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COPULAE OF CAPACITIES ON PRODUCT SPACES

BY MARCO SCARSINI*

Universitά D'Annunzio

We consider a nonadditive probability measure (capacity) on a product
space and we define the distribution function associated to it. We show that,
under suitable conditions on the capacity, its distribution function has many
of the properties of the distribution functions of finitely additive probability
measures. In particular, if the capacity is convex, then there exists a function
that links the multivariate distribution function to its marginals. This function
enjoys many of the properties of a copula.

1. Introduction. Many areas of applications require the use of set
functions that, like measures, are monotone with respect to set inclusion, but,
unlike measures, are not additive, not even finitely additive. For instance,
in cooperative game theory, the characteristic function, which is defined on
the power set of the set of players, is monotone, but not additive. This cor-
responds to the intuitive idea that the bigger a coalition, the stronger it is,
but its strength in general does not coincide with sum of the strengths of its
components (see e.g. Aumann and Shapley (1974)).

The theories of inference proposed by Dempster (1967, 1968) and Shafer
(1976) are based on belief functions, which are again nonadditive set func-
tions, a particular case of which is given by the usual probability measures.
Their approach allows one to employ an updating mechanism which is much
more flexible than the usual Bayesian one. A similar generalization has been
proposed, with different motivations, in decision theory, by Schmeidler (1986,
1989) and Gilboa (1987). They have relaxed the axioms of Anscombe and Au-
mann and Savage, respectively and have obtained a paradigm for choice under
uncertainty that is similar to the usual maximization of expected utility, ex-
cept that the integration is performed with respect to nonadditive probabilities
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and therefore the Choquet integral has to be used, instead of a Riemann or
Lebesgue integral. The work by Schmeidler and Gilboa has been expanded and
employed by several authors, and we refer to Gilboa and Schmeidler (1992a)
for a bibliography.

Robust statistics has used nonadditive probabilities both to represent
uncertainty about the statistical model (Huber and Strassen (1973)), and, in
a Bayesian framework, to represent uncertainty about the prior distribution
of a parameter (Wasserman and Kadane (1990, 1992)).

Choquet's theory of capacities (Choquet (1953-54)) is the mathematical
core of all this research, even if we should notice that what he calls a capacity
is not what afterwards the applied literature has often called a capacity. We
will follow the use of the decision theoretical literature and employ the term
capacity to indicate a nonadditive probability (in a sense that will be made
clear below). A nice introduction to the topic of nonadditive measures and
integrals can be found in Denneberg (1994).

The main objective of this note is to study some properties of capacities
on a finite dimensional space (which, to keep things simple, will always be
§ϊd). In particular, after defining the distribution function of a capacity, we will
examine the possibility of extending the concept of copula to this more general
situation. This concept was introduced by Sklar (1959) with reference to
distribution functions of probability measures (see Chapter 6 of Schweizer and
Sklar (1983) for a description of its properties). A copula links a multivariate
distribution function to its marginals. A generalization of this idea to measures
on Polish product spaces was developed in Scarsini (1989). Note that, since
capacities are not measures, we cannot apply the methods of the latter paper
in the present context. What we now do instead is to use the assumption of
the convexity of the capacity to establish the existence of a function that links
the multivariate distribution function to its marginals. By analogy with the
additive case, this function will be called a generalized copula of the capacity.
If furthermore the capacity is d-monotone, then the generalized copula of the
capacity has all the usual properties of a copula. The use of this result is
somehow limited by the fact that the distribution function of a capacity does
not characterize it, unlike what happens in the σ-additive case. Nevertheless
there are instances where it is not necessary to know the value of a capacity
on the whole Borel class, but only on a suitable subclass. For instance, in
order to establish stochastic ordering results, only the value of the capacity on
(a subclass of) the classes of lower or upper sets is needed (see e.g. Scarsini
(1992), Dyckerhoff and Mosler (1993)).

Some conventions: Given a set A, we will indicate its complement as
Ac. We will use the terms increasing and decreasing in the weak sense. The
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Euclidean space $td will be equipped with the componentwise ordering, unless

otherwise specified.

2. Main Results. Let Ω be a set and let Σ be a class of subsets of Ω.

A function v : Σ —• [0,1] is called a capacity if it satisfies the following three

properties:

(1) it is grounded, i.e. z/(0) = 0,

(2) it is monotone, i.e. A, B e Σ, A C B => u(A) < v{B),

(3) it is normalized, i.e. ί/(Ω) = 1.

The original definition of capacity, due to Choquet (1953-54) is actually

different from this one, in that it does not assume normalization, but it requires

some topological assumptions about the space on which the capacity is defined.

For instance (Dellacherie (1971)), if K is a metrizable compact space, φ : 2K —>

5ΐ+ is a Choquet capacity if

(α) 0(0) = 0,

(β) A C B => φ(A) < φ(B),

(7) if {An} is an increasing sequence of subsets of ϋf, then φ(UnAn) =

(δ) if {Bn} is a decreasing sequence of compact subsets of K, then φ(Γ\nAn) =

infn(j0n).

The reason for using our definition is that it is quite common in mathe-

matical economics (see Gilboa and Schmeidler (1992a, 1992b) and Denneberg

(1994) for a list of references), and that the continuity conditions (7) and (6)

are not needed for most of our results.

The following definitions can be found for instance in Gilboa and Schmei-

dler (1992a, 1992b). Given a capacity z/, the set function v defined by ί>(A) =

1 — v(Ac) is called the dual of v. It is easy to prove that v is a capacity, as

well. A capacity is called

(i) convex if v{A U B) + u(A Π B) > u(A) + v{B) for aU A, B 6 Σ,

(ii) k-monotone if for every n 6 {1, . . . , k} and A x , . . . , An £ Σ

Σ
where |/ | is the cardinality of / (for instance, when k = 2, (1) becomes

v(AuB) > v(A) + v(B)-v(Af)B), therefore 2-monotonicity is equivalent

to convexity),

(iii) totally monotone if it is fc-monotone for every integer fc,
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(iv) continuous from below if An £ Σ, An C An+i for all integer n implies

A capacity is called concave (resp. k-alternating, resp. totally alternating,

resp. continuous from above) if its dual is convex (resp. ^-monotone, resp.

totally monotone, resp. continuous from below).

EXAMPLE 1. Given a class V of probability measures on a measurable

space (Ω,«S), let μi,μ2 be defined as follows

μi(A) = sup P(Λ), μ2(Λ) - inf

Then μi,μ2 are capacities.

EXAMPLE 2. Let P be a probability measure and let 7 : [0,1] -> [0,1]

be an increasing one-to-one function. Then μ3 = 7 o P is a capacity. If 7 is

convex (concave) in the usual sense, then μ% is convex (concave) in the sense

of (iii).

EXAMPLE 3. For any Borel set A £ 3fd let dim (A) be its topological

dimension. If
1 + dim(A)

then μ4 is a capacity.

EXAMPLE 4. Let Θ be a finite space and let m : 2 Θ —• [0,1] satisfy

• m(0) = 0 and

Define μ5 as follows

BCA

Then μ5 is a totally monotone capacity (Shafer (1976)).

Define 3ft = 9ft U {-00,00}. From now on, v will be a capacity on

(3ft , Bor(3ft )) (where Bor(3ftd) is the class of Borel sets in 3ftrf), and i/t will

be its i-th projection: for A £ Bor(K),

Ui(A) = !/(» X X » X A X » • X » ) .
i

DEFINITION 5. The distribution function associated to v is the function

Fv : 3ft —• 9ft g i v e n b y
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Correspondingly the distribution function associated to V{ is the function FVi :

3? —> 3? given by

FUi(x) = ι/t ([-oo,a]).

It is easy to see that Fv is increasing, since v is monotone. In general Fv is

not right continuous and, of course, does not characterize v on the whole Borel

σ-field, since even the distribution function of a finitely additive probability

measure in general does not have these properties. Other properties of Fv can

be obtained under particular assumptions, as the following lemma will show.

Let Ay

si=

3d)- A function F : $t —• 3? is called n-increasing (n < d) if

y*l Vin
Δ . . . Δ f(...,sil,...,Sin9...)>0

Si1—Xi1 Sin—Xin

for every possible choice of the indices i 1 ? . . . , i n , every x t l < y t l , . . . , x2n < t/ίn

and every possible value of the other coordinates.

Any d-variate distribution function associated with a finitely additive

probability measure is n-increasing for all n < d. This is true also for d-

monotone capacities. In the case of probability measures the result stems

from the fact that the probability of any d-dimensional rectangle in 5? is non-

negative and this probability can be expressed as the multiple finite difference

of the distribution function. The same procedure cannot be applied here, due

to lack of additivity, but the definition of d-monotonicity and a suitable choice

of the sets to which this property is applied, give the result.

LEMMA 6. Ifu is d-monotone, then Fv is n-increasing for every n < d.

PROOF. Without any loss of generality, we will prove that Fu is n-

increasing in its first n variables. Let n < d, X{ < yi, for i 6 { l , . . . ,n} ,

and let
d

Ai = x [-oo, *j],
i=i

where
(XJ, if t = j

Z3 ~ \

[ί/j, otherwise.

Let £ i , . . . , En be disjoint sets such that
71 d

(JEj= x (χj,yj] x [-<χ>,yh]>
>\. 3=1 h=n+l

Define Ό{ = Ai U E{, for i = 1,. . . , n. Therefore D{ Π Dj = Ai Π Aj.
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If v is d-monotone, then

(2)

Since
/ \

\iei /

where

\ yt , if i e / c ,

and

n + i , . . . , ^ ) > 0,

namely F^ is n-increasing. I

In particular for the case d = 2, the distribution function of any convex

capacity is increasing and 2-increasing.

COROLLARY 7. Ifv is a d-monotone capacity on (3? ,Bor(5? )), then there

exists a finitely additive probability measure μ on (3? ,Bor(3? )), such that

F — F

PROOF. By Lemma 6, if v is d-monotone, then its distribution function

Fυ is ^-increasing for every n < d, therefore it coincides with the distribution

function of a finitely additive probability measure. I

As in the additive case, the multivariate distribution function of a convex

capacity satisfies the Frechet bounds (Frechet (1951)).

THEOREM 8. lΐv is convex, then

^
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PROOF. The second inequality is immediate, by monotonicity of v.

We now prove the first inequality. Let

A; = (R x x » x [-00, xi] x M x • x ft).

By convexity,

. . . Π Ad) > v(Ai) + v(A2 Π...ΠAd)- v(Ax U ( A 2 Π . . . Π

> i/(Ai) + i/(A2) + u(As Π . . . Π Ad) - v{A2 U (A3 Π . . . Π

which is exactly the result. |

The following theorem will prove that the distribution function of any

convex capacity depends on its arguments only through its marginals (as in

the additive case).

THEOREM 9. Let v be a convex capacity on (3? ,Bor(3? )). Then there

exists a function Cv : [0, l]d —• [0,1], called a generalized copula ofv, such

that

a. Fu{xu...,Xd) = Ct/(Fl/1(x1),...JFl/d(xd))9

b. Cj^θi,.. ,,Sd) = 0 if Si = 0 for some i € { 1 , . . . , d } ,

c. C I / ( l , . . . , l , θ t , l , . . . , l ) = θt ,

d. d/ is increasing.

PROOF, a. We need to prove that, for every i, and for every ( # i , . . . , x t_i,

xi+1,..., Xd), if Fi/i(^) = i^, (y), then

Assume, without any loss of generality, that z < y, and call

A = ( » X X » X [-00, *] X » X X »),

B = ([-oo, xι]x -x [-oo, Xi_i] x [-oo, j/] x [-co, a?t +i] X x [-oo, xd]),

D = ( » χ . x S x [-oo,t/]xS x l ) .

Therefore

AΠB = ([-oo, a?i] x X [-oo, ^ t _i] X [-oo, z] X [-oo, a?t + 1 ] x x [-oo,
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Since A C A U B C D and v(A) = v(D) by hypothesis, we have v(A)
v(A U B) — v(D). The convexity of v implies

v(A U B) + v(A ClB)> u(A) + v(B)

and therefore v{A Π5) = ^(5), namely

Therefore C^ is uniquely defined on x^_1Ran(F i/ |.). It can be (nonuniquely)

extended to [0, l]d by using, for instance, the procedure indicated in Deheuvels

(1978), Schweizer and Sklar (1983, p. 84) (see also Scarsini (1984)).

b. By monotonicity of i/, if i/t ([—oo, z\) = 0, then i/([—oo, a?χ] X X [—oo, r̂] X

•• χ[—oo,a?d]) = 0. The definition of i^, i ^ gives the result.

c. Note that 1 6 Ran(JP ι/ j), for any j G { l , . . . ,d} . If 5t G Ran(i^ t ), let

i^i(a?<) = 5<. Then

X » X [-00, Xt ] X » X X »)

The above mentioned extension procedure of Deheuvels and Schweizer and

Sklar insures that the result holds also when S{ $ Ran(iΓ

i / i).

d. This is an immediate consequence of the monotonicity of v. |

If v is a probability measure, then the generalized copula Cv is the usual

copula, as defined by Sklar (1959). As Theorem 9 shows, if v is convex, then

Cμ has some of the properties of the usual copula. For it to be n-increasing

(for every n < d), though, convexity is not sufficient and d-monotonicity is

required. Then the result is an immediate corollary of Lemma 6.

THEOREM 10. lΐv is d-monotone, then Cv is n-increasing for every n < d.

PROOF. By Lemma 6 and Corollary 7 there exists a finitely additive

probability measure whose distribution function coincides with Fv. Therefore

its copula will be n-increasing for n < d. I

As a consequence of Theorem 8 we obtain that, if v is convex, then the

Frechet bounds hold for CV, too.
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COROLLARY 11. Let v be convex, then Cv satisfies the following inequali-

ties

where

In the additive case, if the copula of a distribution function F μ is C+,

then μ concentrates its probability on the set S := {(#i, . . .,#d) : F μ i ( ^ i ) =

• = Fμd(xd)}i and therefore any set whose intersection with S is empty has

μ-probability zero. A weaker version of this result holds for convex continuous

capacities.

THEOREM 12. If v is convex and continuous from below and Cv — C+,

til en for every pair iyj

FVt{xi) > FVj{xj)} = 0.

PROOF. We will start by proving that v{$t x x (z t , oo] x 3? x x & x

[-oc,^) x » χ . . - x » ) = 0, if FUt(xi) > FUj(xj). CaU

>l(a:t , a j) = 9? x x 5? x [—oo, X{) x 3? x x 3? x [-oo, Xj) x ϊί x x S,

5(0:^, XJ) = 5? x x 3? x (xt , 00] x §? x x 3f x [-00, XJ) x S? x x 3£.

By convexity

From Cj/ = C+, we obtain v(A(xi,Xj) U B(xi,Xj)) = v(A(xi,Xj)), and since

A(a?t ,Xj) Π B(x{,Xj) = 0, we have z/(A(xz ,Xj) Π B(xi^Xj)) = 0. Therefore

Now let yi,yj be such that i/i < xt , yj < a?j and FUi{yi) > Fu.{yj). From

what we have just proved v(B(yi,yj)) = 0. We will prove that ι/(B(xi,Xj) U

Call D — B(x{,Xj) U B(yi,yj). Again, by convexity v(A(xi,Xj) U D) +

(α t ,:&j) Π 2?) > i/(A(xi,a:j)) + ^(i^) and by the fact that Cu = C+, we

have v(A(xi, Xj) U D) — u(A(x{J Xj)). Since A{x^ Xj) Π D C J5(y^, i/j), we have

0 = i/(A(art ,arj) Π £ ) > i/(Z>), hence i/(D) = 0.

By iterating the procedure, we can prove that, for every fc, ^(IJn=i

B(z?,z?)) = 0, whenever i ^ f ) > i^(^ n ), n € {1,...,*}.
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Since

{(Xl,...,xd) : FVi(Xi) > FVj(xj)}

for some suitable sequence (z^zj) with FUi(z?) > FVj{z^), for all n, by using
continuity from below of v, we obtain the result. I

3. Concluding Remarks. In this note we have examined the behav-
ior of nonadditive probabilities (capacities) on 3? . In complete analogy to the
usual additive case, we have defined the distribution function of a capacity and
we have examined some of its properties. Most of these properties rely on the
assumption of convexity (=2-monotonicity) of the capacity. Some other prop-
erties require higher degrees of monotonicity. For instance to a cί-monotonic
capacity, there corresponds a cf-increasing distribution function. Furthermore,
it is enough to assume convexity of the capacity to establish the existence of
a function that relates the joint distribution function to its marginals, but
d-monotonicity is required for this function to have all the analytic properties
of a copula.

Due to the lack of additivity, the distribution function does not char-
acterize a capacity (not even in the finite case). Nevertheless it can provide
useful information when all that is needed is the probability of lower intervals
(as in the case of some stochastic orderings or some dependence concepts).

We have used a "naive" approach, and have not resorted to any of the ex-
isting representations of capacities as additive measures on different (in general
larger) spaces. Some of these representations can be found in Shafer (1976),
Weber (1984), Murofushi and Sugeno (1989), Gilboa and Schmeidler (1992a,
1992b). In our future research we plan to make use of some of these rep-
resentations to obtain new results and generalize known properties from the
additive to the nonadditive framework.
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