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NONPARAMETRIC MEASURES

OF MULTIVARIATE ASSOCIATION

B Y ROGER B. NELSEN

Lewis and Clark College

We study measures of multivariate association which are generalizations
of the measures of bivariate association known as Spearman's rho and Kendall's
tau. Since the population versions of Spearman's rho and Kendall's tau can be
interpreted as measures of average positive (and negative) quadrant dependence
and average total positivity of order two, respectively (Nelsen, 1992), we extend
these ideas to the multivariate setting and derive measures of multivariate as-
sociation from averages of orthant dependence and multivariate total positivity
of order two. We examine several properties of these measures, and present
examples in three and four dimensions.

1. Introduction. The purpose of this paper is to present three mea-
sures of multivariate association which are derived from multivariate depen-
dence concepts. We begin in Section 2 by reviewing the main results for the
bivariate case: Spearman's rho is a measure of average quadrant dependence;
while Kendall's tau is a measure of average total positivity of order two. Re-
lationships between measures of multivariate association and concordance are
discussed in Section 3. In Section 4 we construct two measures of multivariate
association from two generalizations of quadrant dependence - upper orthant
dependence and lower orthant dependence, and examine properties of these
measures in Section 5. In Section 6 we construct a measure from multivariate
total positivity of order two, and in Section 7 we examine properties of this
measure.

2. The Bivariate Case. Before proceeding, we adopt some notation
and review some definitions. Let X and Y denote continuous random variables
(r.v.'s) with joint distribution function (d.f.) H and marginal d.f.'s F and G.
Let C denote the copula of X and Y, the function C : I2 —> I = [0,1] given by
H(a, y) = C(F(x), G(y)). We will also denote the joint and marginal densities
of X and Y by Λ, /, and #, respectively.
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The r.v.'s X and Y are said to be positively quadrant dependent, written

PQD, (Lehmann, 1966) iff the probability that they are simultaneously large

is at least as great as it would be were X and Y independent, i.e., iff

P(X >x,Y >y)> P(X > x)P(Y > y) for aU x and y. (2.1)

In terms of d.f.'s, X and Y are PQD iff 1 - F(x) - G(y) + H(x,y) > [1 -

F(x)][l - G(y)], or equivalently, iff H(x, y) > F(x)G(y) (i.e., iff P(X <x,Y <

y) > P(X < x)P{Y < y)). So, in a sense, the expression H(x,y) - F(x)G(y)

measures "local" quadrant dependence at each point (x,y) in R2.

The population version of Spearman's rho is given by

Ps = 12 / [H(x,y)~ F(x)G(y)}dF(x)dG(y),
JR2

and hence j^ps represents a measure of average quadrant dependence, where

the average is with respect to the marginal distributions of X and Y (Nelsen,

1992). Invoking the probability transforms u = F(x) and υ = G(y) and the

copula C, the above expressions (as well as ones to follow) simplify. The

measure of local quadrant dependence becomes C(w, v) — uv (for u and υ in

I 2 ) , and ps — 12 fT2[C(u, υ) - uυ]dudv.

In a similar fashion, the population analog of Kendall's tau is related to

the dependence property known as total positivity of order two. X and Y

are totally positive of order two (written TP2) iff their joint density h satisfies

h(x\,yι)h(x2,y2) > h(xuy2)h(x2,yi) for all xu x2, 3/1, y2 in R such that

xι < x2 and y\ < y2. Thus h(xι,yι)h(x2,y2) - h(xι,y2)h(x2,yι) measures

"local" TP2 for X and Y. Let / denote its average for -00 < X\ < x2 < 00

and -00 < y\ < y2 < 00, i.e., let

yoo ΛOO rx2 ΓV2

t= / / / [h{xλ,yι)h{x2,y2)-h{xι,y2)h{x2,y1)]dy1dxιdy2dx2.
J—00 J—oo J—00 J—oo

It can be shown that r = 2t where r is the population version of Kendall's

tau,

τ = 4 ί 2 H(x, y)dH(z, y) - 1 = 4 / C(u9 v)dC(u, v)-l. (2.2)
J R JI

See Nelsen (1992) for details.

3. Concordance. In the bivariate setting, two pairs of r.v.'s (-XΊ, Y\)

and (X2,Y2) are concordant if X\ < X2 and Y\ < Y2 or if X\ > X2 and

Yi > Y2; and discordant if X1 < X2 and Y\ > Y2 or if X\ > X2 and Yί < Y2.

As is well known (Kruskal, 1958), the population version of Kendall's r is the
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probability that two independent observations of the r.v.'s X and Y (with d.f.
H) are concordant, scaled to be 0 when X and Y are independent and 1 when
the d.f. of X and Y is the Frechet upper bound. This can be seen by noting
that

P(X1 < X2jY1 < Y2 or X! > X29Y1 > Y2) = 2P(Xλ < X2,Y1 < Y2)

X,Y< y)dH(x,y) = 2 J H(x,y)dH(x,y)

and observing that this integral appears in (2.2).

For notation in the multivariate case, let X\,X2, ,Xn be continuous
r.v.'s with marginal d.f.'s F\,F2,- Έn respectively, joint d.f. if, and copula
C: In ^1 given by % x 2 r . , x n ) = C ( % ) , % ) , - , F n ( x n ) ) , Also
let X = (Xι,X2, ,Xn)> χ = (#15#2? 5^n)5 and let X > a; denote the
component-wise inequality X{ > X{, i = 1,2, « ,n. In a recent paper Joe
(1990) studied a family of measures of multivariate concordance given by

n

r* = J ] w*P(Z> G JV-*) (3.1)
fc=n'

where D — X—Y, Bk,n-k is the set of a; in # n with A; positive and n—k negative
or k negative and n — k positive components; nf — f 1 ^ ] , and the coefficients
Wk satisfy some technical restrictions. At one extreme, Wk = 1 /n~ / and

n(n-l)

r* is the average of the Q) pairwise Kendall's r's for the components of X.
At the other extreme, wn — 1 and ΐi;& = 2nΓ1

1_1 for k < n, in which case
r* = 2n-1i_1(2n~1P(X < Y or X > Y) - 1). In Section 6 we wiU see that
this measure of concordance is also a measure of average total positivity of
order two.

We further note that /?+ and />", which will appear in Section 4, are
also discussed in Joe (1990), where they appear as the scaled expected values
E(F1(x1)F2{x2) -Fn{xn)) and E(F1(x1)F2{x2) Fn(xn)), respectively.

4. Two Measures of Average Orthant Dependence. There are
two standard ways to generalize positive quadrant dependence to the multi-
variate situation (Shaked, 1982). The first is a generalization of (2.1): X is

n

positively upper orthant dependent (PUOD) iff P(X > x) > Y[P(Xi > Xi)

and negatively upper orthant dependent (NUOD) when > is replaced by <.
The second is similar: X is positively lower orthant dependent (PLOD) iff

n *

P(X < x)>Y[ P{X% < Xi) and negatively lower orthant dependent (NLOD)
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when > is replaced by <. When n = 2, positive upper orthant dependence
and positive lower orthant dependence are the same, both reducing to pos-
itive quadrant dependence (Lehmann, 1966); but for n > 3 they are dis-
tinct concepts. For example (when n = 3), if X assumes the four values
(1,1,1),(1,0,0),(0,1,0) and (0,0,1) each with probability | , then it is easy
to verify that X is PUOD but not PLOD. (Note that P(X < 0) = 0 while
P(Xi < 0)P(X2 < 0)P(X3 <0) = | . )

As with quadrant dependence, we can view the expression P(X > x) —
n

jQ P{Xi > Xi) as a measure of "local" upper orthant dependence at each point

x in Rn. If we set U{ - F^Xi) for i = 1,2, ,n and U = (Uu U2, , J7n),
then each U{ is uniform on I and the d.f. of U is the copula C. Furthermore,
X is PUOD (NUOD) iff U is PUOD (NUOD), or equivalent^, iff P(U > u) >

n n

(<) TT(1 — U{). Thus P(U > u) — Y\(l — Ui) also measures local upper orthant
i=l i=l

dependence for X. Let p denote its average:

p = [P(U > u) — TT(1 — Ui)]du\du2 dun.

Now let V be a random vector with n independent components each uniformly
distributed on J. Then

In[P(U > u)]d'Mu2 '"dun = P(U > V)
J ί

= P(V <U)= I JP(V < u)]dC{u) = ί Ulu2 • • • undC{u),
JI J A

and since fjn ΠΓ=i(l ~ Ui)du\du2 -dun = ( | ) n , we have

p-\ uxu2 - undC(u) - ( - J .
J A \ /

If X is a vector of independent r.v.'s with marginal d.f.'s JF\, F 2, ',Fn, then
H(x\,x2, ,a?n) = ^1(^1)^2(^2) 'Fn(xn), and hence the copula for such an
X, which we will denote by Π(ti), is given by Π(^i, w2, , un) = u\u2 -un.
In this casep = 0. When jff(#i,a;2, ,xn) = min(Fi(^i),F2(x2), ,Fn(a;n)),
the Frechet upper bound for distributions with margins Fi, F2, ,Fn, then
the copula is M(u) = min(^i, w2, , un). In this case P(U > u) — min(l -

^1,1 — w2, •••,! — un), so that fj-n[P(U > u)]du\du2 -dun = . Since

C(u) < M(u) for every C, it follows that p < ^ - - ( | ) n . So if we divide p
by this constant, we will have a measure which is 1 when the d.f. of X is the
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Frechet upper bound (and still 0 when the components of X are independent).

Hence we make the following

DEFINITION 4.1. A measure of multivariate association p+ derived from

average upper orthant dependence for the random vector X with copula C{u)

is given by:

or, equivalently,

In a similar fashion, we can define another measure pn from average

lower orthant dependence. Recall that X is PLOD (NLOD) iff P(X < x) >
n n n

(<) Y[ P(Xi < xi), that is, iff P{U < u) > (<) J J u{. So P(U < u) - J J u{

i=i β β β t=i t=i

measures "local" positive and negative lower orthant dependence; let q denote
its average;

q — I [P(U < u) — TT uΐ\du\du2 -dun\

from which it readily follows that

/ /l\n

q = I C(u)du1du2 - dun- I - I .

As with p, q = 0 when the components of X are independent, and q = ĵ-j- —

( | ) n when the d.f. of X is the Frechet upper bound. So we make the following

DEFINITION 4.2. A measure of multivariate association p~ derived from

average lower orthant dependence for the random vector X with copula C(u)

is given by:

or, equivalently,
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5. Properties of />+ and p~ and Examples.

1. A lower bound for p+ and p~ is L n l ^ ' Λ i . Since the Frechet lower

bound for distributions with marginal d.f.'s Fi, JP2, -,Fn is max(Fi(^i) +

F2(x2) + + Fn(xn)-n+l,0),it follows that P(U > u) > max(l - uλ - u2 -

wn?0). Thus Jjn[P(U > u)]duιdu2 - dun > / [max(l - u\ - u2

«/ J.

;, so that />+ > 2nffi+ 1 ) ( ( ^ W ~ V* S i m i"duidun = ; ,

larly, since C(u) > max(uι+u2-\ \-un-n+l,0), then Jjn C(u)duιdu2 -dun

> fjn max(^i + u2-\— + un — n + 1,0)duιdu2 dun = / ^ D P a n d we obtain

the same lower bound for p~. Since the Frechet lower bound is not a d.f. for

n > 3, this bound may well fail to be best possible.

2. For n = 2, both />̂  and p̂ " reduce to Spearman's p 5 discussed in

Section 2.

3. For n = 3, the inclusion-exclusion principle yields

Integrating over I3 gives

8 + 8 - i " t 5 < 2 + 12 + 12 + 12 '

where p^y, />χ^ and pyz denote Spearman's ps for the two r.v.'s displayed as

the subscript. It follows that

20*3 + Ps ) = ^(PXY + PXZ + PYZ)

Similar expressions can be obtained for n > 4.

4. Suppose that the distribution of X is radially symmetric (Nelsen,

1993), that is, there is a point α in Rn such that P(X < α-x) = P(X > α + x)

for all x in Rn. It follows that P(U < u) = P(C7 > 1 - M), SO that p+ = p~.

EXAMPLE 1. Let X, y , and Z be r.v.'s, each uniform on /, such that the

probability mass in 7 3 is uniformly distributed on the faces of the tetrahedron

with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1). For this distribution,

pt — \5 a n d Ps = — jξ- Furthermore, since X, y , and Z are pairwise inde-

pendent, PXY = pxz = PYZ — 0. Thus a common measure of multivariate

dependence, the average of the pairwise Spearman's p s's, is 0 for (X, y, Z). But

the fact that p% is positive and /?̂ " is negative indicates some degree of positive

upper orthant dependence and negative lower orthant dependence - indeed,

P(X> | , y > \,Z> \) = ^ a n d P ( X < l , y < | , Z < 1) - i , but both

of these probabilities are | when X, y , and Z are mutually independent.
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EXAMPLE 2. Suppose X, Y, and Z have the trivariate Farlie-Gumbel-
Morgenstern (FGM) distribution on I 3 with d.f. H(x,y,z) = xyz[l + α(l -
y)(l-z)+β(l-x)(l-z)+Ί(l-x)(l-y)+δ(l-x)(l-y)(l-z)]; where the four
parameters α, β, 7, and 6 are each in [-1,1] satisfying the inequalities l + €χα+
£2/3 + £37 > \6\ for €{ = ±1, 6162̂ 3 = 1. The univariate margins are uniform
on I while the bivariate margins are FGM, and the pairwise Spearman's />s's
are pxy = ^7, pxz = 5/?, and pγz — \ot. Thus the average of the pairwise
ρs's is | ( α + /? + 7), however

Pt = l(<* + β + Ί)-7fi6 a n d P3 =l(<* + β + Ί) + ±6.

EXAMPLE 3. Copulas for trivariate Cuadras-Auge distributions are weighted
geometric means of the copula for independent r.v.'s and the copula for the
Frechet upper bound: Ce(x,y,z) — \pcLm.(x,y,z^f{xyzγ~θ, θ £ /. The uni-
variate margins are uniform on I and the bivariate margins are Cuadras-Auge
distributions with parameter θ. This distribution is both PUOD and PLOD
and PXY = pxz = PYZ = 30/(4 - 0); however

+ _ 0(11-50) 0(7 - 0)
p3 ~ (3 - 0)(4 - 0) a Π d p3 ~ (3 - 0)(4 - 0)'

EXAMPLE 4. Let X, Y, and Z be r.v.'s, each uniform on J, such that
the probability mass in J 3 is uniformly distributed on two triangles, one with
vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1); and one with vertices (1, 1, 0), (1,
0, 1), and (0, 1, 1). Here />+ = />"= 0. Note that X, Y, and Z are again
pairwise independent and that (X, Y, Z) is radially symmetric about ( | , | , | ) .

6. A Measure of Average Multivariate Total Positivity of Order
Two. The multivariate version of the TP2 property is called multivariate total
positivity of order two (Karlin and Rinott, 1980): A distribution with joint
density h is multivariate totally positive of order two (MTP2) iff for all x and
yin#n,

h(x V y)h(x Λy)> h(x)h(y)

where

xV y = (max(a:i, 2/1), max(z2,2/2), , max(zn, yn))

and

x Ay = (min(zi, yi), min(z2,2/2), , min(xn, yn)).

Thus h(xVy)h(xΛy)-h(x)h(y) measures "local" MTP2 for a distribution
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with density Λ, and we let T denote its average:

T= / [h(xV y)h(xΛy)-h(x)h(y)]dx1dx2 -dxndyιdy2 -dyn.
jRn JRn

Let Si = Fi(xi), ti = Fi{yi), and h(x) = c(Fτ(xι), F2(x2), , Fn(xn))

/i(^i)/2(^2) fn(xn) where / t is the (marginal) density of Xi and c(u) =

dnC(u)/du1du2'"dun. Then

T = / ^[c(e V t)c(s At)- c(s)c(t)]ds1ds2 - dsndtιdt2 <ftn.

Now let I* = β V ί and v = s A t. Then v < u and dvidui = d s ^ for
i = 1,2, ,rc; hence

Γ = / •••/ / / •••/ / Σ 5 > ( « ) C ( β ) - c H c ( ; r ) ]
^o Jo Jo Jo Jo Jo , n QΓAT

=0 SCN
\S\=k

dv\dv2 dvndu\du2 dun

where N = {1,2, , n},

ttt if i G 5, f Vi iίieS,
and 2 t = <

Vi if < ̂  5, [ Ui tfi$S.

Evaluation of the n inner integrals yields

A;=0 SCN
\S\=k

where d^C(u) denotes the A th order mixed partial derivative of C{u) with

respect to the k variables whose subscripts are in S. But since the double sum

in the above expression is simply dUld^...dUrιC
2{u)'> w e have

T = 2n C(u)c(u)duιdu2 --dun- / - — —C 2 (u)du 1 du 2 dun.
JI71 JΓ1 duχdu2 - dun

The second multiple integral above is C 2 ( l ) = 1, and thus

T = 2n I C(u)dC(u) - 1.

As with p and q in Section 4, T = 0 when the components of X are indepen-

dent, and when the d.f. of X is the Frechet upper bound, T = 2n~1 — 1. So

we make the following
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DEFINITION 6.1. A measure of multivariate association τn derived from
average multivariate total positivity of order two for the random vector X
with copula C(u) is given by:

7. Properties of τn and Examples.

1. A lower bound for τn is 2n-i_1 (since Jjn C(u)dC(u) > 0.)

2. For n = 2, τ2 reduces to Kendall's r as presented in Section 2.

3. For n = 3, r3 = \(τχγ + τχz + τγz), where r^y, TXZ and ryz denote
Kendall's r for the two r.v.'s displayed as the subscript. This follows from the
fact that the family of measures of multivariate concordance studied by Joe
(1990) includes both τn and the average of the pairwise Kendall's r's; but has
only one member when n — 3.

4. As noted in Section 3, τn is a scaled probability of concordance. This
follows from the observation that 2 Jjn C{u)dC{u) = P(X <Y or X > Y),
where X and Y are independent each with d.f. H.

EXAMPLE 5. Let X, Y, and Z be r.v.'s on J 3 with a density h{x, y,z) — 4
in the two cubes [0, | ] 3 and [|, I] 3, and 0 elsewhere. Then p% = p% = | while

EXAMPLE 6. Now let X, Y, and Z be r.v. 's on J 3 with a density h(x, y, z) =
2 in the four cubes [f, 1] x [0, \] X [0, f ], [0, | ] x [|, 1] x [0,1], [0,1] X [0, | ] X [|, 1],

and [ j , I ] 3 ; and 0 elsewλere. iVow p£ = ±, p~ = -^, while r 3 = 0. Note that

in this example X, Y, and Z are pairwise independent.

EXAMPLE 7. Let X, Y, Z, and W be r.v. 's on I4 with d.f. H(x, y, z, w) =
xyzw[l + 0(1 - x)(l - y)(l - z)(l - w)] and density h(x, y,z,w)= 1 + θ(l -
2x)(l - 2y)(l - 2z)(l - 2w), where \θ\ < 1. Any three of these four r.v.'s are
mutually independent; however all four are not unless θ = 0, and

and T4 = i
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