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COPULAS AND MARKOV OPERATORS
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For any pair of random variables X and Y with common domain, there is
a function C : [0,1]2 -> [0,1] such that

Fχγ(x,y) = C(Fχ(z),Fγ(y)).

The function C is called a copula; it is a continuous, monotonic function satis-
fying boundary conditions C(x,0) = C(0,y) = 0, C(x,l) = x and C(l,y) — y.
Let C,i = dC/dx and C | 2 = dC/dy. Then

a.s.

E(Iγ<y IX) = CA (Fχ(X), FY(y)) a.s.

Some consequences of these relations are explored. In particular, they allow
the conditional independence condition of a Markov process to be expressed in
terms of the copulas of pairs of random variables in the process. The resulting
conditional independence condition gives a natural product operation on the set
of copulas:

Jo
A*B(x,y)= / Λ>2 (z, s)B}1(s, y)ds.

Jo
The set of copulas under this product is isomorphic to the set of Markov operators
T on Z°°[0,1] under composition, via the correspondence

[Tcf](x)=±jC,2(x,t)f(t)dt

Cr(x,»)= Γ[TIlΰiy]](s)ds.
Jo

This correspondence is discussed.

1. In t roduct ion. A copula is a function C : [0,1]2 —> [0,1] satisfying

Boundary conditions: For all x, y £ [0,1],

AMS 1991 Subject Classification: 47B65, 60J05, 60J25

Key words and phrases: Copulas, Markov operators, Chapman-Kolmogorov equations.



OLSEN, DARSOW, and NGUYEN 245

Monotonicity condition: Whenever x\ < x2 and yι < y2

- C(x2,2/1) - C(xuy2) + C{x2,2/2) > 0.

Copulas have several nice properties. Among the properties we shall use

here are:

(a) A copula C is a Lipschitz continuous function satisfying

/i) - C(x2,y2)\ < \xχ - x2\ + \yτ - y2\.

(b) If C is a copula, then x —> C(x,y) and y —> C{x,y) are nondecreasing

functions.

(c) First partial derivatives of copulas exist almost everywhere, and x —•

C,2(x,y) and y —> C,\(x,y) are almost certainly nondecreasing.

(d) The set C of copulas is a compact subset of Z°°([0,1]2).

Here and elsewhere we use the notation

C,1(x,y) = dC(x,y)/dx

y) = dC(x,y)/dy.

Note that the Lipschitz property of a copula implies that the sections x —>

C(x,y) and y —» C(x,y) are absolutely continuous functions, so that C can

be recovered from either of its first partial derivatives by integration, using

the boundary condition of the left boundary (if it is Cfi which is integrated)

or the lower boundary (if it is Cj2 which is integrated). While the differentia-

bility properties of copulas are well known, they are often not exploited; the

results reported here exploit the differentiability properties. For a discussion

of properties of copulas, see Darsow et al. (1992).

Copulas are of interest because of the following theorem:

THEOREM 1.1 ( Sklar (1959), Sklar (1973)). For any real valued random

variables X and Y with joint distribution Fxy there is a copula C such that

where Fx and Fy denote the distribution functions of X and Y, respectively.

If X and Y are continuous, the copula C is unique. If not, the values ofC are

uniquely determined at points (Fχ(x),Fγ(y)) where x is in the range of X

and y is in the range ofY, and the values ofC at other points can be assigned

using bilinear interpolation.
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The proof for the general n-dimensional case is outlined in Appendix A of
Sklar (1995), in this volume.

When we speak of the copula of a pair of random variables X and y,
we will mean the copula whose existence is guaranteed by the theorem, using
bilinear interpolation, if one or both of the random variables are not contin-
uous (i.e., have discontinuous cumulative distribution functions). When both
are continuous, the copula is uniquely determined without the need of an in-
terpolation convention. We remark that the bilinear interpolation convention
is used in the proofs of both Theorem 1.2 and Theorem 1.3, below, to handle
cases when random variables are not continuous, see Darsow et al. (1992).

Theorem 1.1 states that copulas are related to joint distribution functions.
The derivatives of copulas are directly related to conditional expectations:

THEOREM 1.2. If X and Y are real valued random variables with distri-
bution functions Fx and Fy and joint distribution function Fχγ> and if C is
the copula of X and Y, then

= C,2(Fx(x),Fγ{Y)) a.s.

= CΛ(Fx(X),Fy(y)) a.s.

Here and elsewhere IQ denotes the characteristic function of a set G.

PROOF. A proof is given in Darsow et al. (1992). A heuristic proof,
which is rigorous when Fx and Fy are continuous and strictly increasing, is
as follows:

Take the limit as Ay —> 0 to obtain the first conclusion of the theorem. |

Now if random variables X, Y and Z are continuous random variables,
and X and Z are conditionally independent given y, then by definition, for
all real numbers x and z,

E{[Iχ<x)[Iz<z] I Y) = E(IX<X I Y)E(IZ<Z I Y) a.s.

Integrate this expression over the common domain of X, Y and Z. The integral
of the left hand side can be replaced by the joint distribution function of X
and Z\ substitute the copulas of X and Z, X and Y and Y and Z, using
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Theorems 1.1 and 1.2, to obtain

Cχz(Fχ(x)9Fz(z))

= / Cχγ,2(Fχ(x),Fγ(Y(ω)))Cγzί(Fγ(Y(ω)),Fz(z))dP(ω)
JΩ

= / Cχγ%2(Fχ(x)9η)Cγz,i(η,Fz(z))dη.
Jo

The condition that X and Z are conditionally independent given Y implies,
therefore, the following relation among the copulas:

Cχz(x, z)= Cχγt2(x, y)CγZ,i(y, z) dy.
Jo

This leads to a way to state the conditional independence condition of a real
valued Markov process in terms of the copulas of random variables of the
process. An explicit expression for the finite dimensional distributions of a
Markov process in terms of the copulas pairs of random variables, is given in
Darsow et al. (1992). The content of the Chapman-Kolmogorov equations can
be stated in terms of the copulas of the process in a particularly simple way:

THEOREM 1.3. Let t —• Xt, t G T, denote a stochastic process. Let
Cat denote the copula of Xs and Xt, s < t. The following statements are
equivalent:

(1) The transition probabilities P(s, x, ί, E) = P{Xt G E\XS = x) of the
process satisfy the Chapman-Kolmogorov equations

, x,t,E)= / P(«, £, ί, E)P(s, x, u, dξ)
J—oo

for all Borel sets E9 for all s < t in T, for all u G (s,t)Γ)T and for almost all

x G R.

(2) For all s, uyt eT satisfying s < u <t, and for all (x, y) G [0,1] 2

C8t(x, y)= Csu,2{x, t)Cut,i(t, y) dt.
Jo

A proof is given in Darsow et al. (1992). We remark that the theorem is not
restricted to continuous random variables and that the bilinear interpolation
convention mentioned above is used in the proof of the theorem in case not
all of the random variables Xt are continuous. Theorem 1.3 says roughly that
copulas capture the dependence structure of real valued Markov processes in
a manner equivalent to that of the Chapman-Kolmogorov equations. Note,
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however, that they do so without any information about the marginal distri-

butions of the process.

Theorem 1.3 motivates the following definition of a product on the set C

of copulas: For copulas A and B define

A*B(x,y)= ί A,2(x,t)BΛ(t,y)dt. (1.1)
Jo

The product defined in (1.1) has the following properties:

(a) A * B is a copula.

(b) * is an associative binary operation.

(c) * is continuous in each place with respect to the uniform topology.

These properties are established in Darsow et al. (1992). Using the * product

notation, we can restate Theorem 1.3 in compact form:

THEOREM 1.3. (Restated) A real stochastic process Xt satisfies the Chap-

man-Kolmogorov equations if and only if, for s < u <t,

Cst = Csu * Cut (1.2)

where Cst denotes the copula of Xs and Xt.

To emphasize the content of Theorem 1.3, we indicate how a discrete

time Markov process can be constructed by specifying marginal distributions

and copulas:

Let T = N = natural numbers. The construction is as follows:

(a) Assign copulas C n ; n +i in any manner.

(b) For k > 1 set

Cn n+k = Cn n+1 * Cn_|_i;n-|-2 * . . . * Cn+k-l;n+k

(c) Assign (continuous) marginal distributions Fn in any manner.

(d) Require that the n-dimensional distributions for n > 2 satisfy the condi-

tional independence condition for a Markov process.

(e) Apply Kolmogorov's fundamental theorem to obtain a stochastic process

Xt with the specified finite dimensional distributions.

Observe that the copulas assigned in (a) and (b) are the copulas of a

Markov process, regardless of what distributions are assigned in step (c) of

the construction.
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The integral operators suggested by the Chapman-Kolmogorov equations

are Markov operators; the content of the Chapman-Kolmogorov equations can

be stated as a condition involving the composition of Markov operators. This

implies that there is a natural relation between Markov operators and cop-

ulas. The goal of this paper is to make that relationship explicit and then

to investigate the relationship. In Section 2 of the paper, we define Markov

operators and establish an isomorphism between copulas under the * product

and Markov operators on Z°°[0,1] under composition. In Section 3, we inves-

tigate the relationship. In particular, we show how to obtain proofs of some

known properties of Markov operators via the isomorphism theorem and some

known properties of copulas, and we translate some statements about copulas

to Markov operators using the isomorphism. Section 4 contains discussion and

conclusions.

2. An Isomorphism between Markov Operators and Copulas.
Let {Ω σ μ} be a measure space. We assume Ω is a compact set in Rn. A

linear operator T : £°°(Ω) —> Z°°(Ω) is a Markov operator if

(a) T is positive, that is / > 0 implies Tf > 0;

(b) The constant function / = 1 is a fixed point of T; and

f o r a U / e i ° ° . (2.1)

It follows easily from the defining properties that

| | Γ | | = sup ΊlΓ/Hoo = 1.
lll

It is also not difficult to show that T extends to a bounded linear operator on

LP(Q) for p e [1, oo) and that the ^ ( Ω ) operator norm of T is 1.

We prove the isomorphism theorem by way of some lemmas; we will state

the theorem after proving the lemmas.

LEMMA 2.1. For a copula C, define Tc via

t. (2.2)

Tien Tc is a Markov operator on £°°([0,1]).

PROOF. We show first that if / 6 £°°([0,1]) then

ί
Jo
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is Lipschitz continuous with Lipschitz constant ||/||o,<x> For if x\ < X2 then

\g(χ2) - g(χi)\ = I j{C%2{χ2,t) - C,2(χut))f(t)dt\

dt= ||/||θ,oo /(C,2(*2, t) - C,2(XU t))

= \\f\hoo(C(x2,l)-C(xul))

= ||/||θ,oo(&2 ~

The statement in the third line above makes use of the fact that x —> C,2(x,t)
is almost surely increasing, the statement in the fourth line makes use of the
fact that C is absolutely continuous in each place, and the last statement
makes use of the boundary conditions satisfied by C.

We show next that the derivative in (2.2) exists. Since x —> C,2(x,t) is
a.s. increasing, the functions

/
Jo

f
Jo

C,2(x,t)(\f(t)\-f(t))dt and/
o

f
o

are both a.s. increasing and thus have derivatives pointwise a.e. Since

I
Jo

Ct2(x,t)f(t)dt

is a linear combination of the foregoing functions, it follows that the derivative
in (2.2) exists pointwise a.e.

The result of the foregoing paragraph shows that the derivative is bounded
above by ||/||o,co, so Tcf € i°°([0,l]). Positivity of Tc follows from similar
considerations.

That jTfdμ = J f dμ and that Tel = 1 are direct calculations. We
indicate the former calculation:

/ Tcfdx= [4-1 Ca{x,t)f(t)dtdx
o Jo dx Jo

= [\c,2(l,t)-C,2(O9t))f(t)dt
Jo

= Γ f(t)dt.
Jo
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The statement on the second line uses the fact, proved above, that

/ Ca{x,t)f{t)dt
o

is Lipschitz continuous, hence absolutely continuous, and the statement in the

third line uses the fact that since C(l,t) = t and C(0,t) = 0, necessarily

C,2(l,<) = 1 a n d C,2(0,ί) = 0. I

Conversely, if T is a Markov operator on £°°([0,l]), we may define a

function CT via

CT(x,y)= Γ[TI[Oty]](s)ds. (2.3)
Jo

LEMMA 2.2. CT as so defined is a copula,, and if we write Tc = Φ(Cj for

the function which maps C into Tc via (2.2), and CT = Φ(T) for the map

defined by (2.3), then Φ o Φ and Φ o Φ are identity operators.

PROOF. TO establish that CT is a copula, observe first that if x\ < # 2

and yι < y2 then

2[TI{yuy2])(s)ds>0

using the positivity of Γ. Hence, CT is monotonic. As to boundary conditions,

observe that

Cτ(x, 1)= I [TI[0Λ](s) ds= I ds = x
Jo Jo

CT(l,y)= I [TI[Oty]](s)ds= ί I[0<y](s)ds = y.
Jo Jo

The first statement uses the fact that the constant function / = 1 is a fixed

point of T and the second uses the fact that J Tfdμ — J f dμ.

We turn to the last assertion of the Lemma. Observe that

= Γ[TcI[0,y]](s)ds
Jo

= Γ T ί C,2(a,t)I[Oty](t)dtds
Jo α s Jo

= / Ct2(x,t)I[0ty](t)dt
Jo

= ΓC,2(χ,t)dt
Jo

= C(x,y).
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Observe next that, applying Φ o Φ(T) to the characteristic function /[o,y], we

obtain

It follows that Φ o Φ(Γ) agrees with T on the set of functions which are linear
combinations of characteristic functions of intervals (2/1,2/2] C [0,1]; since this
set is dense in X1 and both Φ o Φ(Γ) and T are Markov operators, hence
bounded, on X1, they necessarily agree everywhere on X1. Since Lp C X1 for
p € (1,00], we have the desired result. I

LEMMA 2.3. Let B and C be copulas. Then TB O TC = TB*c

PROOF. Let / e C°°. Then

[TB O Tcf](x) = ± J* B%2{x, t)[Tcf](t) dt

= A jf1 Bα{x,t)jt J* Cα{t,s)f{s)dsdt

= Tx Jo ^(^0^(^/(1) " [ C(t, s)f(s) ds) dt

= -f (xf(l) - f1 ί1 B,2(x, ί)C,i(ί, s)f'(s) dt ds) {2Λ)

<*χ Jo Jo

= £(*/(!) - x/(l) + J\β * C),2(x,s)f(s)ds)

= [TB*cf](x).

Since (2.4) holds for a dense set in X1, it holds for all / 6 X1 and thus, since

X°° c X 1 , f o r a U / G X ° ° . I

It is obvious that the map C —> Tc also preserves convex combinations.

It is also true that transposes are mapped into adjoints: Cτ —• (Tc)^.

LEMMA 2.4. Extend Tc to X^([0,1]), p G (1,00). Then Tcτ = (Γc) f .
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PROOF. For all / G Lp and for all test functions g G C£°([0,1]) (the set

of infinitely differentiate functions vanishing at 0 and 1), we have

f1g(x)[Tcf](x)dx= f g(χ)^- f C,2(x,t)f(t)dtdx
Jo Jo dx Jo

= - I 9\x) ί C,2(x,t)f(t)dtdx
Jo Jo

= - f ϊ(t){γ. f g\χ)C{χ,t)dx)
Jo a ι Jo

dt

= ί\τcτg\{t)f{t)dt.
Jo

Since the test functions are dense in the dual of Xp, we have the desired result.

The foregoing lemmas yield the following result:

THEOREM 2.1. (Isomorphism Theorem). The correspondence T -» Oχ of

(2.3) is an isomorphism of the set of Martov operators on L°°([0,l]), under

composition, and the set C of copulas, under the * product. That is, if we set

Φ(C) = Tc, then Φ is one-to-one and onto and

(b) Φ(λCi + (1 - λ)C 2) = λΦ(CΊ) + (1 - λ)Φ(C2), and

(c) Φ(C T ) = Φ(C)t.

We remark that Ryff (1963), utilizing a prior characterization of L\ oper-

ators established by Kantorovich and Vulich (1937), showed that every Markov

operator Γ on £°°([0,1]) has the representation

[Tf}{x)=±j\(x,y)f{y)dy

where the kernel K is measurable and satisfies the following six conditions:

(a) ϋr(O,iO = O , O < 0 < l .

(b) Ess sup V [K( -, y)] — C < oo, where by V[K(-,y)] is meant the total

variation of K for fixed y.

(c) x -» Jo K(x, y)f(y) dy is absolutely continuous for every / G L1.

(d) x = Jo1 K(x, y) dy for aU x G [0,1].

(e) x\ < X2 implies K{x\, ) < K{x2, ).



254 COPULAS AND MARKOV OPERATORS

(f)

It is easy to verify that if C is a copula then C^ possesses these six properties,
and conversely that if K possesses the six properties, then C defined by

C(x,y)= Γ K(x,t)dt (2.5)
Jo

is a copula (the existence of the integral in (2.5) follows from property (d),
monotonicity follows from (e), and the boundary conditions follow from (a),
(d) and (f)). Thus, RyfF's characterization plus a few calculations give most
of the results above. We note that Ryff did not obtain (but easily could
have obtained) the law of composition of Markov operators implied by his
characterization; this law does not have a nice form, unless it is formulated in
terms of copulas. We note also that the interpretation of Ryff's result seems
to demand Theorem 1.2 concerning copulas and conditional expectations, and
hence seems to demand reformulation in terms of copulas.

3. Applications of the Isomorphism Theorem. We address first
some topological issues.

THEOREM 3.1. Let Cn denote a sequence of copulas, and write Tn for
Φ(Cn)? where Φ is the isomorphism of the preceding theorem. Tn —• T in
the weak operator topology of Lp, for p G [l,oo), if and only if Cn —• CT
uniformly.

We prove this result by way of two lemmas.

LEMMA 3.1. Let Cn and C be copulas, and let p G (1, oo]. The following
statements are equivalent:

(a) \\C - Cn||o,oo -> 0.

/ / f(x,y)Cn,2(x,y)dxdy^ / / f(x,y)Ci2(x,y)dxdy.
Jo Jo Jo Jo

(c)ForallfeLP([0,l]2),

/ / f(x,v)CnAx>y)dxdy-> / / f{x,
Jo Jo Jo Jo

PROOF. We will show that statement (a) implies statement (b) and that
statement (b) implies statement (a). The arguments that statement (a) implies
statement (c) and that statement (c) implies statement (a) are similar.
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Suppose statement (a) holds. We will show that every subsequence of

Cn,2 possesses a subsubsequence converging weakly to C^- Let CUk^ be a

subsequence; relabel: Cfcj2 Since the unit ball in Lq, q G (l,oo), is weakly

sequentially compact, there is a subsubsequence CkJy2 (relabel: Cj^) and a

function g G Lq such that

,1 r l ,1 , 1

/ / f(x,y)Cj,2\x,y)dxdy-^ / / f(x,y)g(x,y)dxdy (3.1)
Jo Jo Jo Jo

for all / G Xp, where 1/p + l/q = 1; in particular, (3.1) holds for all test

functions / G CQ°. But for any such test function, we have

f1 f1 - Γ Γ
Jo Jo ' Jo Jo

r1 f1

I I f fry* iΛf^ί'r

Jo Jo

Comparing (3.1) and (3.2), we conclude that necessarily g = C}2 This implies

the desired result.

Conversely, suppose statement (b) holds. We will show that every subse-

quence of Cn possesses a subsubsequence converging uniformly to C. Let Cnk

be a subsequence; relabel: Ck Since the set of all copulas C is compact in the

uniform topology, there is a subsubsequence Ck3 (relabel: Cj) and a copula

B G C such that \\B — Cj||o,oo ~^ 0. But then for all test functions /, we have

ri ri n n

/ / f(x,y)Cji2(x,y)dxdy= - / f,2(x,y)Cj(x,y)dxdy
Jo Jo Jo Jo

-> - / / f,2(x,y)B(x,y)dxdy.
Jo Jo

Compare this with statement (b) and conclude that 2?)2 = C,2 a.s., so that

necessarily B = C'. I

LEMMA 3.2. Let Tn = TCn and T = Tc. Tn -» T in the weak operator

topology of i p , for p £ (1, oo), if and only if for all / G Xp,

/ / f(x,y)Cnj2(x,y)dxdy^ ί I f(x,y)C}2(x,y)dx dy. (3.3)
Jo Jo Jo Jo
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PROOF. Let φ, φ G C°°([0,1]). Then

Jo Jo
,1 (3-4)

/ Φ(x)[(T-Tn)φ](x)dx
Jo

where Φ is an antiderivative of φ. If Tn —> T in the weak operator topology,

then the right hand side of (3.4) goes to zero for all φ and ψ, so that (3.3)

holds whenever f(x,y) = φ(x)φ(y). But linear combinations of functions of

this form are dense in Z p , so (3.3) holds for all / G Lp. On the other hand, if

(3.3) holds, then the left hand side of (3.4) goes to zero for all φ and φ. Since

functions Φ and φ are dense in Lp and Z g , respectively, where 1/p + 1/q — 1,

and T — Tn is a bounded operator, it follows that Tn —> T in the weak operator

topology of Lp. I

It is known that Markov operators form a compact set under the weak

operator topology, Brown (1965). This is a corollary of the foregoing theorem

and the fact that the copulas are a compact set in the uniform topology.

Define three norms on span C, the linear span of the set of copulas:

(a) Set B = co {C U (—C)}, where co denotes convex hull, and define a

Minkowski functional via

= inf{ί > 0 I A e tB}.

(b) Extend the isomorphism Φ to span C and define

(c) Let A G span C, let μA = μ\ - μ~A be the Jordan decomposition of the

finite signed measure induced by A. Set A+(x,y) = /xJ([0,&]x [0,j/]),

and A'(x,y) = μ^([0,z] X [0,y]). Define

where || ||oo denotes the Z°°([0,1]) norm.

THEOREM 3.2. \\A\\M = \\A\\j for all A G span C.

A proof of this result can be found in Darsow and Olsen (1995). We

conjecture that || \\M and || | | Q P are equivalent norms on span C. It is easy

to see that || \\M dominates || | | Q P . It would be of interest to establish
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equivalence, since the linear span of the copulas is a (real) Banach algebra

under || | | M , see Darsow and Olsen (1995).

We turn now to some other results for Markov operators which are ob-

tained easily via the isomorphism theorem by translating known results for

copulas to the Markov operator setting.

We will say / : [0,1] -* [0,1] is measure preserving if for any Borel set 22,

f~1(E) is a Lebesgue measurable set, and X(f~1(E)) = λ(E) where λ denotes

Lebesgue measure. Set

T — {/ : [0,1] —> [0,1] I / i s measure preserving },

and for /, g £ T, define a function Cj;g : [0,1]2 —> [0,1] via

Cf.,g(x, y) = λ(f-\[0, x}) n ^ ( [ 0 , y})). (3.5)

THEOREM 3.3. (Representation Theorem). The function Cj g of (3.5) is

a copula. Furthermore, for any copula C there exist functions ϊ, g £ T such

that

For a proof, see Darsow and Olsen (1993) or Vitale (1995).

Set M(x,y) = min{a;,y}, then M is a copula, and is a unit for the

* product. The corresponding Markov operator TM is the identity map on

Z°°([0,1]). We say a copula A is left (right) invertible if there is a copula B

such that B*A = M(A*B = M), and we say an operator Γ is left (right)

invertible if there is an operator S such that So T (T o S) is the identity. We

shall use the isomorphism theorem to translate known facts about left and

right invertible copulas to the Markov operator setting.

First, it is known that if a copula is left (right) invertible, its left (right)

inverse is its transpose, Darsow et al. (1992). We then have the following

result, via the isomorphism theorem:

THEOREM 3.4. If a Markov operator on £°°([0,1]) is invertible, its exten-

sion to X2([0,1]) is necessarily unitary.

Second, there exist copulas which are invertible on one side but not both,

Darsow et al. (1992), so there exist Markov operators on £°°([0,1]) which are

invertible on one side but not both.

Third, using the representation theorem stated above and related re-

sults, we can prove a curious representation theorem for Markov operators on
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£°°([0,1]). Let e denote the identity map on [0,1]. It is easy to see that for
any /, g βf

Cfu = Cfie*Ceig. (3.6)

It is also easy to see that for any / £ T, C/;/ = M, Darsow and Olsen (1993).
It follows that for any / G / , C/;e is right invertible and Ce.j is left invertible.
Thus, using the representation theorem and (3.6), every copula is the product
of a right invertible copula and a left invertible copula. It then follows via the
isomorphism theorem that:

THEOREM 3.5. Every Markov operator T on Z°°([0,l]) can be factored
as a right invertible Markov operator composed with a left invertible Markov
operator.

4. Discussion and Conclusions. We have used the fact that the con-
ditions Cst — Csu*Cut are equivalent to the Chapman-Kolmogorov equations,
together with the fact that the composition of Markov operators follows the
Chapman-Kolmogorov equations, to formulate and prove an isomorphism be-
tween the set C of copulas under the * product and the set of Markov operators
on £°°([0,1]) under composition. We have also shown how the resulting char-
acterization of Markov operators fits with work done by J. V. Ryff some thirty
years ago, and we have explored some of the consequences of the isomorphism.

The relation of copulas under the * product and Markov operators under
composition is like the relation of matrices under matrix multiplication and
linear operators on finite dimensional vector spaces under composition.

The work described here exploits well known but, to our knowledge, sel-
dom exploited, differentiability properties of copulas. It has been our experi-
ence that confusing issues in stochastic processes can often be reduced to clear
issues in real analysis by reformulation in terms of copulas and further that,
because of the nice properties of copulas and their first partial derivatives,
the resulting issues can often be addressed and answered by simple classical
arguments.
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