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Abstract

We consider the competing risks problem when the available data is
in the form of times and causes of failure. In many practical situations
it is important to know whether the various risks under consideration
are equally fatal or whether some risks are more serious than others
in terms of their cause specific hazard rates and the cumulative inci-
dence functions. In this paper we review some of the recently proposed
distribution-free tests for the above problem. Since the data are invari-
ably censored in such problems, the results from the powerful theory
of counting processes and maringales are very useful in studying the
asymptotic properties of such procedures.

Key words : Competing risks, cumulative incidence function, counting pro-
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1 Introduction

In the standard competing risks model, an experimental unit or subject is
exposed to several risks but the actual failure (or death) is attributed to
exactly one cause. Let us assume that a unit is exposed to two risks and the
notional ( or latent ) lifetimes of the unit under these two risks be denoted
by X and Y, respectively. In general, X and Y are dependent. Also, being
lifetimes, they are nonnegatίve. We only observe (T, 6) where T = min(X, Y)
is the time of failure and δ = 2 —J(X < Y) is the cause of failure. Here I (A)
is the indicator function of the event A. We assume that P(X = Y) = 0.
Thus, the observed data is in the form of (T, δ) for each observed item.

It is well known that the joint and the marginal probability distribu-
tions of X and Y are not identifiable on the basis of the observable random

147



148 S. Kochar

variables (Γ, ί ) unless X and Y are independent. This aspect of noniden-
tifiability has been discussed by Cox (1959), Tsiatis (1975) and Kalbfleisch
and Prentice (1980), among others.

If X and Y are independent then it is meaningful to compare the marginal
probability distributions of the respective risks when the other risk has been
eliminated from the enviornmnet. Because of the nonidentifiability inherent
in the competing risks model, the independence of X and Y cannot be tested
on the basis of the (Γ, δ) data and must be assumed a prior on the basis of
the physical or biological process leading to the failure of the unit. In many
practical situations it is not realistic to assume the independence of X and
Y. In such situations a comparison of the marginal distributions of X and
Y is not meaningful as these functions may not represent the probability
distributions of X and Y in any practical situation. For detailed discussions
on this point, see Gail (1975), Prentice et al. (1978), Slud et al. (1988) and
Prentice and Kalbfleisch (1988).

Yet on the basis of the competing risks data it is often useful to distin-
guish between the following alternatives: (i) the two risks are equal, and (ii)
one risk is greater than the other, within the environment in which the two
risks are acting simultaneously.

To quantify this, the concept of (ordinary) hazard rate has been general-
ized in the competing risks model to the notion of cause specific hazard rates
(CSHR). In the continuous case the ith cause specific hazard rate is defined

by

hi(t) = lim ^ - pr[t <T <t + At, δ = i\T >t] (1.1)

i = 1,2. If T is discrete, the ith cause specific hazard rate is given by
pr[T = tjδ = i\ T > t]. In either case the overall hazard rate for time
to failure is then given by h(t) = hχ(t) + h2(t). Cause specific hazard rates
provide detailed information on the extent of each type of risk at each time t.
In models where the various causes of failure are independent, h{(t) reduces
to the (ordinary) hazard rate corresponding to the marginal distribution of
failure from the ith cause. Prentice et al. (1978) emphasize that only those
quantities which are expressible in terms of cause specific hazard rates are
estimable and can be estimated from the competing risks data even if the
risks are dependent. In this paper, our hypotheses are phrased in terms of
cause specific hazard rates and hence identifiability is not a problem.

Based on a random sample (T^δi) i = 1,2,.. . ,n on (Γ, ί ) , we consider
the problem of testing the null hypothesis,

Ho : Λi(ί) = h2(t) for all t , (1.2)

against the alternative

Hi Λχ(ί) < h2(t) for all t , (1.3)
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with strict inequality for some t.

Such comparisons can also be made in terms of cumulative incidence
function

Fj(t) = pr[T<t,δ = j]

corresponding to each cause j. Observe that

^ST^du, (1.4)

where Sτ(u) = pr[T > t] = 1 - F^t) - F2(t) is the survival function of T.
The null hypothesis Ho is equivalent to

Ho : Fφ) = F2(t), ί > 0 .

Another interesting alternative is

H2:F1(t)<F2(t), < > 0 (1.5)

and with strict inequality for some t. Hi also implies

#3 : h(t) < F2(t), t > 0 (1.6)

and with strict inequality for some /, where

Fj(t) - pr[T>t,δ = j] (1.7)
roo

= / hj(u)Sτ(u)du.

All the above three alternatives if i, if 2 and #3 say that risk Y is more se-
rious than risk X in some sense. It follows from (1.4) and (1.7) that Hi
implies H2 as well as #3. For various probabilistic interpretations of the
above alternatives and their implications, see Aly and Kochar (1993).

Note that there may be no reason to expect a priori that the cause
specific hazard rates are equal (except, say, when they represent identical
components in a series system), but this is a natural choice of null hypothesis
for the ordered alternatives if 1, if2 and if3.

Besides applications in the health sciences, these procedures have appli-
cations in industrial accelerated life tests (cf. Froda, 1987). When comparing
the quality of k different brands of a component, several components may
be tested in series. The components are functioning in the same environ-
ment and their times to failure are generally dependent. The system fails
as soon as one of 'the components fails. This experimental design identifies
weak components early in the experiment thus saving valuable time. On the
basis of such data, one might like to test whether components supplied by
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different suppliers are of the same quality against ordered alternatives. This
type of testing gives rise to the above type of data.

The following result by Kochar and Proschan (1991) is very useful in
studying the distributional properties of various test statistics. It extends
the famous characterization result on proportional hazards of independent
competing risks to the dependent case (cf. Armitage (1959), Allen (1963)
and Sethuraman (1965)).

LEMMA 1.1 Let

T = min(XuX2,...,Xn) and δ = i ifT = Xi (i = 1,2,.. .,n).

Then T and δ are independent if and only if the the cause specific hazard

rates Λi(ί), h2(t),..., hn(t) of X i ? X 2, ., Xn are proportional

Assuming that the underlying risks are independent and the lifetimes
are continuous, various authors have proposed nonparametric tests for test-
ing the equality of two or more hazard rates against ordered alternatives.
Using the competing risks data, Froda (1987) has proposed locally most
powerful rank tests for testing the equality of two risks against scale alterna-
tives. Bagai, Deshpande and Kochar (1989 a,b) developed distribution-free
rank tests for testing the equality of two hazard rates against stochastic
ordering and hazard rate ordering alternatives. Neuhaus (1991) has pro-
posed asymptotically optimal rank tests for comparing several independent
competing risks differing in their location or scale parameters. Yip and
Lam (1992 and 1993) suggested a class of weighted logrank type statistics.
Gray (1988), generalizing the approach of Harrington and Fleming (1982),
has proposed a class of c-sample tests for comparing the crude incidence
function, Fι(t) = pr[T < ί,ί = 1] of the first risk over c different popula-
tions. The case of two dependent risks has been considerd by Sen (1979),
Deshpande (1989), Aras and Deshpande (1992), Aly, Kochar and McKeague
(1994) and by Sun and Tiwari (1995). Sen (1979) proposed nonparamet-
ric tests with maximum asymptotic relative efficiency for testing the inter-
changeability of two competing risks against alternatives expressed in terms
of π(ί) = pr[δ = 1|Γ = *]. Where as Aras and Deshpande (1992) derived
locally most powerful rank tests of Ho against various parametric alterna-
tives, Aly, Kochar and McKeague (1994) have proposed Kolmogrov-Smirnov
type tests for testing the equality of two competing risks. In the case of dis-
crete (grouped) data, Dykstra, Kochar and Robertson (1995) have studied
the likelihood ratio test for testing the equality of k CSHRs against ordered
alternatives of the type U2-

In the next section we briefly describe the various tests proposed in the

literature for comparing independent competing risks. In the third section

we discuss the case of dependent competing risks. Section 4 is devoted to

asymptotic relative efficiency and power comparisons.
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2 Tests for comparing independent competing risks

Assuming that X and Y are independent with respective distribution func-
tions F(t) and G(t) — F(σt), Froda (1987) proposed locally most powerful
rank tests for testing the null hypothesis σ = 1 against the alternative σ < 1.
The test statistics are of the type Sn = Σ?=i a(Ri,F)6f, where tf? = tf, - 1
and R{ is the rank of Γt among ϊ\, Γ2,..., Γn. In general, the score function
α(i,F) depends on F. In the case of negative exponential distribution, the
locally most powerful rank test against the scale alternative is based on large
values of the sign statistic Σ<5*. Bagai, Deshpande and Kochar (1989 b)
extended this approach to obtain locally most powerful rank tests for more
general alternatives. Neuhaus (1991) proposed asymptotically optimal rank
tests for comparing k(> 2) independent competing risks differing in their
location or scale parameters.

Using Gehan (1965) type arguments, Bagai, Deshpande and Kochar
(1989 a) proposed the following [/-statistic for comparing the hazard rates
of F and G.

(2.1)
L\ / J l<i<j<n

where

( 1 if δf = 1 and Γt > Tj
or δ*j = 1 and Tj > Tt

0 otherwise.

The statistic U\ can also be expressed as

(2.2)

which is a Wilcoxon signed rank type statistic. It has the same null distri-
bution as the Wilcoxon signed rank statistic with n replaced by n + 1.

The statistic U\ can also be used for testing Ho against if3. Under #3,

Δi(ί) = F2(t) - Fi(t) > 0, Vί > 0.

It can be shown that

= l,Γ 1 >Γ 2 ]-i (2.3)
/ :

where (T^δ*) i = 1,2 are two independent copies of (T,<5*) and FT denotes
the distribution function of T. A [/-statistic estimator of this parameter
leads to statistic U\. A test based on large values of U\ is significant for



152 S. Kochar

testing for testing Ho against UΓ3. As pointed out by Kochar and Proschan

(1991), its null distribution remains valid under Ho even when the risks are

dependent. Deshpande (1989) has also independently proposed and studied

the properties of this test for comparing dependent risks.

Similarly, for testing Ho against #2, one can consider the measure of

deviation ψ(t) = F2(t) - Fι(t). It can be seen that

Πφ(t)dFτ(t) = pr[δϊ = 1,Γ! < Γ2] - \. (2.4)

Jo 4

A [/-statistic estimator of this parameter is

- 1
5*),(Tj,tfJ)}, (2.5)

LWJ Ύ<ϊ^j<n

where

{ 1 if δf = 1 and T{ < Tj

or η = 1 and Tj < Γ<

0 otherwise

which is equivalent to the statistic

n

~ + l)δ*. (2.6)

Bagai, Deshpande and Kochar (1989 b) proposed this test on heuristic

grounds, again using Gehan type arguments. In the light of Lemma 1.1,

it follows that U2 also has the same null distribution as the Wilcoxon signed

rank statistic.

Yip and Lam (1992) have proposed a class of non-parametric tests for

testing the equality of hazard rates of two independent competing risks.

Their class includes the tests Z7χ and U2 as special cases. They have used

the counting processes approach to study the asymptotic properties of their

tests.

Let Ni(t) denote the number of failures from cause i during the interval

(0,t] for i = 1,2; and let Y(t) = n- Nχ(t-) - N2{t~) be the number of sur-

vivors just before time /. Let w(u) be a locally bounded predictable process.

Yip and Lam (1992) proposed a class of tests based on studentized versions

of the following statistics, with their asymptotic null variances estimated

from the data itself,

= Γ
Jo

- dk2(u)}, (2.7)
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where Λi and Λ2 are the Nelson estimators of the cumulative hazard func-
tions for the independent competing risks and are given by

The weight w( ) reflects the relative importance attached to the difference
between the CSHR's at time u. Different choices of w(u), lead to different
test statistics. In particular, the choice w(u) = Y(u)N(u—) will lead to a
statistic equivalent to U\ whereas the choice w{u) — {Y(u)}2 will yield C^
As pointed out by Yip and Lam (1992), where as the first choice of the
weight function puts more weight on the later part of the experiment, the
second choice puts more weight on the earlier part of the experiment. They
have also studied tests corresponding to other choices of weight functions.

In a follow up paper, Yip and Lam (1993) extended their two-risks pro-
cedures to compare k (> 2) independent competing risks.

3 Tests for comparing dependent risks

Sen (1979) considers fixed sample as well as sequential tests for the null

hypothesis of bivariate symmetry of the joint distribution of (X, y), the no-

tional lifetimes under the two risks. The alternatives are expressed in terms

of π(t) = pr[δ = 1|Γ = ί], the conditional probability that the first risk is the

cause of failure given that a failure occurs at time t. Then he obtains tests

with maximum Pitman and Bahadur asymptotic relative efficiencies. Aras

and Deshpande (1992) adopt a different approach. They model this problem

in terms of cumulative incidence functions F\ and F2. By assuming different

parametric as well as Lehmann type alternatives between them, they obtain

locally most powerful rank tests for the above problem. It remains to be

seen whether such formulations are realistic in practice.

In practice, it may not be easy to model the competing risks problem

in term of the function π(t) of Sen (1979) or specify the exact relationship

between the cumulative incidence functions as advocated by Aras and Desh-

pande (1992). Moreover, none of the above mentioned procedures discuss the

situation when the data is censored. Recently Aly, Kochar and McKeague

(1994) have proposed Kolmogrov-Smirnov type tests for testing the equality

of two competing risks against alternatives Hi and #2. They considered

both the censored and the uncensored cases. In the rest of this section, we

focus on these procedures.

3.1 The case of uncensored data
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Since

Φ(t) = J Sτ(u)(h2(u)-hι(u))du

= F2(t)-F1(t)9

it follows that under if0, V>0O = 0 and 5Ί holds if and only if φ(t) is
nondeccreasing in t. Let

Din = SUp {ψn(t) ~ Ψn(s)},
0<s<t<oo

where φn(t) = F2n(t) - Fιn(t) and Fjn(t) = rΓλ Σ?=ι I{&i = h Ά < t} is the
empirical cumulative incidence function for cause j. Positive large values of
Din provide evidence in favor of Hi.

The exact null distribution of Dιn is given by:

2 2t

pr[nDin < t] = ^ {cos ^fx} sin {^ffij {l + cos ^_j

x { 2 j / s ^ n 2 ί + T ' (3-1)

for t = 1,.. . ,n + 1.

The asymptotic null distribution of Dιn is obtained using the invariance
principle for partial sums. Under HQ-,

sup \W(x)\9

0<a;<l

where {W(ί), t > 0} is a standard Bronian motion. Consequently, for c > 0

!) 2/8c 2}. (3.2)
k=o •

The exact formula (3.1) can easily be used to generate a table of critical

values. Using (3.5) the asymptotic 0.90, 0.95 and 0.99 quantiles of yfnDιn

are found to be 1.96, 2.241 and 2.807, respectively.

When an ordered alternative is unsuitable, it can be of interest to test Ho

against the general alternative: Fι(t) φ F2(t) for some t, which is equivalent

to hι(t) φ h2(t) for some t. In that case it is natural to use the Kolmogorov-

Smirnov test statistic

Dn = suρ|^ n (ί) | . (3.3)
ί>0

Under Ho, y/nDn converges in distribution to sup 0 < a 7 < 1 |W(ar)|. This gives

an omnibus test-consistent against arbitrary departures from Ho-
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For testing Ho against H2, Aly, Kochar and McKeague (1994) proposed
the statistic

D2n = sup φn(t). (3.4)
0<ί<oo

Again large values of D2n being significant for testing Ho against H2.

Under Ho

The asymptotic null distribution is obtained using the invariance principle

for partial sums (see, e.g., Chapter 2 of Csόrgδ and Revesz (1981)). Under

Ho

pr{y/nD2n > x} -> pr{ sup W{t) > x} = 2(1 - Φ(a?)), x > 0,
0<ί<l

where {ΐy(t),t > 0} is a standard Brownian motion and Φ is the standard
normal distribution function.

3.2 The case of censored data

Censoring arises when an item is removed from observation before failure
due to I or 7 . Denote the censoring time by C and its survival function by
Sc Assume that Sc(t) > 0 for all t, and that C is independent of X and
Y. Under right-censoring we observe n iid copies, (Γt , ί t ), i = l , . . . , n , of
f = min(Γ, C) and δ = ί/(Γ < C).

Our approach is to seek a suitable generalization of the function φ =
F2 - Fι. Consider the function

φ(t) = ίTSc(u
Jo

Sτ(u-)Sc(u-)1/2(h2(u) - Λχ(tt)) du, (3.5)

which coincides with φ when there is no censoring. The integrand Sc{u-)χl2

turns out to be precisely what is needed to compensate for censoring in

order that our test statistics remain (asymptotically) distribution-free. Ho

is equivalent to φ(t) - 0 for all t > 0, but H1 holds if and only if φ is

increasing.

Thus large positive values of

D3n= SUp {Φn(t)-Φn(s)},
0<s<ί<oo
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give evidence of a departure from Ho in the direction of # 1 . An obvious

choice of φn is

n(t) = it

JoΦ

where §τ and Sc are the product-limit estimators of ST and Sc, and

is the Aalen estimator (1978) of the cumulative CSHR function Aj(t)

f*hj(u)du:

Ai(«)= Σ I(6i=j)

where Ri = #{k : Tk > Ti} is the size of the risk set at time Γt —.

The estimator Λj is a special case of an estimator discussed by Aalen and

Johansen (1978) in connection with inference for the transition probabilities

of a non-time-homogeneous Markov chain with finitely many states. The

problem at hand concerns a three-state chain with two absorbing states

corresponding to the two types of failure.

Since φ(t) > 0 for some t under H2, positive large values of the test

statistic

D4n= sup φn(t), (3.6)
0<ί<oo

give evidence of a departure from Ho in the direction of #2.

The estimate φn{t) is similar in spirit to a weighted logrank statistic,

being of the form
ft

= / w(u) d(A2 — Aι)(u)
Jo

where it; is a locally bounded, predictable weight function. The weight

w(u) reflects the relative importance attached to the difference between the

CSHRs at time u. Our choice of it;, which essentially controls instability in

the tails, is designed to give an asymptotically distribution-free test. As dis-

cussed in the previous section, Yip and Lam (1992) have suggested statistics

of the type jLn(oo), for various choices of it;, as test statistics for Ho (in the

case of uncensored data and independent X and Y).

As stated in the next theorem that Dsn and D4n are asymptotically

distribution-free with the same limiting distributions that obtained in the

uncensored case.

THEOREM 3.1 Under Ho

sup |VF(#)| and \/~ND±n—• sup W(x).
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Recently Sun and Tiwari (1995) have proposed a new test for testing Ho

against Hi when the risks are possibly dependent and the data is randomly

right censored. Their test is an extension of the W2 test of Bagai, Deshpande

and Kochar (1989 b) to the censored case.

3.3 Extensions to more than 2 risks

Aly, Kochar and McKeague (1994) show that their approach can be ex-
tended to the case of multiple (rather than just two) competing risks in which
any two of the cause-specific risks are to be compared. No structure needs
to be imposed on the dependency between the multiple risks, although the
corresponding latent failure times need to be independent of the censoring.
They also discuss the appropriate modifications to be made to their tests
when one is interested only in the dominance of one risk over the other in a
specified interval. It is not clear whether the other available tests discussed in
this paper are amenable to this modification. Neuhaus (1991) has proposed
asymptotically optimal rank tests for comparing k independent competing
risks differing in their location or scale parameters.

Dykstra, Kochar and Robertson (1995) have studied the problem of com-
paring the cause specific hazard rates of k competing risks when the data
is discrete ( or grouped). No assumptions are made about the indepen-
dence of the risks and they allow observations to be right censored but do
assume that the censoring distribution is independent of actual time to fail-
ure. First they obtain nonparametric maximum likelihood estimates of the
various cause specific hazard functions under the null as well as the alter-
native hypotheses in preparation towards constructing the likelihood ratio
statistic for testing Ho against Hi. The maximum likelihood estimates of
the cause specific hazard rates under the order restriction imposed by Hi
are also of independent interest. The likelihood ratio test is a similar one
and its asymptotic null distribution is of the chi-bar square type.

It can be shown that the various tests discussed in this section are con-
sistent against their intended alternatives.

4 Efficiency and power comparisons

First we consider the case when the risks are independent and the data is not
censored. For comparison purposes, we use the sign test S = Σ?=i ?̂> which
is the locally most powerful rank test of Ho against proportional CSHRs in
the absence of censoring, see Aras and Deshpande (1992). We consider the
following alternatives for Pitman asymptotic relative efficiency comparisons.

(i)
hθ{x) = (1 +
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the proportional hazards model.

(ϋ)
hθ(x) = 1 + 0(1 - e~x),

the Makeham distribution.

(Hi)
hθ(x) = [l-θhιF(x)]ho(x).

( linearly increasing failure rate when F is exponential)

The case θ = 0 corresponds to the null hypothesis and θ > 0 corresponds

to Hi. The asymptotic relative efficiency of a test U with respect to the sign

test S for the alternative (i) above is denoted by et (l7, 5). These values are

reported below.

e2(UuS) = 1Λ7,

es(UuS) = 1.69, e3(U2, S) = 0.19 .

Since the Kolmogrov- Smirnov type tests do not satisfy the Noether's

(1955) conditions for Pitman asymptotic relative efficiencies, we performed

a simulation study to comapre the powers of the various tests under consid-

eration.

First we consider the case when (X, Y) follow the absolutely continuous

bivariate exponential (ACBVE) distribution of Block and Basu (1974) with

density

{ AiΛ(Λ2+Λ0) -Λia?-(Λ9+Λn)t/ if τ / ?/

^Λ(^+Λo)β-Λay-(Λ1+Λo)g ή χ > y

where (λo,λi,λ2) are parameters and λ = λo + λi + λ2. In this case, the
CSHRs

are proportional, and the alternative hypotheses Hi and H2 are equivalent

to λi < λ2. The parameter λo controls the degree of dependence between

X and y, with independence if and only if λ0 = 0. Since T and δ are

independent whenever the CSHRs are proportional, it follows that the sign

test S is the locally most powerful rank test in this case.

The following table gives the estimated powers of the different tests based

on 10,000 samples, each of size 100 generated from the ACBVE distribution

with λ0 = 0, λx = 1.0 and λ2 = 1.0,1.4,1.8 and 2.2, respectively. Note
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that the case X2 = 1.0 corresponds to the null hypothesis. 5% asymptotic
critical levels were used in this study. We used the exact null mean and
variance in the asymptotic normal approximation of U\ (

Table 4.1

Estimated Powers of the D\, D2, Uι, U2 and the Sign Tests
at Asymptotic Levels of 5%

Test

D\

D2

u2Sign

λ2

1.0
3.76
4.85
4.79

4.99

4.39

1.4
41.98
47.71

43.06

42.67
49.50

1.8
82.53

86.98
80.54

80.81
88.29

2.2

96.83
98.14
95.42

95.77
98.66

This table shows that there is atmost a 2% loss of power in using Ό2
instead of the sign test when there is no censoring. For Z?1? this loss is
somewhat more. For this alternative, the U\ and U2 tests perform equally
well, reconfirming the observation made by Yip and Lam (1992).

Next we consider the case when X and Y are independent with X hav-
ing exponential distribution with unit hazard rate and Y having linearly
increasing failure rate distribution with hazard rate h$(x) = (1 + θx). Table
4.2 gives the estimated powers of the various tests based on 10,000 samples,
each of size 100 for this alternative. Again 5% asymptotic critical levels were
used in this study.

Table 4.2

Estimated Powers of the D\, D2, U\, U2 and the Sign Tests

at Asymptotic Levels of 5%

Test

Di
D2

Uι

u2
Sign

θ

0.5

18.21

19.81

31.36

11.92

22.27

1.5

58.25
58.23
79.37
29.72
63.52

2.5

83.62

82.61

97.31

55.85

86.33

3.5

92.86
92.27
98.36
62.60
94.18

For this alternative, the Uι test outperforms the others, followed by

the Sign test; and the D\,D2 tests. The U2 test is less powerful for this
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alternative. The U\ statistic puts more weight on the later part of the
experiment, where as U2 gives more importance to early failures. U\ will be a
very good choice in the competing risks set up since survival distributions are
restricted to be non-negative, significant differences will, in general, become
more obvious as times goes by. As shown in Bagai, Deshpande and Kochar
(1989 b) the U2 test is more suitable for location type alternatives. The
above studies show that the Kolmogrov- Smirnov type tests D\ and D2 are
quite powerful in the absence of specific knowledge about the alternatives.
They are easy to implement and the tables for their exact null distributions
are available when the data is uncensored. In case, the data is censored,
asymptotic critical values can be used though the resulting tests will be
somewhat conservative.

Aly, Kochar and McKeague (1994) also consider the case when the data
is censored and the variables X and Y are dependent. Based on their simu-
lation study on ACBVE distribution, they made the following remarks.

(i) The use of the asymptotic critical levels gives somewhat conservative
tests, and this effect increases as the censoring becomes more severe.
However, the test based on D±n appears to be less conservative (and
more powerful) than the one based on Dzn, and both tests become less
conservative as the sample size increases.

(ii) The levels of the tests are close to their nominal 5% values for sample
size 500, except under heavy censoring.

(iii) There is no apparent adverse effect on the levels or the power due to
lack of independence of X and Y.
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