models, and in particular to high-dimensional prior distribu-
tions, and so requires a great deal of experimentation and "exploratory
prior analysis." Repeatedly we refined our selection of a representation
intended to express our prior beliefs; drew a series of samples from the
prior and from posteriors with synthetic data; and plotted various fea-
tures of the results, in an effort to arrive at a representation that does ex-
press those beliefs, before we began analysis of the actual data set. We
believe this approach may be fruitful in other high-dimensional problems
in Bayesian analysis.

MRFPs are typically used for modeling regression functions, where an
underlying spatial field is observed with error. For example, in image re-
construction the underlying field emits photons; the data are the numbers
of photons captured by an array of detectors, which is approximately the
intensity of the field plus error. Our application is different in two ways.
First, we don't observe the field plus error; we observe random draws from
a density function which we model as a spatial field. Therefore, our data
are informative about our field in a way that is fundamentally different
from regression data. And second, our field is constrained to integrate to
unity. Hence our complete conditionals are degenerate and we can't use
the usual Gibbs samplers for MRFPs. We do feel that our computational
method, in which a Markov chain is constructed with Hastings/Metropolis
move proposals that rescale entire segments of the density function, would
be useful in a variety of nonparametric Bayesian analyses (regression, bi-
nary regression, hazard analysis), and not only in density estimation.

A criticism that might be addressed to our models is that they require
a choice of "cells" or "bins" that is arbitrary, subjective, and can affect in-
ference; it is not alway possible to subdivide or aggregate cells and remain
within this class of prior distributions, for example, so the expressions of
prior belief in unimodality, continuity, log concavity, etc. that they offer
may only be meaningful within the context of a particular discretization.
The Dirichlet process approach does not suffer from this criticism.

Our method permits one to specify prior beliefs in a way that is inde-
pendent of the discretization (i.e., to specify a consistent way of assigning
prior distributions to the discrete approximations in all possible partitions
of R = U(6t ,&t +i]), but it does not it restrict one to such specifications; it
is outside the scope of the present work to offer guidance on how consis-
tent families of Markov priors might be elicited and specified.
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Markov Random Field Priors for Univariate Density
Estimation

discussion by

A.P. DAWID

University College London

It has long been appreciated that the siren appeal of the conjugate Dirich-
let Process analysis of nonparametric problems needs to be resisted if we wish
to make inferences we can believe in. Attempts at introducing more gen-
eral prior dependence structures were made by Tom Leonard in the early
70s (see, for example, Leonard (1973) and, for a review, Leonard and Hsu
(1994)), but only now do we have the necessary computational tools and
power to do it properly. This paper is a welcome contribution to advancing
the subject.

The introduction of Poisson parameters λ = (λz ), with pi — λt /λ+, goes
back to Fisher, but it is cleverly used here for a new purpose: to break
the constraint Σpi = 1, and thus allow non-degenerate MCMC sampling.
Lindley (1964), working with Dirichlet distributions, pointed out that, since
Σα tlogpi = Σdii/i (v{ — logλ t ) if Σα t = 0, the distributions of such "log-
constrasts" are readily determined from the distribution of J/, and fully de-
termine that of p. This trick might be useful here also.

The full power of the Hammersley-Clifford theorem is not needed for the
authors' application. To ensure the Markov property, it is enough to require
that the joint density factorise (not, in general, uniquely) as

* hi

including only terms which are cliques, and with no need for additional con-

straints, such as φij(0,Vj) = 1, as implied by the authors' development. In

particular, by allowing 0 values for the 0's, it becomes possible to incorporate

exactly such "hard constraints" as π = 0 whenever V{ < l{V{-\ + rrti + r ^ +i.

The authors' replacement of the multinomial model by the Poisson needs

to be handled with more care. In terms of λ+ = Σλ2 and pi = λt /λ + , the

full Poisson likelihood is

For multinomial sampling, the former term is absent. Suppose that we use

a prior for λ, which we may express as π(p)π(λ_j_|p). Then the marginal

posterior for p, using the Poisson likelihood, is

ir(p) x (up?) xjλn

++eχ+π(λ+\p)dλ+.
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This only agrees with the desired multinomial answer if the integral term
is independent of p, which requires prior independence of p and λ+. This
holds for the Gamma structure underlying the Dirichlet, but not for the
priors introduced in the paper. Hence the analysis is in need of correction.

For example, the correct posterior for λ, based on prior (2.1) and the
true multinomial likelihood Πλ™ι/λ++, is

τr*(λ) oc l

The complete conditional density of λt, given the remaining λ's, is thus

7Γ*(λ; I λ V ) OC A f ' + n < - V ^ e - H ^ - i ( ^ - i - " - i ^ ^ ^

depending on Σj^t λj, as well as on λ;_i and λt +χ. It should not be difficult
to incorporate this correction into a modified MCMC scheme.

I like the authors' interactive approach to specifying prior hyper-para-
meters, although I was a little puzzled by the details. The expectations of
the λ's are not found from the "gamma part" of the prior alone, and I do
not see why the mean of the entirely fictitious auxiliary parameter λ+ need
be related to N (nor do I understand the comment about taking N — 1).
There is no need for the full distribution of λ to match any empirical reality:
it is enough that the induced prior for p should appear acceptable.

Finally, an extension of the authors' approach might be useful when the
data arrive coarsely grouped, but we wish to model the probabilities for a
finer grouping. Again we introduce λ's (for the finer grouping). Then the
posterior complete conditional for parameter λ2j, corresponding the the jth
fine grouping in coarse grouping i, is proportional to

This thus depends on the prior "neighbours" of λt j , on Σsφj λίS, and on
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Rejoinder
ROBERT L. WOLPERT AND MICHAEL LAVINE

We would like to thank Professor Dawid for his insight and sugges-
tions, and especially for correcting our inadvertent omission of reference to
the pioneering work of Tom Leonard in this area.

While we agree that the Hammersley-Clifford theorem is overkill for
our application, we expressed our prior distributions in this form to em-
phasize their Markovian nature; we would like to recommend the wider use
of Markovian prior distributions in nonparametric Bayesian analysis, and
the Hammersley-Clifford theorem gives them a complete characterization.
This is also our motivation in employing the well-known technique of em-
bedding our multinomial problem in a Poisson model (i.e., in introducing
λ_j_ and setting λ{ = Piλ+). This representation reveals the Dirichlet pro-
cess prior as that induced by the independent-increment gamma process
prior for the Poisson intensities λ, while low-dimensional parametric mod-
els lead to complete dependence among the Poisson intensities. We recom-
mend the intermediate step of Markovian distributions, able to reflect ex-
pressions of strong belief about the relationship in adjacent or nearby cells
(unlike the Dirichlet process), without inducing long-range dependence
(as do parametric models). As Professor Dawid suggests, our computa-
tional techniques would allow us to avoid the Poisson embedding and, with
it, the sticky issue of expressing prior belief about a fictitious parameter;
probably this would be wise for routine use of these models.

Our assertion that, under the Poisson embedding, "the resulting likeli-
hood function for the {pi} is identical to the usual multinomial one," is of
course only correct if the parameters λ+ and p are independent under the
prior distribution—which Professor Dawid rightly questions in our case,
apparently fearing that our "Markov" terms (those including coefficients
7, , δiy or βi in Equation (2.2)) will induce dependence. In fact these terms
are benign (each depends only on a log contrast, hence only upon p and
not λ + in the (p, λ+) parameterization), but a problem appears already
with the gamma (α^, βi) part of the prior unless the {βi} are constant. If
each βi = /?, then in the (λ+,p) parameterization our prior becomes

oc λ
k k-\

X

i=O " " i=O

AJ-1

X

i=l

Πk-ΊΠ
i=0

k-1π
with λ+ and p independent; in this case (as shown in the discussion) the
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posterior distributions for p and λ+ are independent, and the Poisson em-
bedding is harmless for either the Poisson or multinomial likelihood.

If however the βi are not constant, then a problem arises even in the
absence of our Markovian terms (z.e., even if all the 7;'s, ί 's, and ĉ 's
vanish)—for inhomogeneous gamma distributions, the joint and marginal
posteriors are then

= n) oc

2 = 0

i=0

unequal to the usual (conjugate) Dirichlet distribution unless the β^s are
constant. The multinomial likelihood (instead of the Poisson, featured
here) leads to the same result.

While the problem can be avoided by setting βi = 1, there are cer-
tainly situations in which it would be preferable to allow unequal /Vs,
expressing stronger a priori opinions about some λ 's than others. If the
data are censored, for example, including only the counts Πj for certain
cells j G J C {0, ...,&}, ^en under a Poisson-model posterior, each βj
increases by one while the βi for i £ J do not, compelling us to accommo-
date unequal β^s. The multinomial model loses its conjugacy and simplic-
ity in this case, leading to mixture distributions for censored data, while
the Poisson version remains tractable.




