The Marginal Problem in Arbitrary Product Spaces

By D. Ramachandran*
California State University at Sacramento

Abstract

Using a property of perfect measures due to Marczewski and Ryll-Nardzewski (1953), we unify the solutions to the marginal problem for two-dimensional products. We then extend that property to arbitrary product spaces and provide a general solution to the marginal problem in arbitrary product spaces. Our results remove the restrictive topological assumptions in earlier works and are valid in spaces where the σ-algebras need not be countably generated. A general result on the existence of simultaneous preimage measures as well as a "converse" to it are derived.

1. Introduction. Let $\left\{\left(X_{i}, \mathcal{A}_{i}, P_{i}\right), i \in I\right\}$ be a family of probability spaces. The marginal problem is connected to probabilities P on the space $\left(\prod_{i \in I} X_{i}, \otimes_{i \in I} \mathcal{A}_{i}\right)$ such that P has the given family $\left\{P_{i}, i \in I\right\}$ as marginals, i.e. $P \circ \pi_{i}^{-1}=P_{i}$ for every $i \in I$ where $\pi_{j}: \prod_{i \in I} X_{i} \rightarrow X_{j}$ is the canonical projection map. It can be formulated as:

Given $S \subset \prod_{i \in I} X_{i}$, what are the conditions that would ensure the existence of a probability P on $\left(\prod_{i \in I} X_{i}, \otimes_{i \in I} \mathcal{A}_{i}\right)$ with marginals $\left\{P_{i}, i \in\right.$ $I\}$ such that $P^{*}(S)=1$?
For $I=\{1,2\}$, with underlying spaces being Polish, this problem reduces to Strassen's (1965) marginal problem. Variants of this have been investigated earlier by Banach (1948), Marczewski $(1948,1951)$ for the case when projections are required to be stochastically independent under P and later for the general case by Kellerer (1964a,b) as well as Maharam (1971). The importance of the above formulation in applications can be found in Hoffman-Jørgensen (1987).

In recent work by Hansel and Troallic $(1978,1986)$, Shortt (1983) and Kellerer $(1984,1988)$ solutions to Strassen's version were derived under topological restrictions. Plebanek (1989) has combined the solution for the finitely

[^0]AMS 1991 Subject Classification: Primary 60A10; Secondary 28A35
Key words and phrases: Marginals, perfect measure, product spaces, preimage measure.
additive case of Strassen's problem due to Hansel and Troallic (1986) with a key result on perfect measures due to Marczewski and Ryll-Nardzewski (1953) to obtain a general solution of the marginal problem for two-dimensional products. In this paper, we first view the two-dimensional problem in a different light using the notion of common extensions. We then obtain a general solution to the marginal problem in arbitrary product spaces. We also derive a general result on the existence of simultaneous preimage measures (see Lembcke (1982) and Shortt (1983)), a "converse" to it and discuss illustrative examples. Perfect measures which play a crucial role in proving these results have also led to the establishment of a general duality theorem for marginal problems (see Ramachandran and Rüschendorf (1995)).
2. Notations and Preliminary Results. We use customary measure theoretic terminology and notation (as, for instance, in Neveu (1965)). A finitely additive probability on an algebra will be called a charge and a σ additive charge will be called a measure.

Special Notation: If a script letter such as \mathcal{A} (respectively \mathcal{A}_{i}) is used to denote a special class of subsets like an algebra, then the corresponding capital letter in roman such as A, A_{j} (respectively $A_{i}, A_{i j}$) etc. denote sets from that class; $\sum_{i \epsilon I} G_{i}$ denotes the union of sets $\left\{G_{i}, i \in I\right\}$ that are pairwise disjoint.

Recall that P on (X, \mathcal{A}) is perfect iff for every real valued \mathcal{A}-measurable function f on X there is a linear Borel set $B_{f} \subset f(X)$ such that $P\left(f^{-1}\left(B_{f}\right)\right)=$ 1. For the properties of perfect measures, we refer the reader to Ramachandran (1979).

If \mathcal{C} is a collection of subsets of Ω, then $\operatorname{alg}(\mathcal{C})$ and $\sigma(\mathcal{C})$ will denote respectively the algebra and the σ-algebra generated by $\mathcal{C} ; \mathcal{C}^{\cup \delta}$ will denote the smallest class containing \mathcal{C} which is closed under finite unions and countable intersections. Recall that a class \mathcal{S} of subsets of a set Ω is called a semialgebra if it satisfies: (a) $\Omega, \emptyset \in \mathcal{S}$ (b) \mathcal{S} is closed under finite intersections and (c) if $S \in \mathcal{S}$ then S^{c} is a finite disjoint union of members of \mathcal{S}.

If \mathcal{S} is a semialgebra then $\operatorname{alg}(\mathcal{S})=\{A: A$ is a finite disjoint union of members of $\mathcal{S}\}$ (see Proposition I.6.1 in Neveu (1965)) and so we can talk of a charge (measure) defined on \mathcal{S} since it admits a unique extension as a charge (measure) to $\operatorname{alg}(\mathcal{S})$). When dealing with the product of given measurable spaces, \mathcal{R} will denote the semialgebra of measurable rectangles depending on finitely many coordinates in the product space under consideration.

We unify the known results by showing that the solution to the marginal problem consists of the three steps: (i) obtaining a charge on \mathcal{R} with the
given marginals (ii) forcing the charge to be σ-additive and (iii) ensuring that $P^{*}(S)=1$. To achieve this goal we first look at the common extension problem.

Let Ω be an abstract set and let \mathcal{C}_{1} and \mathcal{C}_{2} be two algebras of subsets of Ω. Let $\mathcal{C}_{1} \vee \mathcal{C}_{2}=\operatorname{alg}\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right)=\left\{\sum_{k=1}^{n}\left(C_{1 k} \cap C_{2 k}\right): n \geq 1\right\}$. If μ_{1} and μ_{2} are two charges on \mathcal{C}_{1} and \mathcal{C}_{2} respectively, then a charge (measure) μ_{0} on $\mathcal{C}_{1} \vee \mathcal{C}_{2}$ such that $\mu_{0} \mid \mathcal{C}_{i}=\mu_{i}, i=1,2$ will be called a common extension charge (measure) of μ_{1} and μ_{2}. We quote the following result due to Guy (1961) (An error in Guy's proof has been corrected and the result has been extended to vector valued charges by Schmidt and Waldschaks (1991)):

Proposition 1. There is a common extension charge of μ_{1} and μ_{2} iff

$$
\begin{equation*}
C_{1} \subset C_{2} \Rightarrow \mu_{1}\left(C_{1}\right) \leq \mu_{2}\left(C_{2}\right) \tag{1}
\end{equation*}
$$

We need the
Lemma 1. Let \mathcal{S} be a semialgebra of subsets of Ω. A charge μ_{0} on \mathcal{S} is a measure iff

$$
\begin{equation*}
\Omega=\bigcup_{n=1}^{\infty} S_{n} \Rightarrow \sum_{n=1}^{\infty} \mu_{0}\left(S_{n}\right) \geq 1 \tag{2}
\end{equation*}
$$

Proof. Necessity is obvious. To prove the sufficiency, first note that μ_{0} is countably superadditive since it is a charge. Let $F=\sum_{n=1}^{\infty} F_{n}$, where $\left\{F, F_{n}, n \geq 1\right\} \subset \mathcal{S}$. Then $\Omega=\sum_{n=1}^{\infty} F_{n}+F^{c}=\sum_{n=1}^{\infty} F_{n}+\sum_{i=1}^{m} S_{i}$. Hence (2) $\Rightarrow \sum_{n=1}^{\infty} \mu_{0}\left(F_{n}\right)+\sum_{i=1}^{m} \mu_{0}\left(S_{i}\right) \geq 1 \Rightarrow \sum_{n=1}^{\infty} \mu_{0}\left(F_{n}\right) \geq 1-\sum_{i=1}^{m} \mu_{0}\left(S_{i}\right)=$ $1-\mu_{0}\left(F^{c}\right)=\mu_{0}(F)$. Thus, μ_{0} is countably subadditive as well.

Proposition 2. There exists a common extension measure Q on $\mathcal{C}_{1} \vee \mathcal{C}_{2}$ extending the measures Q_{i} on \mathcal{C}_{i}, i=1,2 iff there exists a common extension charge Q_{0} of Q_{1} and Q_{2} such that

$$
\begin{equation*}
\Omega=\bigcup_{n=1}^{\infty}\left(C_{1 n} \cap C_{2 n}\right) \Rightarrow \sum_{n=1}^{\infty} Q_{0}\left(C_{1 n} \cap C_{2 n}\right) \geq 1 \tag{3}
\end{equation*}
$$

Proof. Necessity is clear. If the given condition holds then, by Lemma $1, Q_{0}$ is a measure on the semialgebra $\mathcal{S}=\left\{C_{1} \cap C_{2}\right\}$. Hence Q_{0} extends as a measure Q to $\operatorname{alg}(\mathcal{S})=\mathcal{C}_{1} \vee \mathcal{C}_{2}$.

Remark 1. In pursuit of a problem of Marczewski (1951), Stroock (1976) defined a measure η on $\mathcal{C}_{1} \vee \mathcal{C}_{2}$ to be a splicing of measures μ_{i} on \mathcal{C}_{i}, i=1,2 if

$$
\eta\left(C_{1} \cap C_{2}\right)=\mu_{1}\left(C_{1}\right) \mu_{2}\left(C_{2}\right) \quad \text { for every } C_{1}, C_{2}
$$

Marczewski had shown that

$$
\begin{equation*}
C_{1} \cap C_{2}=\phi \Rightarrow \mu_{1}\left(C_{1}\right) \mu_{2}\left(C_{2}\right)=0 \tag{4}
\end{equation*}
$$

is necessary and sufficient for a finitely additive splicing to exist (see also Proposition 2 in Kallianpur and Ramachandran (1983)). Stroock's main theorem proves that

$$
\begin{equation*}
\Omega=\bigcup_{n=1}^{\infty}\left(C_{1 n} \cap C_{2 n}\right) \Rightarrow \sum_{n=1}^{\infty} \mu_{1}\left(C_{1 n}\right) \mu_{2}\left(C_{2 n}\right) \geq 1 \tag{5}
\end{equation*}
$$

is necessary and sufficient for η to be a splicing of μ_{1} and μ_{2}. We have a short proof of this result using Lemma 1: Writing

$$
\Omega=\left(C_{1} \cap C_{2}\right) \cup\left(C_{1} \cap C_{2}^{c}\right) \cup\left(C_{1}^{c} \cap C_{2}\right) \cup\left(C_{1}^{c} \cap C_{2}^{c}\right)
$$

we can check that $(5) \Rightarrow(4)$ and hence η is a charge. By Lemma $1,(5)$ implies that η is a measure. Thus Proposition 2 is a generalization of Stroock's result. For further extension of Stroock's results we refer the reader to Hackenbroch (1992).
3. Main Results. Let $\left\{\left(X_{i}, \mathcal{A}_{i}, P_{i}\right), i \in I\right\}$ be a family of probability spaces and let $S \subset \prod_{i \in I} X_{i}$. Let \mathcal{R} denote the semialgebra of measurable rectangles in $\otimes_{i \in I} \mathcal{A}_{i}$.

Definition 1. S is called marginalizable if there exists a probability P on $\left(\prod_{i \in I} X_{i}, \otimes_{i \in I} \mathcal{A}_{i}\right)$ with marginals $\left\{P_{i}, i \in I\right\}$ such that $P^{*}(S)=1$.

Theorem 1. S is marginalizable iff there is a charge P_{0} on \mathcal{R} with marginals $\left\{P_{i}, i \in I\right\}$ such that

$$
\begin{equation*}
S \subset \bigcup_{n=1}^{\infty} R_{n} \Rightarrow \sum_{n=1}^{\infty} P_{0}\left(R_{n}\right) \geq 1 \tag{6}
\end{equation*}
$$

Proof. (6) is clearly necessary. To prove the sufficiency, let (6) hold. It is easy to check that $\mu_{0}(R \cap S)=P_{0}(R), R \in \mathcal{R}$ defines unambiguously a charge on $\mathcal{R} \cap S$. By Lemma $1, \mu_{0}$ is a measure on $\mathcal{R} \cap S$ and hence extends as a measure μ on $\left(\otimes_{i \in I} \mathcal{A}_{i}\right) \cap S$. Let $P(E)=\mu(E \cap S), E \in \otimes_{i \in I} \mathcal{A}_{i}$.

Although Theorem 1 solves the marginal problem, it may not be easy to check whether (6) holds. This has been noted by Lembcke (1981) as well. At this stage, in the other works cited, topological conditions were imposed on the underlying spaces to make the charge countably additive. Then an additional condition was imposed on S to ensure that the obtained measure is supported by S. We avoid the topological restrictions by requiring all but perhaps one of the measures to be perfect and impose an analogous condition on S in order to unify the known results. A similar approach can be found in Plebanek (1989) for two dimensional products.

Definition 2. Let \mathcal{S} be a semialgebra of subsets of Ω. A set $S \subset \Omega$ is called \mathcal{S}-enclosable if

$$
S^{*}=(\cap\{E \in \sigma(\mathcal{S}): E \supset S\}) \in \mathcal{S}^{\cup \delta}
$$

In the context of a product space and the semialgebra \mathcal{R} of measurable rectangles we shall simply use the term enclosable instead of \mathcal{R}-enclosable. In the case when I is a countable, nonempty index set and, for each $i \in I$, \mathcal{A}_{i} is generated by a countable family which separates the points of X_{i} a subset $S \subset \prod_{i \in I} X_{i}$ is enclosable iff it is possible to choose metrics d_{i} for X_{i}, $i \in I$ making \mathcal{A}_{i} the Borel σ-algebra under d_{i} such that S is closed in the corresponding product of these metric topologies (see Shortt (1983), p. 314).

The following result due to Marczewski and Ryll-Nardzewski (1953) is crucial for reaching our goal (see Corollary 3.2.2. of Ramachandran(1979)). Later, we extend this result in Theorem 6 to arbitrary products in order to obtain a general solution to the marginal problem.

Theorem 2. A charge on the semialgebra of measurable rectangles of the product of two measurable spaces with countably additive marginals is countably additive if at least one of the marginals is perfect.

Theorem 3. Let $\left(X_{i}, \mathcal{A}_{i}, P_{i}\right), i=1,2$ be two probability spaces where at least one of the measures P_{1} and P_{2} is perfect. A subset $S \subset X_{1} \times X_{2}$ is marginalizable if
(a) S is enclosable, and
(b) $\left(A_{1} \times X_{2}\right) \cap S \subset\left(X_{1} \times A_{2}\right) \cap S \Rightarrow P_{1}\left(A_{1}\right) \leq P_{2}\left(A_{2}\right)$.

Proof. Let $\Omega=\mathcal{S}, \mathcal{C}_{1}=\left(\mathcal{A}_{1} \times X_{2}\right) \cap S, \mu_{1}\left(\left(A_{1} \times X_{2}\right) \cap S\right)=P_{1}\left(A_{1}\right), \mathcal{C}_{2}=$ $\left(X_{1} \times \mathcal{A}_{2}\right) \cap S$ and let $\mu_{2}\left(\left(X_{1} \times A_{2}\right) \cap S\right)=P_{2}\left(A_{2}\right) . \mu_{1}$ is well-defined because $\left(A_{1} \times X_{2}\right) \cap S=\left(A_{1}^{\prime} \times X_{2}\right) \cap S$ implies that $\left(\left(A_{1} \Delta A_{1}^{\prime}\right) \times X_{2}\right) \cap S=\emptyset=\left(X_{1} \times \emptyset\right) \cap S$ and so by (b), $P_{1}\left(A_{1} \Delta A_{1}^{\prime}\right)=0$; similarly μ_{2} is well-defined. By Proposition 1 , there is a common extension charge μ_{0} on $\mathcal{C}_{1} \vee \mathcal{C}_{2}=\operatorname{alg}(\mathcal{R}) \cap S$. Let $\mu(E)$ $=\mu_{0}(E \cap S), E \in \operatorname{alg}(\mathcal{R})$. Then μ is a charge on $\operatorname{alg}(\mathcal{R})$ concentrated on S (i.e., $E \in \operatorname{alg}(\mathcal{R}), E \supset S \Rightarrow \mu(E)=1$). Since μ has P_{1} and P_{2} as marginals of which P_{2} is perfect, by Theorem $2, \mu$ is a measure. Since S is enclosable, $P^{*}(S)=1$ where P is the extension of μ to $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ as a measure.

Theorem 3 unifies and extends beyond the context of analytic and separable spaces the results contained in Theorem 1 of Shortt (1983) and Proposition (3.8) of Kellerer (1984). Recently Plebanek (1989) has used the above approach together with a result concerning charges by Hansel and Troallic (1986) to establish the following general solution of the marginal problem for two-dimensional products:

Let $\left(X_{i}, \mathcal{A}_{i}, P_{i}\right), i=1,2$ be two probability spaces. For $E \subset X_{1} \times X_{2}$ define

$$
\eta(E)=\sup \left\{P_{1}\left(A_{1}\right)+P_{2}\left(A_{2}\right):\left(A_{1} \times A_{2}\right) \cap E=\emptyset\right\}
$$

Theorem 4. Let $I=\{1,2\}$ and let at least one of P_{1} and P_{2} be perfect. Let $d \geq 0$. If $D \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is enclosable then the existence of a probability P with marginals P_{1} and P_{2} such that $P(D) \geq 1-d$ is equivalent to the condition $\eta(D) \leq 1+d$.

In view of Definition 2, using Theorem 4, we can recast Theorem 3 as the following

Corollary 1. Let $I=\{1,2\}$ and let at least one of P_{1} and P_{2} be perfect. A subset $S \subset X_{1} \times X_{2}$ is marginalizable if
(a) S is enclosable, and
(b) $\eta\left(S^{*}\right) \leq 1$.

We now discuss two examples.
Example 1. Let X_{1} be a subset of [0,1] with outer Lebesgue measure $P^{*}\left(X_{1}\right)=1=P^{*}\left(X_{1}^{c}\right)$. Let $X_{2}=X_{1}^{c}, \mathcal{A}_{1}=\left\{B \cap X_{1}: B\right.$ is a Borel subset of $[0,1]\}=$ the trace of the Borel σ-algebra on $X_{1}, \mathcal{A}_{2}=$ the trace of the Borel σ-algebra on $X_{2}, P_{1}=P_{2}=P^{*}$ and let $S=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq x_{2}\right\}$. Then, S is not marginalizable noting that $\left(X_{1} \times X_{2}\right) \cap$ (Diagonal in $\left.[0,1] \times[0,1]\right)$ is empty. However,

$$
S=\cap_{n=1}^{\infty} \cup_{k=0}^{n-1}\left(\left[\frac{k}{n}, \frac{k+1}{n}\right) \times\left[0, \frac{k+1}{n}\right) \cap\left(X_{1} \times X_{2}\right)\right) \in \mathcal{R}^{\cup \delta}
$$

is enclosable and it can be checked that $\eta(S)=1$.
If both the measures P_{1} and P_{2} are not perfect then the above example due to Shortt (1983) shows that (a) and (b) do not guarantee that S is marginalizable. This is not surprising if we look at the following characterization of perfect measures due to Pachl (1979) (see Theorem 12.2.1 in Ramachandran (1979)):

A measure P on (X, \mathcal{A}) is perfect iff for every probability space (Y, \mathcal{B}, Q), every charge on the class of measurable rectangles with marginals P and Q is countably additive.

The following example due to Kellerer (1964a, p. 196) is illustrative:
Example 2. Let $X_{1}=X_{2}=[0,1], \mathcal{A}_{1}=\mathcal{A}_{2}=$ Borel σ-algebra on [0,1$]$, $P_{1}=P_{2}=$ Lebesgue measure and let $S=\left\{\left(x_{1}, x_{2}\right): x_{1}>x_{2}\right\}$. Since S is open it is not enclosable. The measures are perfect and condition (b) of Theorem

3 holds. Hence there is a charge μ_{0} on S with the Lebesgue measure as the marginals. For every such charge $\mu_{0}\left(\left(A_{1} \times A_{2}\right) \cap S\right)=0$ if $A_{1} \cap A_{2}=\phi$. Since

$$
S=\bigcup_{n=1}^{\infty} \sum_{k=1}^{n-1}\left[\frac{k}{n}, \frac{k+1}{n}\right) \times\left[0, \frac{k}{n}\right)
$$

for every such charge μ_{0} we have

$$
\sum_{n=1}^{\infty} \sum_{k=1}^{n-1} \mu_{0}\left(\left[\frac{k}{n}, \frac{k+1}{n}\right) \times\left[0, \frac{k}{n}\right)\right)=0
$$

So Theorem 1 implies that S is not marginalizable.
Although in the above example S is not enclosable we emphasize that it is the failure of (6) that prevents S from being marginalizable. For, if we take $S_{1}=\left\{\left(x_{1}, x_{2}\right): x_{1} \neq x_{2}\right\}$ then S_{1} is not enclosable either. But S_{1} supports the product Lebesgue measure. Thus being enclosable is sufficient but not necessary for being marginalizable.

We now turn our attention to the existence of simultaneous preimage measures (See Lembcke (1982), Theorems 2, 3 and 4 of Shortt (1983)) for two-dimensional products.

Theorem 5. Let $f_{i}:(S, \mathcal{C}) \longrightarrow\left(X_{i}, \mathcal{A}_{i}, P_{i}\right), i=1,2$ be two measurable mappings. Then the following conditions are sufficient for the existence of a probability Q on (S, \mathcal{C}) such that $Q f_{i}^{-1}=P_{i}$ for $i=1,2$:
(a) At least one of P_{1} and P_{2} is perfect,
(b) $\mathcal{C}=\sigma\left(f_{1}, f_{2}\right)$,
(c) $f_{1}^{-1}\left(A_{1}\right) \subset f_{2}^{-1}\left(A_{2}\right) \Rightarrow P_{1}\left(A_{1}\right) \leq P_{2}\left(A_{2}\right)$, and
(d) $\left\{\left(x_{1}, x_{2}\right): f_{1}^{-1}\left(x_{1}\right) \cap f_{2}^{-1}\left(x_{2}\right) \neq \emptyset\right\}$ is enclosable.

Proof. Let $F(s)=\left(f_{1}(s), f_{2}(s)\right)$ define a map $F: S \longrightarrow X_{1} \times X_{2}$. By (b), $F^{-1}\left(\left(\mathcal{A}_{1} \otimes \mathcal{A}_{2}\right) \cap F(S)\right)=\mathcal{C}$. If $\left(A_{1} \times X_{2}\right) \cap F(S) \subset\left(X_{1} \times A_{2}\right) \cap F(S)$ then applying F^{-1} we get $f_{1}^{-1}\left(A_{1}\right) \subset f_{2}^{-1}\left(A_{2}\right)$; by $(\mathrm{c}), P_{1}\left(A_{1}\right) \leq P_{2}\left(A_{2}\right)$. The set in (d) is precisely $F(S)$. By Theorem $3, F(S)$ is marginalizable. Take $Q=P^{*} F$.

Examples 1 and 2 show respectively that if (a) or (d) does not hold then the conclusion of Theorem 5 may not hold. Conditions (b) and (c) are easily seen to be natural in the context.

We now establish general results concerning the marginal problem and the simultaneous preimage measure problem for the case of arbitrary products
of probability spaces. We first prove the following generalization of Theorem 2.

Theorem 6. Let $\left\{\left(X_{i}, \mathcal{A}_{i}\right), i \in I\right\}$ be a family of measurable spaces. If μ is a charge on the semialgebra \mathcal{R} with countably additive marginals such that all but perhaps one of its marginals are perfect then μ is countably additive.

Proof. Let i_{0}, if it exists, be such that $P_{i_{0}}$ is not perfect. Now $\mu_{0}=$ $\mu \mid \mathcal{R}_{0}$ where $\mathcal{R}_{0}=\left\{R: \operatorname{proj}_{i_{0}}(R)=X_{i_{0}}\right\}$ is a charge such that every marginal is perfect. By a theorem of Ryll-Nardzewski's (see Theorem 3.1.2 in Ramachandran (1979)) μ_{0} is countably additive on \mathcal{R}_{0} and its unique extension $\bar{\mu}_{0}$ to $\sigma\left(\mathcal{R}_{0}\right)$ is a perfect measure. Now let $\Omega=\prod_{i \in I} X_{i}, \mathcal{C}_{1}=\operatorname{alg}(\mathcal{R}), \mu_{1}=$ the unique charge on $\operatorname{alg}(\mathcal{R})$ induced by $\mu, \mathcal{C}_{2}=\sigma\left(\mathcal{R}_{0}\right), \mu_{2}=\bar{\mu}_{0}$; so $\mathcal{C}_{1} \vee \mathcal{C}_{2}=$ $\operatorname{alg}\left(\mathcal{R}^{\prime}\right)$ where \mathcal{R}^{\prime} is the class of measurable rectangles in $\left(X_{i_{0}}, \mathcal{A}_{i_{0}}\right) \times\left(\prod_{i \neq i_{0}} X_{i}\right.$, $\otimes_{i \neq i_{0}} \mathcal{A}_{i}$). Suppose $C_{1} \subset C_{2}$; then $C_{1}=\sum_{j=1}^{n} R_{j}$ and $C_{2}=X_{i_{0}} \times A$ where $A \in \otimes_{i \neq i_{0}} \mathcal{A}_{i}$. Hence $C_{1}=\sum_{j=1}^{n} R_{j} \subset X_{i_{0}} \times\left(\cup_{j=1}^{n} \operatorname{proj}_{I-\left\{i_{0}\right\}} R_{j}\right) \subset$ $X_{i_{0}} \times A=C_{2}$ whereby $\mu_{1}\left(C_{1}\right) \leq \mu_{1}\left(X_{i_{0}} \times\left(\cup_{j=1}^{n} \operatorname{proj}_{I-\left\{i_{0}\right\}} R_{j}\right)\right)=\mu_{0}\left(X_{i_{0}} \times\right.$ $\left.\left(\cup_{j=1}^{n} \operatorname{proj}_{I-\left\{i_{0}\right\}} R_{j}\right)\right) \leq \bar{\mu}_{0}\left(X_{i_{0}} \times A\right)=\mu_{2}\left(C_{2}\right)$. By Proposition 1, there is a common extension charge P_{0} on $\mathcal{C}_{1} \vee \mathcal{C}_{2}$ of μ_{1} and μ_{2}. Since $\mathcal{C}_{1} \vee \mathcal{C}_{2}=\operatorname{alg}\left(\mathcal{R}^{\prime}\right)$ and μ_{2} is perfect, by Theorem $2, P_{0}$ is a measure on $\mathcal{C}_{1} \vee \mathcal{C}_{2}$. Hence $P_{0} \mid \mathcal{R}=\mu$ is countably additive.

Let $\left(X_{i}, \mathcal{A}_{i}, P_{i}\right), i \in I$ be a family of probability spaces. Consider the product space $\left(\prod_{i \in I} X_{i}, \otimes_{i \in I} \mathcal{A}_{i}\right)$. Analogous to Theorem 3 we have

Theorem 7. A subset $S \subset \prod_{i \in I} X_{i}$ is marginalizable if the following conditions hold:
(a) All but perhaps one of the P_{i} 's are perfect.
(b) For each finite subset $J \subset I$ and for every choice $\left\{g_{j}, j \in J\right\}$ where g_{j} on X_{j} is \mathcal{A}_{j}-measurable and bounded for each $j \in J$

$$
\sum_{j \in J} g_{j} \circ \operatorname{proj}_{j} 1_{S} \geq 0 \Rightarrow \sum_{j \in J} \int_{X_{j}} g_{j} d P_{j} \geq 0
$$

(c) S is enclosable.

Proof. By using Theorem 6.1 from Maharam (1971), (b) implies the existence of a charge μ on \mathcal{R} concentrated on S with $\left\{P_{i}, i \in I\right\}$ as the marginals. By (a) and Theorem (6), μ is σ-additive and extends as a measure P to $\sigma(\mathcal{R})$. By (c), $P^{*}(S)=1$.

Theorem 5 has a corresponding version in
Theorem 8. Let (S, \mathcal{C}) be a measurable space and let, for each $i \in I$, $f_{i}:(S, \mathcal{C}) \longrightarrow\left(X_{i}, \mathcal{A}_{i}, P_{i}\right)$ be a measurable map. The following conditions are
sufficient to ensure the existence of a measure Q on (S, \mathcal{C}) such that $Q f_{i}^{-1}=P_{i}$ for each $i \in I$:
(a) All but perhaps one of the P_{i} 's are perfect.
(b) $\mathcal{C}=\sigma\left(\left\{f_{i}, i \in I\right\}\right)$.
(c) $\sum_{j \in J} g_{j} \circ f_{j} \geq 0 \Rightarrow \sum_{j \in J} \int g_{j} d P_{j} \geq 0$ for each finite subset $J \subset I$ and for every choice $\left\{g_{j}, j \in J\right\}$ where g_{j} on X_{j} is \mathcal{A}_{j}-measurable and bounded for each $j \in J$, and
(d) The set $\left\{\left\{x_{i}\right\}_{i \in I}: \cap_{i \in I} f_{i}^{-1}\left(x_{i}\right) \neq \phi\right\}$ is enclosable.

Proof. Let $F(s)=\left\{f_{i}(s)\right\}_{i \in I}$ define a map $F: S \longrightarrow \prod_{i \in I} X_{i}$. By (b), $F(\mathcal{C})=\otimes_{i \in I} \mathcal{A}_{i} \cap F(S)$. By (c) and Theorem 6.1 of Maharam (1971) there is a charge μ on \mathcal{R} concentrated on $F(S)$ with $\left\{P_{i}, i \in I\right\}$ as marginals. $F(S)$ is the set in (d) and, by Theorem 7, it is marginalizable. Take $Q=P^{*} F$ to complete the proof.

Corollary 2. By taking $S=\prod_{i \in I} X_{i}$ and letting f_{J} be projections of S to finite partial products $\prod_{j \in J} X_{j}$ we obtain the Daniell-Kolmogorov consistency theorem for products of standard Borel spaces.

Examples 4 and 6 of Shortt (1983) show respectively that if (a) or (d) does not hold then the conclusion of Theorem 8 may fail even on separable spaces.

Finally, we investigate the "converse" direction to obtain results that will encompass Corollary 3 of Hansel and Troallic (1978) and Theorem 5 of Shortt (1983). The following theorem shows how to lift measures on products of sub σ-algebras with given marginals to the entire product σ-algebra. It is similar in spirit to Theorem 4 of Plebanek (1989) but neither result contains the other and the proofs use different techniques. Theorem 9 plays a major role in the proof of a general duality theorem (see Ramachandran and Rüschendorf (1995)).

Theorem 9. Let $\left(X_{1}, \mathcal{A}_{1}, P_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}, P_{2}\right)$ be two probability spaces of which P_{2} is perfect. If \mathcal{D}_{1} and \mathcal{D}_{2} are sub σ-algebras of \mathcal{A}_{1} and \mathcal{A}_{2} respectively and if λ is a measure on $\mathcal{D}_{1} \otimes \mathcal{D}_{2}$ with $P_{1} \mid \mathcal{D}_{1}$ and $P_{2} \mid \mathcal{D}_{2}$ as the marginals then λ admits an extension $\bar{\lambda}$ to $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ with marginals P_{1} and P_{2}.

Proof. Let $\Omega=X_{1} \times X_{2}, \mathcal{C}_{1}=$ algebra generated by measurable rectangles in $\mathcal{D}_{1} \otimes \mathcal{D}_{2}, \mu_{1}=\lambda \mid \mathcal{C}_{1}, \mathcal{C}_{2}=\mathcal{A}_{1} \times X_{2}$ and let μ_{2} be defined by $\mu_{2}\left(A_{1} \times X_{2}\right)=P_{1}\left(A_{1}\right)$. Suppose that $C_{1} \subset C_{2}$. Then $C_{1}=\sum_{k=1}^{n} D_{1 k} \times D_{2 k} \subset$ $A_{1} \times X_{2}=C_{2}$; hence $\sum_{k=1}^{n}\left(D_{1 k} \times D_{2 k}\right) \subset\left(\cup_{k=1}^{n} D_{1 k}\right) \times X_{2} \subset A_{1} \times X_{2}$ and so $\mu_{1}\left(C_{1}\right)=\sum_{k=1}^{n} \lambda\left(D_{1 k} \times D_{2 k}\right) \leq P_{1}\left(\cup_{k=1}^{n} D_{1 k}\right) \leq P_{1}\left(A_{1}\right)=\mu_{2}\left(C_{2}\right)$. By Proposition 1, there exists a common extension charge μ_{0} extending μ_{1} and μ_{2}
to $\mathcal{C}_{1} \vee \mathcal{C}_{2}$ which is the algebra generated by measurable rectangles in $\mathcal{A}_{1} \otimes \mathcal{D}_{2}$. Since $P_{2} \mid \mathcal{D}_{2}$ is perfect (see property P2 in Ramachandran (1979)), by Theorem $2, \mu_{0}$ is countably additive and extends as a measure $\bar{\mu}_{0}$ to $\mathcal{A}_{1} \otimes \mathcal{D}_{2}$. By construction, the marginals of μ_{0} are P_{1} and $P_{2} \mid \mathcal{D}_{2}$ and $\bar{\mu}_{0} \mid \mathcal{D}_{1} \otimes \mathcal{D}_{2}=\lambda$. Repeating the argument starting with $\bar{\mu}_{0}$ on $\mathcal{A}_{1} \otimes \mathcal{D}_{2}$ and the measure induced by P_{2} on $X_{1} \times \mathcal{A}_{2}$ we get the desired extension $\bar{\lambda}$ to $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ with marginals P_{1} and P_{2}.

Corollary 3. In the setup of Theorem 9, if $S \in \mathcal{D}_{1} \otimes \mathcal{D}_{2}$ with $\lambda(S)=1$, then there is a measure $\bar{\lambda}$ on $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ with marginals P_{1} and P_{2} such that $\bar{\lambda}(S)=1$.

The sought "converse" is
Theorem 10. Let (Z, \mathcal{C}, Q) be a probability space such that the diagonal \triangle in Z^{∞} is \mathcal{C}^{∞}-measurable. Let $f_{i}:\left(X_{i}, \mathcal{A}_{i}, P_{i}\right) \longrightarrow(Z, \mathcal{C}, Q)$ be a measurable surjection such that $Q=P_{i} f_{i}^{-1}$ for $i=1,2, \ldots$ Let P_{i} be perfect for $i \geq 2$. Then there is a measure P on $(X, \mathcal{A})=\left(\prod_{i=1}^{\infty} X_{i}, \otimes_{i=1}^{\infty} \mathcal{A}_{i}\right)$ with marginals P_{i} for all i such that $P(S)=1$ where $S=\left\{\left(x_{1}, x_{2}, \ldots\right): f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)=\ldots\right\}$.

Proof. Let $g: Z \longrightarrow Z^{\infty}$ be defined by $g(z)=(z, z, \ldots)$. Then (Z, \mathcal{C}) is isomorphic to $\left(\triangle, \mathcal{C}^{\infty} \cap \triangle\right)$ under g. Let μ on $\mathcal{C}^{\infty} \cap \triangle$ be defined by $\mu=Q g^{-1}$. Now let $F: \prod_{i=1}^{\infty} X_{i} \longrightarrow Z^{\infty}$ be defined by $F\left(x_{1}, x_{2}, \ldots\right)=$ $\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots\right)$. Let $\mathcal{D}_{i}=f_{i}^{-1}(\mathcal{C})$ for $i \geq 1$. Since $\otimes_{i=1}^{\infty} \mathcal{D}_{i}$ is σ-isomorphic under F to \mathcal{C}^{∞}, define $\lambda(\bar{D})=\mu(F(\bar{D}) \cap \triangle), \bar{D} \in \otimes_{i=1}^{\infty} \mathcal{D}_{i}$. Note that $F^{-1}(\triangle)=S$ and so $\lambda(S)=\mu(\triangle)=1 . \lambda$ has marginals $P_{i} \mid \mathcal{D}_{i}$ for $i \geq 1$. Starting from λ on $\otimes_{i=1}^{\infty} \mathcal{D}_{i}, P_{1} \circ\left(p r o j_{1}^{-1}\right)$ on $\mathcal{A}_{1} \times \prod_{i=2}^{\infty} X_{i}$ and applying the argument in the proof of Theorem 9 we extend λ to $\mathcal{A}_{1} \otimes\left(\otimes_{i=2}^{\infty} \mathcal{D}_{i}\right)$ with marginals P_{1} and $P_{i} \mid \mathcal{D}_{i}$ for $i \geq 2$. Repeating the argument with λ on $\mathcal{A}_{1} \otimes\left(\otimes_{i=2}^{\infty} \mathcal{D}_{i}\right)$ and $P_{2} \circ\left(p r o j_{2}^{-1}\right)$ on $\mathcal{A}_{2} \times\left(\prod_{i \neq 2} X_{i}\right)$ and so on we can extend λ as a charge to $\mathcal{R} \subset \otimes_{i=1}^{\infty} \mathcal{A}_{i}$ with marginals P_{i} for all $i \geq 1$. By Theorem $6, \lambda$ is countably additive and hence extends as a measure P on $\otimes_{i=1}^{\infty} \mathcal{A}_{i}$ with marginals P_{i} for all i. By construction, $P(S)=\lambda(S)=1$.

Theorem 10 subsumes Theorems 5 and 6 of Shortt (1983). The following example shows that the conclusion of Theorem 10 may not hold if two of the measures are not perfect.

Example 3. Let $X_{1} \subset[0,1], X_{2}=[0,1]-X_{1}$ be such that (i) $\lambda^{*}\left(X_{1}\right)=$ $\lambda^{*}\left(X_{2}\right)=1$ and (ii) there exist Borel sets $N_{i} \subset X_{i}, i=1,2$ with each having cardinality c. Let $\mathcal{A}_{i}=\mathcal{L} \cap X_{i}, P_{i}=\lambda_{X_{i}}^{*}, i=1,2$ where λ is the Lebesgue measure and \mathcal{L} is the σ-algebra of Lebesgue-measurable sets. Let $h_{1}: N_{1} \rightarrow$
$X_{2} \cup N_{1}$ and $h_{2}: N_{2} \rightarrow X_{1} \cup N_{2}$ be 1-1, onto maps. Let, for $i=1,2$,

$$
f_{i}\left(x_{i}\right)= \begin{cases}x_{i} & \text { on } X_{i}-N_{i} \\ h_{i}\left(x_{i}\right) & \text { on } N_{i}\end{cases}
$$

Then, $f_{i}: X_{i} \rightarrow[0,1]$ is $1-1$, onto and if $B \in \mathcal{B}_{[0,1]}$ then

$$
f_{i}^{-1}(B)=\left(B \cap\left(X_{i}-N_{i}\right)\right) \cup h_{i}^{-1}\left(B \cap\left(N_{i} \cup\left([0,1]-X_{i}\right)\right)\right)
$$

is in $\mathcal{L} \cap X_{i}$ with $P_{i} f_{i}^{-1}(B)=\lambda(B)$. Taking $Z=[0,1], \mathcal{C}=\mathcal{B}_{[0,1]}, Q=\lambda$ we get the setup in Theorem 10 with both marginals nonperfect. The set $S=\left\{\left(x_{1}, x_{2}\right): f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)\right\} \subset\left(N_{1} \times X_{2}\right) \cup\left(X_{1} \times N_{2}\right) \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}$ and so $P(S)=0$ for every probability P on $\left(X_{1} \times X_{2}, \mathcal{A}_{1} \otimes \mathcal{A}_{2}\right)$ with marginals P_{1} and P_{2}.

In the above construction, we can also take $\mathcal{A}_{i}=\sigma\left(\mathcal{B} \cap X_{i}, h_{I}^{-1}\left(\mathcal{B} \cap\left(N_{i} \cup\right.\right.\right.$ $\left.\left.\left([0,1]-X_{i}\right)\right)\right)$) to get \mathcal{A}_{i} which are countably generated.

References

Banach, S. (1948). On measures in independent fields. Studia Math. 10, 159-177.

Guy, D. L. (1961). Common extension of finitely additive probability measures. Portugalia Math. 20, 1-5.
Hackenbroch, W. (1992). Conditionally multiplicative simultaneous extension of measures. In: Kölzow, D., Maharam-Stone, D., Graf, S. (eds) Measure Theory Proceedings, Oberwolfach 1990, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Series II No. 28, 49-58.

Hansel, G. and Troallic, J. P. (1978). Mesures marginales et théorème de Ford-Fulkerson. Z. Wahrsch. verw. Gebiete 43, 245-251.

Hansel, G. and Troallic, J. P. (1986). Sur le problème des marges. Probab. Theory Related Fields 71, 357-366.

Hoffmann-Jørgensen, J. (1987). The general marginal problem. In: Kurepa, S., Kraljenic, H., Butković, D. (eds) Functional Analysis II (Lect. Notes in Math. No. 1242, pp. 77-367), Berlin Heidelberg New York: Springer.
Kallianpur, G. and Ramachandran, D. (1983). On the splicing of measures. Ann. Probab. 11, 819-822.
Kellerer, H. G. (1964a). Masstheoretische Marginalprobleme. Math. Ann. 153, 168-198.

Kellerer, H. G. (1964b). Verteilungsfunktionen mit gegebenen Marginalverteilungen. Z. Wahrsch. verw. Gebiete 3, 247-270.

Kellerer, H. G. (1984). Duality theorems for marginal problems. Z. Wahrsch. verw. Gebiete 67, 399-432.

Lembcke, J. (1982). On simultaneous preimage measures on Hausdorff spaces. In: Kölzow, D., Maharam-Stone, D. (eds.) Measure Theory Proceedings, Oberwolfach 1981. (Lect. Notes Math. 945, 110-115). Berlin Heidelberg New York: Springer.
Maharam, D. (1971). Consistent extensions of linear functionals and of probability measures. Proc. Sixth Berkeley Symp. Math. Statist. and Probab. 2, 127-147.

Marczewski, E. (1948). Ensembles indépendants et leurs applications á la théorie de la mesure. Fund. Math. 35, 13-28.

Marczewski, E. (1951). Measures in almost independent fields. Fund. Math. 38, 217-229.

Marczewski, E. and Ryll-Nardzewski, C. (1953). Remarks on compactness and non-direct products of measures. Fund. Math. 40, 165-170.
Neveu, J. (1965). Mathematical Foundations of the Calculus of Probability. London: Holden-Day.
Pachl, J. (1979). Two classes of measures. Colloq. Math. 42, 331-340.
Plebanek, G. (1989). Measures on two dimensional products. Mathematika 36, 253-258.
Ramachandran, D. (1979). Perfect measures I and II. ISI-Lecture Notes Series. 5 and 7 New Delhi: Macmillan.
Ramachandran, D. and Rüschendorf, L. (1995). A general duality theorem for marginal problems. Probab. Theory Related Fields 101, 311-319.
Schmidt, K. D. and Waldschaks, G. (1991). Common extensions of positive vector measures. Portugalia Math. 20, 155-164.
Shortt, R. M. (1983). Strassen's marginal problem in two or more dimensions. Z. Wahrsch. verw. Gebiete 64, 313-325.

Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist. 36, 423-439.

Stroock, D. (1976). Some comments on independent σ-algebras. Colloq. Math. 35, 7-13.

Department of Mathematics and Statistics California State University at Sacramento 6000 J Street
Sacramento, CA 95819-6051
chandra@csus.edu

[^0]: * Partially supported by an Internal Awards Grant from the California State University, Sacramento.

