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THE MARGINAL PROBLEM IN ARBITRARY PRODUCT SPACES

BY D. RAMACHANDRAN*

California State University at Sacramento

Using a property of perfect measures due to Marczewski and Ryll-Nardzewski
(1953), we unify the solutions to the marginal problem for two-dimensional prod-
ucts. We then extend that property to arbitrary product spaces and provide a
general solution to the marginal problem in arbitrary product spaces. Our results
remove the restrictive topological assumptions in earlier works and are valid in
spaces where the σ-algebras need not be countably generated. A general result
on the existence of simultaneous preimage measures as well as a "converse" to it
are derived.

1. Introduction. Let {(Xi,Ai,Pi),i G /} be a family of probability
spaces. The marginal problem is connected to probabilities P on the space
(ΓLe/^ή®*e/ Ai) such that P has the given family {P%^i G /} as marginals,
i.e. P o π^ 1 = Pi for every i G / where πj : Π; e / X% ~~* Xj 1S ^he canonical
projection map. It can be formulated as:

Given 5 C Πie/^*' wh&t a r e the conditions that would ensure the
existence of a probability P on ( Π ι € / ^ ή ®*e/A) with marginals {Pt , i G
/} such that P*(S) = 1?

For / = {1,2}, with underlying spaces being Polish, this problem reduces
to Strassen's (1965) marginal problem. Variants of this have been investigated
earlier by Banach (1948), Marczewski (1948, 1951) for the case when projec-
tions are required to be stochastically independent under P and later for the
general case by Kellerer (1964a,b) as well as Maharam (1971). The importance
of the above formulation in applications can be found in HofFman-j0rgensen
(1987).

In recent work by Hansel and Troallic (1978, 1986), Shortt (1983) and
Kellerer (1984, 1988) solutions to Strassen's version were derived under topo-
logical restrictions. Plebanek (1989) has combined the solution for the finitely
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additive case of Strassen's problem due to Hansel and Troallic (1986) with a
key result on perfect measures due to Marczewski and Ryll-Nardzewski (1953)
to obtain a general solution of the marginal problem for two-dimensional prod-
ucts. In this paper, we first view the two-dimensional problem in a different
light using the notion of common extensions. We then obtain a general solution
to the marginal problem in arbitrary product spaces. We also derive a gen-
eral result on the existence of simultaneous preimage measures (see Lembcke
(1982) and Shortt (1983)), a "converse" to it and discuss illustrative examples.
Perfect measures which play a crucial role in proving these results have also
led to the establishment of a general duality theorem for marginal problems
(see Ramachandran and Rύschendorf (1995)).

2. Notations and Preliminary Results. We use customary measure
theoretic terminology and notation (as, for instance, in Neveu (1965)). A
finitely additive probability on an algebra will be called a charge and a σ-
additive charge will be called a measure.

Special Notation: If a script letter such as Λ (respectively
Λi) is used to denote a special class of subsets like an algebra, then
the corresponding capital letter in roman such as A, Aj (respectively
Ai,Aij) etc. denote sets from that class; J2ieIGi denotes the union
of sets {Gi,i G /} that are pairwise disjoint.

Recall that P on (X, .4) is perfect iff for every real valued ^-measurable
function / on X there is a linear Borel set Bf C f(X) such that P(f~1(Bf)) =
1. For the properties of perfect measures, we refer the reader to Ramachandran
(1979).

If C is a collection of subsets of Ω, then alg(C) and σ(C) will denote
respectively the algebra and the σ-algebra generated by C; Cuδ will denote the
smallest class containing C which is closed under finite unions and countable
intersections. Recall that a class S of subsets of a set Ω is called a semialgebra
if it satisfies: (a) Ω,0 G S (b) S is closed under finite intersections and (c) if
S G S then Sc is a finite disjoint union of members of S.

If S is a semialgebra then alg(«S) = {A : A is a finite disjoint union of
members of S} (see Proposition 1.6.1 in Neveu (1965)) and so we can talk of a
charge (measure) defined on S since it admits a unique extension as a charge
(measure) to alg(S)). When dealing with the product of given measurable
spaces, 1Z will denote the semialgebra of measurable rectangles depending on
finitely many coordinates in the product space under consideration.

We unify the known results by showing that the solution to the marginal
problem consists of the three steps: (i) obtaining a charge on TZ with the
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given marginals (ii) forcing the charge to be σ-additive and (Hi) ensuring that

P*(5) = 1. To achieve this goal we first look at the common extension problem.

Let Ω be an abstract set and let C\ and C2 be two algebras of subsets of

Ω. Let d V C2 = alg(Cι U C2) = {Σk=i(cik Π C2k) : n > 1}. If μi and μ2 are

two charges on C\ and C2 respectively, then a charge (measure) μo on C\ V C2

such that μo \ C{ = μt , i = 1,2 will be called a common extension charge

(measure) of μ\ and μ2. We quote the following result due to Guy (1961) (An

error in Guy's proof has been corrected and the result has been extended to

vector valued charges by Schmidt and Waldschaks (1991)):

PROPOSITION 1. There is a common extension charge of μι and μ2 iff

CiCC2=>μi(C1)<μ2(C2). (1)

We need the

LEMMA 1. Let S be a semialgebra of subsets ofΩ. A charge μo on S is a

measure iff
00 00

Ω= \JSn=>Σμo(Sn)>l. (2)
n=l n=l

PROOF. Necessity is obvious. To prove the sufficiency, first note that

μ 0 is countably superadditive since it is a charge. Let F = Σ™=1 Fn , where

{F, Fn, n > 1} C S. Then Ω = Σ7=i Fn + Fc = ΣZi Fn + ΣZi £ . Hence

(2) =• Σ ~ 1 βo(Fn) + ΣT=1 μo(Si) > 1 =• Σn=i Vo(Fn) > 1 - ΣT=i μo(Si) =

1 — μo(Fc) = μo(F). Thus, μo is countably subadditive as well. |

PROPOSITION 2. There exists a common extension measure Q on C\ V C2

extending the measures Qi on C{, i=l,2 iff there exists a common extension

charge QQ ofQiand Q2 such that

00 00

Ω = (J ( C l n Π C2n) =}• 2 Q0(Cln Π C2n) > I- (3)
n=l n=l

PROOF. Necessity is clear. If the given condition holds then, by Lemma

1, QQ is a measure on the semialgebra S = {C\ Π C2}. Hence QQ extends as a

measure Q to alg(<S) = C\ V C2. I

REMARK 1. In pursuit of a problem of Marczewski (1951), Stroock (1976)

defined a measure η on C\ V C2 to be a splicing of measures μt on C;, i=l,2 if

η(Ci Π C2) = μi(Ci) μ2(C2) for every Ci, C2.

Marczewski had shown that

dΠC2 = φ^ μ i ( d ) μ2(C2) = 0 (4)
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is necessary and sufficient for a finitely additive splicing to exist (see also
Proposition 2 in Kallianpur and Ramachandran (1983)). Stroock's main the-
orem proves that

oo

Ω = U (Cm Π C2n) => Σ MCm) ^{C2n) > 1 (5)
n=l n=l

is necessary and sufficient for η to be a splicing of μ\ and μ2 We have a short
proof of this result using Lemma 1: Writing

Ω = (Ci n C2) u (Ci n C2

C) u (Cί n c 2 ) u (Cί n C2

C)

we can check that (5) =Φ> (4) and hence 77 is a charge. By Lemma 1, (5) implies
that η is a measure. Thus Proposition 2 is a generalization of Stroock's result.
For further extension of Stroock's results we refer the reader to Hackenbroch
(1992).

3. Main Results. Let {(Xi,Ai,Pi),i G /} be a family of probability
spaces and let 5 C Y\ieIX{. Let 7£ denote the semialgebra of measurable
rectangles in

DEFINITION 1. S is called marginalizable if there exists a probability P
on (ΠiζiXi,®i£iAi) with marginals {Pi,i G /} such that P*(S) = 1.

THEOREM 1. S is marginalizable iff there is a charge PQ on TZ with
marginals {Pi,i G /} such that

00 00

S C U Rn =* 2 P°(Λ") ^ L (6)
n=l n=l

PROOF. (6) is clearly necessary. To prove the sufficiency, let (6) hold.
It is easy to check that μo(R Π S) — Po(i2),i2 G TZ defines unambiguously a
charge on TZ Π S. By Lemma 1, μo is a measure on TZ Π S and hence extends
as a measure μ on (®te/A*) Π 5. Let P(E) — μ(E Π S),E G ®ie/A' I

Although Theorem 1 solves the marginal problem, it may not be easy
to check whether (6) holds. This has been noted by Lembcke (1981) as well.
At this stage, in the other works cited, topological conditions were imposed
on the underlying spaces to make the charge countably additive. Then an
additional condition was imposed on S to ensure that the obtained measure
is supported by S. We avoid the topological restrictions by requiring all but
perhaps one of the measures to be perfect and impose an analogous condition
on S in order to unify the known results. A similar approach can be found in
Plebanek (1989) for two dimensional products.
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DEFINITION 2. Let S be a semialgebra of subsets of Ω. A set S C Ω is
called <S-enclosable if

5* = (Π{£ € σ(5) : £ D S}) € <Suδ.

In the context of a product space and the semialgebra 1Z of measurable
rectangles we shall simply use the term enclosable instead of TZ-enclosable.
In the case when / is a countable, nonempty index set and, for each i G /,
Λi is generated by a countable family which separates the points of X{ a
subset S C Ilte/^2 ' *s e n cl° s able iff it is possible to choose metrics d{ for Xt ,
i G / making Λi the Borel σ-algebra under d{ such that S is closed in the
corresponding product of these metric topologies (see Shortt (1983), p. 314).

The following result due to Marczewski and Ryll-Nardzewski (1953) is
crucial for reaching our goal (see Corollary 3.2.2. of Ramachandran(1979)).
Later, we extend this result in Theorem 6 to arbitrary products in order to
obtain a general solution to the marginal problem.

THEOREM 2. A charge on the semialgebra, of measurable rectangles of
the product of two measurable spaces with countably additive marginals is
countably additive if at least one of the marginals is perfect.

THEOREM 3. Let (Xt , Λi, Pi), i=l,2 be two probability spaces where at
least one of the measures Pi and P2 is perfect. A subset S C -XΊ X X2 is
marginalizable if

(a) S is enclosable, and

(b) (A1xX2)ΠS C (X1xA2)nS => i\(Λi) < P2(Λ2).

PROOF. Let Ω = <S, d = ( ^ x I 2 ) n S , μ1((A1xX2)nS) = Pi(Λi), C2 =
(Xι x Λ2) Π S and let /i2((^i X M) Π 5) = P 2 (^ 2 ) . μi is well-defined because
(Ax xX2)nS = (Λi xX2)n5' implies that ((ΛiΔΛi)xX2)n5 = 0 = (Xx X0)Π5
and so by (b), Pi(ΛiΔΛi) = 0; similarly μ2 is well-defined. By Proposition
1, there is a common extension charge μo on C\ V C2 = alg(T^) Π S. Let μ(E)
= μo(E Π 5), E G alg(7£). Then μ is a charge on alg(7£) concentrated on S
(i.e., E G alg(7£), E D S => μ(E) = 1). Since μ has Pi and P2 as marginals
of which P2 is perfect, by Theorem 2, μ is a measure. Since 5 is enclosable,
P*(S) = 1 where P is the extension of μ to Λ\ ® Λ2 as a measure. |

Theorem 3 unifies and extends beyond the context of analytic and sepa-
rable spaces the results contained in Theorem 1 of Shortt (1983) and Propo-
sition (3.8) of Kellerer (1984). Recently Plebanek (1989) has used the above
approach together with a result concerning charges by Hansel and Troallic
(1986) to establish the following general solution of the marginal problem for
two-dimensional products:
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Let (Xi,Ai,Pi),i — 1,2 be two probability spaces. For E C X\ x X2
define

η(E) = suV{P1(A1) + P2(A2) : (A1 x A2) Π E = 0}.

THEOREM 4. Let I = {1,2} and let at least one of Pi and P2 be perfect.

Let d > 0. If D € Λ\ ® Λ2 is enclosable then the existence of a probability P

with marginals P1 and P2 such that P(D) > l-dis equivalent to the condition

η(D) <l + d.

In view of Definition 2, using Theorem 4, we can recast Theorem 3 as the
following

COROLLARY 1. Let I = {1,2} and let at least one ofP1 and P2 be perfect.

A subset S C Xι X X2 is marginalizable if

(a) S is enclosable, and

(b) η(S*) < 1.

We now discuss two examples.

EXAMPLE 1. Let Xι be a subset of [0,1] with outer Lebesgue measure

P*pΓi) = 1 = P*(Xf). Let X2 = X{, Λι = {B Π Xi : B is a Borel subset of

[0,1]} = the trace of the Borel σ-algebra on Xi, Λ2 — the trace of the Borel

σ-algebra on X2,Pi = P2 = P* and let S = {(^1,^2) : ^1 ^ #2}- Then, S

is not marginalizable noting that (Xi x X2) Π (Diagonal in [0,1] x [0,1]) is

empty. However,

S = n~ 1 u ^ ([^, £±I) x [o, ̂ ±1) n (Xx x x2)) e ^ u δ

Tt Tb To

is enclosable and it can be checked that η(S) = 1.

If both the measures Pi and P2 are not perfect then the above exam-

ple due to Shortt (1983) shows that (a) and (b) do not guarantee that S

is marginalizable. This is not surprising if we look at the following charac-

terization of perfect measures due to Pachl (1979) (see Theorem 12.2.1 in

Ramachandran (1979)):

A measure P on (X, .4) is perfect iff for every probability space (Y, B,Q),

every charge on the class of measurable rectangles with marginals P and Q is

countably additive.

The following example due to Kellerer (1964a, p. 196) is illustrative:

EXAMPLE 2. Let Xx = X 2 = [0,1], Λι = Λ2 = Borel σ-algebra on [0,1],

Pα = p2 — Lebesgue measure and let S = {(^15X2) #i > #2}- Since S is open

it is not enclosable. The measures are perfect and condition (b) of Theorem
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3 holds. Hence there is a charge μo on S with the Lebesgue measure as the
marginals. For every such charge μo ((^1 X ̂ 2) Π S) = 0 if A\ Π A2 = φ. Since

OO 71 — 1 7 7 , 1 7

n = l k=l

for every such charge μo we have

OO Π—\ 7 7 , 1 7

V^V-^ srk fc+lN r fevvΣ Σ ^ -' — ^ ) x °> - = °
_^-^ n n n

50 Theorem 1 implies that S is not marginalizable.

Although in the above example S is not enclosable we emphasize that it
is the failure of (6) that prevents S from being marginalizable. For, if we take
51 = {(xi,x2) : xι φ x2} then Si is not enclosable either. But Si supports
the product Lebesgue measure. Thus being enclosable is sufficient but not
necessary for being marginalizable.

We now turn our attention to the existence of simultaneous preimage
measures (See Lembcke (1982), Theorems 2, 3 and 4 of Shortt (1983)) for
two-dimensional products.

THEOREM 5. Let /t : (5,C) —• (Xt , A%,Pχ), i = 1,2 be two measurable
mappings. Then the following conditions are sufficient for the existence of a
probability Q on (S,C) such that Qf~ι = Pi for i = 1,2:

(a) At least one of Pi and P2 is perfect,

(b) C = σ(fuf2),

(c) f'1 (Aι) C f2

λ (A2) => Pi(Aι) < P2(A2), and

(d) {(xι,x2) : fϊ1 (xι) Π f'1 (x2) φ 0} is enclosable.

PROOF. Let F(s) = (fι(s)J2(s)) define a map F : S —• Xx x X2. By
(b), F-1 ((Aι ® Λ ) Γl F(5)) = C. If (Λi x X2) Π F(5) C (Xi x Λ2) Π F(S)
then applying F " 1 we get /f1 (Ai) C Λ"1 (Λ2); by (c), P^Λi) < P2(A2).
The set in (d) is precisely F(S). By Theorem 3, F(S) is marginalizable. Take
Q = P*F. I

Examples 1 and 2 show respectively that if (a) or (d) does not hold then
the conclusion of Theorem 5 may not hold. Conditions (b) and (c) are easily
seen to be natural in the context.

We now establish general results concerning the marginal problem and
the simultaneous preimage measure problem for the case of arbitrary products
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of probability spaces. We first prove the following generalization of Theorem

2.

THEOREM 6. Let {(Xi,Ai),i G 1} be a family of measurable spaces. If μ

is a charge on the semialgebra Ίl with countably additive marginals such that

all but perhaps one of its marginals are perfect then μ is countably additive.

PROOF. Let io, if it exists, be such that P2 o is not perfect. Now μo =

μ I TZQ where TZo = {R : proji0(R) = Xi0} is a charge such that every

marginal is perfect. By a theorem of Ryll-Nardzewski's (see Theorem 3.1.2 in

Ramachandran (1979)) μo is countably additive on TZo and its unique extension

μ0 to σ(lZo) is a perfect measure. Now let Ω = Π i e / ^ * ' ^i = a^ff(^)? Mi =

the unique charge on αlg(lZ) induced by μ, C2 = 0"(7£o)? M2 — Moί so Ci V C2 =

αlg(TZ ) where 7£ is the class of measurable rectangles in (Xi0, -42o) x (Πi^i ^ ?

Θt^io A ) Suppose Ci C C 2; then Ci = Σ j = i β i a n ( i ^2 = ^ 0 X ^ where

A e ®φ0Ai. Hence Ci = Σ]=i Rj C X, o x ( U?= 1 projj_{lo}R3) C

X i o X A = C 2 whereby μi(Ci) < μi(X ί 0 X ( U]=1 proj^{iQy Rά)) = μo(Xio X

(Uj = 1 proj^ψ^Rj)) <μo(Xio x A) = μ 2 (C 2 ) . By Proposition 1, there is a

common extension charge PQ on Ci V C2 of μi and μ2. Since C\ V C2 = αlg(TZ )

and μ2 is perfect, by Theorem 2, Po is a measure on C\ VC2. Hence P o | 7^ = μ

is countably additive. I

Let (Xi,Aii Pi), i G / be a family of probability spaces. Consider the

product space (ΠieIXii®ieiAi). Analogous to Theorem 3 we have

THEOREM 7. A subset S C Γ L G / ^ J S marginalizable if the following

conditions hold:

(a) All but perhaps one of the Pi's are perfect.

(b) For each finite subset J C I and for every choice {gj,j G J} where gj on
Xj is A j-measurable and bounded for each j £ J

I i d P i ^ °
jeJ jeJ J x

(c) S is enclosable.

PROOF. By using Theorem 6.1 from Maharam (1971), (b) implies the ex-

istence of a charge μ on ΊZ concentrated on S with {Pt , i £ 1} as the marginals.

By (a) and Theorem (6), μ is σ-additive and extends as a measure P to σ{TV).

By (c), P*(S) - 1. I

Theorem 5 has a corresponding version in

THEOREM 8. Let (S,C) be a measurable space and let, for each i G /,

fi : (5,C) —• (Xi,Ai, Pi) be a measurable map . The following conditions are
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sufficient to ensure the existence of a measure Q on (S,C) such that Qf~λ = Pi
for each i £ I:

(a) All but perhaps one of the P^s are perfect.

(c) Σjejdj °/j > 0 => ΣjeJ ί 9j dPj ^ 0 ^OΓ e a c ^ Λnite subset J C I
and for every choice {g^j G J} where gj on Xj is A j-measurable and
bounded for each j G J, and

(d) The set {{xi}ieI : ΠίG///"1(a;ί ) φ φ} is enclosable.

PROOF. Let F{s) = {fi(s)}ieI define a map F : S —• Γ L G / ^ B ^ (b)>
F(C) = ®i€/Λ Π F(5). By (c) and Theorem 6.1 of Maharam (1971) there is
a charge μ on TZ concentrated on F(S) with {P{,i G /} as marginals. F(S)
is the set in (d) and, by Theorem 7, it is marginalizable. Take Q = P*F to
complete the proof. |

COROLLARY 2. By taking S = Γ L € / ^ ' a i l^ letting fj be projections
of S to finite partial products Π?eJ ^i we o j ^ a j i l ^ e Daniell-Kolmogorov
consistency theorem for products of standard Borel spaces.

Examples 4 and 6 of Shortt (1983) show respectively that if (a) or (d)
does not hold then the conclusion of Theorem 8 may fail even on separable
spaces.

Finally, we investigate the "converse" direction to obtain results that will
encompass Corollary 3 of Hansel and Troallic (1978) and Theorem 5 of Shortt
(1983). The following theorem shows how to lift measures on products of sub
σ-algebras with given marginals to the entire product σ-algebra. It is similar
in spirit to Theorem 4 of Plebanek (1989) but neither result contains the
other and the proofs use different techniques. Theorem 9 plays a major role in
the proof of a general duality theorem (see Ramachandran and Rύschendorf
(1995)).

THEOREM 9. Let (XL,*4I ,PI) and ( X ^ ^ ? ^ ) be two probability spaces
of which P2 is perfect. If V\ and T>2 are sub σ-algebras of Λ\ and Λ2 re-
spectively and if λ is a measure on V\®T>2 with Pi \ V\ and P2 \ V2 as the
marginals then X admits an extension λ to Λ\®Λ2 with marginals P\ and P2.

PROOF. Let Ω = X\ x X2? C\ = algebra generated by measurable rect-
angles in V\ ® X>2, Mi = λ I Ci, C2 = Λ\ X X2 and let μ2 be defined by

= Pi(Aχ). Suppose that Cx C C2. Then d = Σ L i DlkxD2k C
= C2; hence ΣE= 1(2?u x D2k) C (U2=12?u) X X2 C Ax x X2 and

i) = Σ Ϊ = i λ ( ^ u X ^ 2 J b ) < Pi(UΪ=12?iib) < Pi(Ai) = μ2(C2). By
Proposition 1, there exists a common extension charge μo extending μi and μ2
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to C\ VC2 which is the algebra generated by measurable rectangles in Λ\ ® V2.
Since P2 I ΐ>2 is perfect (see property P2 in Ramachandran (1979)), by Theo-
rem 2, μo is countably additive and extends as a measure μ0 to Λ\ ® V2. By
construction, the marginals of μo are Pi and P 2 \ V2 and μ0 | V\ ® Ί>2 = λ.
Repeating the argument starting with μ0 on Λ\ ®V2 and the measure induced
by P2 on Xi x Λ2 we get the desired extension λ to Λ\ ® Λ2 with marginals
Pi and P 2 . I

COROLLARY 3. In tie setup of Theorem 9, if S eVλ®V2 with X(S) = 1,
then there is a measure X on Λι ® Λ2 with marginals P\ and P2 such that
λ(S) = 1.

The sought "converse" is

THEOREM 10. Let (Z,C,Q) be a probability space such that the diagonal
Δ in Z°° is C°°-measurable. Let fc : (X;, A , Ή ) —• (Z,C,Q) be a measurable
surjection such that Q = Pif~ι for i = 1,2,... Let Pi be perfect for i > 2.
Then there is a measure P on (X, 4̂) = (ΠSi ^ 5 ®Si^«) W J ' ^ ^narginaJs Pt

for all i such that P(S) = 1 where S = {(xi,X2? •) /i(#i) = 72(^2) = ...}.

PROOF. Let # : Z —• Z°° be defined by jf(^) = (2, ̂ , . . . ) . Then (Z,C)
is isomorphic to (Δ,C°° Π Δ) under g. Let μ on C°° Π Δ be defined by
μ = Qg-1. Now let F : UZiχi —> Z°° b e defined by ^(3:1,32,...) =
(/i(«i),/2(«2), •)• L e t A' = /ΓX(C) f o Γ J ^ !• S i n c e ®Si i Jf is σ-isomorphic
under P to C°°, define λ(5>) = μ(F(B) Π A), ~D e ®(£zlVi. Note that
F" X (Δ) = 5 and so λ(5) = μ(Δ) = 1. λ has marginals Pi \ V{ for i > 1.
Starting from λ on Φ ^ P t * P\°{Pro3\1) o n ^1 χΠS:2^« a n ( ^ aPplyίng the ar-
gument in the proof of Theorem 9 we extend λ to 4̂i ® (®^2^«) W1^ marginals
Pi and Pi \ T>i for i > 2. Repeating the argument with λ on Λ\ ® ( ® ^ 2 ^ )
and P2 o (proj^1) on Λ2 X (Πt^2 -̂ *) a n (^ s o o n w e c a n e x t e n d λ as a charge
to 1Z C Θ^iA* with marginals Pt for all i > 1. By Theorem 6, λ is countably
additive and hence extends as a measure P on ®^i A with marginals P; for
all i. By construction, P(S) = X(S) = 1. I

Theorem 10 subsumes Theorems 5 and 6 of Shortt (1983). The following
example shows that the conclusion of Theorem 10 may not hold if two of the
measures are not perfect.

EXAMPLE 3. Let Xλ C [0,1],X2 = [0,1] - X\ be such that (i) λ*(Xi) =
λ*(X2) = 1 and (ii) there exist Borel sets N{ C X{,i —1,2 with each having
cardinality c. Let Λ% = C Π Xi,Pi = λ^.,i = 1,2 where λ is the Lebesgue
measure and C is the σ-algebra of Lebesgue-measurable sets. Let h\ : N\ -+
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X2 U Ni and h2 •' N2 -* Xi U N2 be 1-1, onto maps. Let, for i = 1,2,

ί x; on Xi — Ni,

hi(x{) on Ni.

Then, / t : X; -» [0,1] is 1-1, onto and if B 6 #[o,i] then

/f x ( 5 ) = ( 5 Π (Xi - Nt)) U h~\B Π (ΛΓ< U ([0,1] - Xi)))
is in C Π X; with Pif~λ{B) = λ(5) . Taking Z = [0,1],C = B[0,i],Q = A

we get the setup in Theorem 10 with both marginals nonperfect. The set

S = {(xi,x2) : fi(xi) = /2O2)} C (Ni x X 2 ) U (Xi x ^V2) G Λ β Λ and so

P(S) = 0 for every probability P on (Xi x X2,A\ ® Λ2) with marginals Pi

and P 2

In the above construction, we can also take A% = σ(#ΓΊX;, hJ1(BΠ(Ni U

([0,1] — X t )))) °̂ Se^ ^ i which are countably generated.
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