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Abstract

We study weighted least squares estimators for the distribution
function of observations which are only visible via interval censoring,
i.e., in the situation where one only has information about an interval to
which the variable of interest belongs and where one cannot not observe
it directly. The least squares estimators are shown to be closely related
to nonparametric maximum likelihood estimators (NPMLE's) and to
coincide with these in certain cases. New algorithms for computing the
estimators are presented and it is shown that they converge from any
starting point (in contrast with the EM-algorithm in this situation).
Finally, the estimation of non-smooth and smooth functionals of the
model is considered; for the latter case, we discuss y/n-consistency and
efficiency of the NPMLE.

1 Introduction

An extensive statistical theory exists for treating right censored data. Much
less is known about more general types of censorship. This paper consid-
ers estimators for data subject to interval censoring. In this situation one
only has information about an interval to which the observation of interest
belongs; so only indirect information about the observation of interest is
available.

Most of the time the interval will be a time interval, but the following
interesting spatial version of this situation was brought to our attention by
professor Dietz. In examinations of skin tissue, possibly affected by skin
cancer, successive (roughly) circular incisions are made to determine the
region of affected tissue; in this case one tries to estimate the smallest "safe"
radius determining the region on which the operation should take place.
On the one hand one tries to minimize the number of incisions, but on the
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other hand making too few incisions might result in an estimate which is too
rough. Clearly statistical information about the estimates based on interval
censoring could be very valuable here.

Aids research provides other important examples of interval censoring;
usually the time of onset of a certain stage of the disease is unknown, but
often indirect information about this is available.

In this paper we will concentrate on the following two cases of interval
censoring:

Case 1. For each individual we make one observation and observe whether
or not the event of interest has occurred before the time of observation. Such
data arise for instance in cross-sectional studies.

Case 2. Two examinations at particular times are made so that it is known
whether the event happened before the first observation (left censored), be-
tween the two observations (interval censored) or after the second observa-
tion (right censored).

AYER ET AL. (1955) derived the nonparametric maximum likelihood es-
timator (NPMLE) of the distribution function for Case 1 and proved that it
is consistent. In this case the NPMLE can be calculated in a finite number
of steps using the "pool adjacent violators" algorithm.

PETO (1973) considers the NPMLE for the more general Case 2. He sug-
gests that pointwise standard errors for the survival curve can be estimated
from the inverse of the Fisher information, which, however, is not correct.

Turnbull in TURNBULL (1974) and TURNBULL (1976) proposes the use of
an EM algorithm to compute the NPMLE in interval censored problems. On
the other hand, it is shown in GROENEBOOM AND WELLNER (1992), Chapter 1,
Part II, that the "self-consistency" equation is a necessary but not a sufficient
condition for the NPMLE. The EM-algorithm may therefore converge to
some inconsistent estimator. Further, even if the starting function is such
that the algorithm will converge to the NPMLE, the rate of convergence is
generally very slow. Finally, the self-consistency equations have not been
successful in developing distribution theory. For these reasons we turn to
another approach, based on isotonic regression theory. This theory gives
necessary and sufficient conditions, yields efficient algorithms for computing
the NPMLE and leads us either directly to distribution theory or to rather
specific conjectures about the asymptotic behavior.

Furthermore, the relation between NPMLE's and nonparametric least
squares estimators will be discussed: these estimators actually coincide for
interval censoring, case 1, but have a rather different behavior for interval
censoring, case 2.
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2 Interval censoring, case 1

We first discuss the following case of interval censoring.

Case 1. Let (Xx, 7\) , . . . , (Xn, Tn) be a sample of random variables in M\,
where Xi and Γt are independent (non-negative) random variables with dis-
tribution functions Fo and G, respectively. The only observations which are
available are T{ ("observation time") and δi = {Xi < Tt }. Here we denote
the indicator of an event A (such as {Xi < Tt }) just by A, instead of l ^
The log likelihood for FQ is given by the function

δi log F(Ti) + (1 - δi) log(l - F(T ))} , (1)

where F is a right-continuous distribution function.

The (conditional) log likelihood, divided by n, can be written in the

following way:

Φ{F) ̂  j R 2 {\{x<t}\o%F(<) + l{,>ί}log{l - F(t)}} dPn(x,t), (2)

where Pn is the empirical probability measure of the pairs (X;, Γt ), 1 < i < n.

The nonpαrαmetric maximum likelihood estimator (NPMLE) Fn of F is a

(right-continuous) distribution function F, maximizing (2).

Remark 2.1. Note that only the values of Fn at the observation points
matter for the maximization problem. To avoid trivialities, we will take as
"the" NPMLE a distribution function which is piecewise constant, and only
has jumps at the observation points. It may happen that the likelihood func-
tion is maximized by a function F such that F(t) < 1, at each observation
point t. In this case we do not specify the location of the remaining mass
to the right of the biggest observation point. Under these conventions, the
NPMLE is uniquely determined, both in case 1 and case 2 of the interval
censoring problem.

It turns out that in case 1 the NPMLE Fn coincides with the least squares
estimator, obtained by minimizing the function

F - J2(F(Ti) - δi)2

over the set of all distribution functions F (Remark 2.1 ensures uniqueness

over the restricted class of dfs, having jumps only at the observation points).
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Therefore the NPMLE is a straightforward solution of an isotonic regression
problem; a fact that has already been used in the paper by AYER ET AL.

(1955).

The pointwise asymptotic behavior of the NPMLE is studied in GROENE-

BOOM (1987) and the result is given again in GROENEBOOM AND WELLNER

(1992) as Theorem 5.1:

Theorem 5.1 in Groeneboom and Wellner (1992). Let to be such that
0 < Fo(to) < 1, 0 < G(t0) < 1, and let Fo and G be differentiate at ί0, with
strictly positive derivatives fo(to) and g(to), respectively. Furthermore, let
Fn be the NPMLE of Fo. Then we have, as n -+ oo,

n1/3{Fn(t0) - Fo{to)}/{\Fo(to)(l - Fo(to))fo(to)/g(to)}1/3 Z 2Z,

where —• denotes convergence in distribution, and where Z is the last time
where standard two-sided Brownian motion minus the parabola y(t) = t2

reaches its maximum.

This shows that, under the conditions of the theorem, the NPMLE con-
verges locally at the n 1 ' 3 rate. A minimax result showing that the n 1 / 3 rate is
the correct rate here and that the part of the constant in the minimax lower
bound, depending on the underlying distribution, is correctly represented in
the asymptotic variance of the NPMLE, is also shown in GROENEBOOM (1987)
(in fact, two approaches are given there; one based on Assouad's Lemma and
one based on the theory of limiting experiments, leading to slightly different
universal constants in the lower bounds for the minimax risk). Still another
proof of the minimax lower bound is sketched in the exercises of Chapter 2
of Part I of GROENEBOOM AND WELLNER (1992).

The minimax result was also recently reconsidered by GILL AND LEVIT

(1992). Their approach is based on the van Trees inequality (VAN TREES

(1968)). They recover the rc1/3 rate, but obtain a different type of con-
stant, due to the fact that they use a (local) uniform Lipschitz condition on
the underlying df (in contrast to the approach in GROENEBOOM (1987) and
GROENEBOOM AND WELLNER (1992)).

As can be expected from the general theory on differentiate functionals
(see e.g., VAN DER VAART (1991), efficient estimators of smooth functionals
like the mean

μFo = jtdF0(t)

should have y/n—behavior. Suppose that the support of Pp0 is a bounded

interval / = [0,M], and that Fo and G have densities /o and g, respectively,

satisfying

g(t) > δ > 0, and / 0(ί) > δ > 0, if ί G /,
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for some 6 > 0. Further assume that g has a bounded derivative on I. An

example of this situation is the case where FQ and G are both the uniform

distribution function on [0,1]. Then we have the following result, proved in

GROENEBOOM AND WELLNER (1992), Chapter 5 of Part II.

Theorem 5.5 in Groeneboom and Wellner (1992). Let Fo and G
satisfy the conditions, listed above, and let Fn be the NPMLE of Fo. Then

where U has a normal distribution with mean zero and variance

- *Ό(t)) Λ

The proof uses a rather involved exponential martingale argument in

order to give an upper bound to the probability that the maximum distance

between successive jumps of Fn is bigger than ra"1/3 log n. This in turn is

used to show that the supremum distance between Fn and FQ is of order

n'1/3 log n. A different shorter proof, avoiding the upper bound argument

for the supremum distance between Fn and FQ and also treating more general

functionals than the mean, is given in HUANG AND WELLNER (1995A).

The asymptotic variance of the above estimator of the mean is in fact

the efficient asymptotic variance (i.e., coincides with the information lower

bound) in this situation. Interestingly enough, the information lower bound

calculation (done by Jon Wellner) preceded the result on the asymptotic

variance of the estimator of the mean, based on the NPMLE. The lower

bound calculation is given in VAN DER VAART (1991).

In the example on Hepatitis A in Bulgaria, given in KEIDING (1991), a

quantity of interest is the transmission potential (i.e., the expected number of

people infected by a person having the disease), which can be considered to

be a smooth functional for a restricted class of distribution functions. In the

model, used by KEIDING (1991), this quantity should be estimable at rate n 1 / 2

under smoothness conditions on the underlying distributions. Preliminary

results on this are reported in HANSEN (1991). An intriguing aspect of the

estimation of these global types of functionals is that the optimal bandwidth

choice is quite different from the optimal bandwidth choice for the pointwise

estimates.

3 Interval censoring, case 2

3.1 Characterization of the estimators

We now turn to the second case of interval censoring, mentioned in the

introduction. From a mathematical (and possibly also practical) point of
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view this case is much more interesting than interval censoring, case 1. Much
less is known, however, and the theory is still in its beginning stage. We
consider the following model.

Interval censoring, Case 2. Let (Xu Γi, ί7i), . . . , (Xn, Tn, Un) be a sample
of random variables in JR+, where X{ is a (non-negative) random variable
with continuous distribution function F o , and where T2 and Ui are (non-
negative) random variables, independent of X t , with a joint continuous dis-
tribution function H and such that T2 < Ui with probability one. The only
observations which are available are (Γt ,ί7t ) (the "observation times") and

δi = {xi<τi},Ίi = {xie(τi,ui]}.
For a change, we start with discussing least squares estimators. A least

squares estimator Fn of FQ is defined as a minimfeer of the function

(3)
where the weights Wij can be chosen in several different ways, to be discussed
below. In different notation, we have to minimize

Φ(F) d^f j ^ φF(x, i, u) dPn(x, ΐ,«), (4)

w h e r e

x , ί , u ) = ( ) ( ( ) { } f

, u)(F(u) - F(t) - l{t<x<u}f (5)
,«)(l - F(u) - l{x>u})\

and P n is the empirical probability measure of the triples (X t ,Ti, Ϊ7t ), 1 <

i < n; the weight functions Wj, j = 1,2,3, only have to be defined at the

points (T;, Ui) by

Wj(Ti,Ui) = Wij, i = l , . . . , n ; j = 1,2,3.

where Wij is defined as in (5).

Remark 3.1. Note that again (as in the preceding section) only the values of
Fn at the observation points Γt and Ui matter for the minimization problem.
We will take as "the" least squares estimator a distribution function which is
piecewise constant, and only has jumps at the observation points Γt and U%.
It may again happen that the function φ is minimized by a function F such
that F(t) < 1, at each observation point t. In this case we do not specify the
location of the remaining mass to the right of the biggest observation point.
We shall show that, under these conventions, the least squares estimator is
uniquely determined.



Estimators for interval censoring problems 111

We start by characterizing the least squares estimator, under the conventions
of Remark 3.1. To this end, we introduce the following processes.

Definition 3.1 Let F be a distribution function on [0, oo). Then the process
Wp is defined by

- F(t')}dPn(x, f,u)

- (F(u) - F(t'))\ dPn(x, t', u)

- (F(u) - F(t'))\ dPn(x, f, u)

F(u))} dPn{x, t', u),

for t > 0,

(6)
where Pn is the empirical probability measure of the points (X^Γί, ί7;), i —

The following proposition characterizes the least squares estimator.

Proposition 1 Let T be the set of discrete distribution functions, with mass
concentrated at the observation points and possibly some extra mass at the
right of the biggest observation point. Then Fn minimizes the right-hand
side of (3) over all F £ T if and only if

f dWp ( 0 < 0, V< > 0, (7)
J[ί,oo)

and

J β ) = ̂  (8)

where Wp is defined.by (6). Moreover, Fn is uniquely determined by (7) and

(8).

The proof is quite similar to the proof of Proposition 1.3 in Chapter 1,
part II, of GROENEBOOM AND WELLNER (1992), but slightly easier, since we
don't have to worry about the endpoints, which caused some extra work in
the characterization of the NPMLE. In order to describe an algorithm for
computing the least squares estimator, we introduce a "time scale process"
similar to (but different from) the time scale process G F , defined by (1.29)
in Chapter 1, part II, of GROENEBOOM AND WELLNER (1992).
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Definition 3.2. Let F be a distribution function on [0, oo) and let Hn be
the empirical distribution function of the pairs (Γt , Ϊ7t ). Then the processes
G and Vp are defined by

* ,u)}dHn{t',u)

and

Vp(t) = WF(t) + ί F(t') dG{t% t > 0. (10)

J[o,t]

The processes G and Vp have similar motivation and properties as the pro-

cesses GF and Vp on page 49 of GROENEBOOM AND WELLNER (1992).

The following proposition characterizes Fn as the slope of the convex mino-
rant of a self-induced cumulative sum diagram.

Proposition 2 Let the class of distribution functions T be defined as in
Proposition 1. Then Fn minimizes the right-hand side of (3) over T if and
only if Fn is the left derivative of the convex minorant of the ''cumulative
sum (cusum) diagram", consisting of the points

P3 = (G(T(j)),VPn(TU))) ,

where Po = (0,0) and ϊyj, j = 1,2, ...,2n, are the ordered observation
times.

This suggests a simple iterative procedure for computing the least squares
estimator: starting with an arbitrary (sub)distribution function, one com-
putes at the (m + l)th iteration step the convex minorant of the cusum
diagram, consisting of the points

and uses the left derivative F( m + 1 ) of the convex minorant in the process
Vp(m+i), defining the cusum diagram in the next iteration. We will show in
the next section that this procedure will converge to the solution from any
starting distribution.

The NPMLE can in this case be characterized as a least squares esti-
mator with "self-induced weights". In fact, the NPMLE is characterized by
Proposition 1, but with the weights W{ in the process WF in (6) defined by

wλ{t,u) = 1/F(t), w2(t,u) = l/(F(u) - F(t)), and ws(t,u) = 1/(1 - F(u)).
(11)
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If a denominator in (11) equals zero, the corresponding weight is defined to
be infinite and the corresponding squared distance in (5) is equal to zero
in that case. Using the convention 0 oo = 0, the corresponding weighted
square gives no contribution to the total sum of squares in (3). In practice,
one actually performs a preliminary reduction of the problem, excluding
these terms from the minimization problem.

So in this case the weights are defined by the solution itself, a situation
somewhat reminiscent of the "self-consistency equations". In an iterative
convex minorant algorithm, the weights are adjusted in an iterative proce-
dure in such a way that the solution and the weights match at the end of
the iteration.

3.2 Algorithms

We show that the iterative convex minorant algorithm, based on Proposition
2, corresponds to a contraction mapping for a suitably chosen norm on J7,
with a contraction constant depending on the weight function. Since there
is only one fixed point, the algorithm will converge from any starting point.

We define the l^-distance || || on T by

\\F1-F2\\2 = J(F1(t)-F2(t)fdG(t),

where G is defined by (9). Let the function

be defined by

( t ) = ( ί $ y
dG \ 0 , otherwise.

We define F(m+1ϊ at the (m + l)th iteration step as the distribution function
in T that minimizes

, dVF(m) II

Let the mapping T : F H+ TF, F G T be defined by

Γ dG

Then, by Theorem 8.2.5 in ROBERTSON, WRIGHT AND DYKSTRA (1988),
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But the square of the term at the right-hand side of (12) can be written

ΐn{tf,u)

< c

\ 2 ( ^ ( t t U ) \ u)

(13)
where the constant c satisfies

c < max max I M T » U i ) 2 \

- \((τu)
As an example, if Wi(t, u) = 1, i = 1,2,3, we get

| | j p( m + 1 ) _ p{m)\\ < i \\jp(m) _ iri™-1)!!

For finding the NPMLE one could carry out the iteration procedure above

repeatedly, for example starting with equal weights. This amounts to a re-

peated weighted least squares procedure, where the weights are determined

by the preceding step. At the start of each iteration after the initial iteration

one takes the weights as in (5), but with F defined as the solution of the

least squares problem in the preceding step. A program for doing this (using

some "buffers", preventing the iterative estimates from leaving the allowed

region) has been developed and seems to work fine. Another (simpler) it-

erative convex minorant algorithm for computing the NPMLE is discussed

in GROENEBOOM AND WELLNER (1992), Chapter 3 of Part II. It is shown in

JONGBLOED (1995A) and JONGBLOED (1995B) that a slight modification of

the latter algorithm will always converge.

However, the original motivation for developing these algorithms was

an attempt to derive distribution theory. We will turn to this in the next

section.

3.3 Local distribution theory for case 2

For interval censoring, case 1, we have the result that the NPMLE converges
at rate n 1 / 3 . Interestingly enough, in case 2 there exist estimators which have
a faster rate of convergence. First of all, a minimax calculation shows that
the rate of convergence should not be n 1 / 3 but (nlogn) 1 / 3 . The lower bound
calculation is given in BARKER (1988). GILL AND LEVIT (1992) also derive
a lower bound of order (nlogn)" 1 / 3 . A simple histogram-type estimator
has been constructed by Lucien Birge (personal communication), which can
easily be shown to attain the rate (nlogn) 1 / 3 at /0 The trouble with the
least squares estimator with constant weights is that observations lying in
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smaller intervals do not get more weight; they should get more weight in
order to obtain the faster rate of convergence!

It is conjectured that the least squares estimator with weights, inversely
proportional to the lengths of the observation intervals, converges locally at
rate (nlogn)1/3. Computer experiments also point in this direction. What
in our view is actually more interesting is that the NPMLE seems to behave
asymptotically as a least squares estimator with weights W{ defined by

In fact there exist now a group of connected conjectures about the behav-
ior of the NPMLE, all pointing in the direction of the following conjecture.

Conjecture. Let FQ and H be continuously differentiate at t0 and (^o,/o),
respectively, with strictly positive derivatives /o(^o) and h(to,to). By con-
tinuous differentiability of H at (to,to) is meant that the density h(tyu) is
continuous in (/, u) if t < u and (/, u) is sufficiently close to (£o? ̂ o) and that
h(t,t), defined by

h(t,t) = ]im h(t,u),

is continuous in /, for t in a neighborhood of to-
Let 0 < Fo(to),H(to,to) < 1, and let Fn be the NPMLE. Then

where Z is the last time where standard two-sided Brownian motion minus
the parabola y(t) — t2 reaches its maximum.

The conjecture is discussed in Part II, Chapter 5, section 2, of GROENEBOOM

AND WELLNER (1992), where a result of this type is proved for an estimator,
obtained after one step of an iterative convex minorant algorithm, starting
with the underlying distribution. Of course, for practical purposes the latter
result is useless; the study of its behavior was only motivated by the belief
that its behavior is the clue to the behavior of the NPMLE.

4 Estimation of smooth functionals

4.1 Information lower bounds

As was remarked earlier, one can expect that smooth functionals of the model
can be estimated at y^-rate. The theory on the estimation of smooth func-
tionals for case 2 is rather complicated, though, and intimately connected
with certain Fredholm integral equations for which solutions can only be
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given implicitly. We will give a sketch of the present situation of the the-

ory below, relying mostly on the exposition in GESKUS AND GROENEBOOM

(1995A,B,C).

For a more complete and more general treatise on the relation between

pathwise differentiability of functional and asymptotic efficiency, we refer

to part I of (Groeneboom and Wellner (1992)) or (Bickel et aL (1993)). We

give some key concepts below.

Let the unknown distribution P on the space (y, B) be contained in some

class of probability measures V, which is dominated by a σ-finite measure μ.

Let P have density p with respect to μ. Since we are interested in estimation

of some real-valued function of P, we introduce the functional Θ : V —• IR.

Let, for some δ > 0, the collection {Pt} with t £ (0,£) be a one-dimensional

parametric submodel which is smooth in the following sense:

/ [ as ί J, 0, for some a G L2(P)

Such a submodel is called Hellinger differentiable and a is called the score

function or score. The folowing result is well-known.

Proposi t ion 3 Each score belonging to some Hellinger differentiable sub-
model is contained in

Proof: See GESKUS AND GROENEBOOM (1995C)

In our situation the collection of scores α, obtained by considering all
possible one-dimensional Hellinger-differentiable parametric submodels, is a
linear space. This space is called the tangent space at P, denoted by T(P) .
Note that T(P) C L%(P).

Now Θ : V —• IR is pathwise differentiable at P if for each Hellinger
differentiable path {Pi}, with corresponding score α, we have

l i m ΐ - 1 ( Θ ( P t ) - Θ ( P ) ) = Θ'p(α),

with Θp : T(P) —> IR continuous and linear.

Θp can be written in an inner product form. Since T{P) is a subspace of the

Hilbert-space £2(^)5 the continuous linear functional Θp can be extended

to a continuous linear functional Θp on L2(P). By the Riesz representation

theorem, to Θ'P belongs a unique θp G L2(P), called the gradient, satisfying

Θ'p(h) =< θP, h >P for aU h G L2(P).

One gradient is playing a special role, which is obtained by extending T(P)
to the Hubert space T(P). Then, the extension of Θp is unique, yielding the
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canonical gradient or efficient influence function θp £ T(P). This canonical
gradient is also obtained by taking the orthogonal projection of any gradient
0p, obtained after extension of Θp, into T(P). Hence θp is the gradient
with minimal norm among all gradients and we have

Will = \\θp\\2

P + \\ΘP - θPfp.

The so-called convolution theorem now says that the smallest asymptotic
variance we can get for a regular estimator of Θ(P) is | |0p||2. An asymp-
totically efficient estimator is a regular estimator which has an asymptotic
distribution with this (minimal) variance.

The interval censoring model is an example of a model with information
loss, in which the distribution P is induced by a transformation. In these
models the functional to be estimated is implicitly defined. The lower bound
theory for such implicitly defined functionals is treated in VAN DER VAART

(1991) and BICKEL et aί (1993). This theory will be applied to case 2 of
the interval censoring model. We start with the formulation of the model
for case 2. The loss of information is expressed by the fact that, instead of a
sample (Xχ,...,Xn), we observe (Tu ϋi ,Δi,Γi), . . . , (Γn, ί/n,Δn,Γn) with
Δ « = 1{JC<<Γ<} a n d τ i = 1{Ti<Xi<Ui}' W e suppose:

(Ml) Xi is a non-negative absolutely continuous random variable with dis-
tribution function F. Let S > 0. F is contained in the class

T$ := {F\ support(i^) C [0,5]; F < λ, λ being Lebesgue measure}.

F is the distribution on which we want to obtain information; however,
we do not observe X{ directly.

(M2) Instead, we observe the pairs (Γ, , E/, ), with distribution function H. H
is contained in 7ί, the collection of all two-dimensional distributions
on {(ί,ϋ)|0 < t < w}, absolutely continuous with respect to two-
dimensional Lebesgue measure and such that each H is independent
of each F. Let h denote the density of (Γt , ί/, ), with marginal densities
and distribution functions hi, Hi and h2j H2 for Γt and Ui respectively.

(M3) If both Hi and H2 put zero mass on some set A, then F has zero mass
on A as well, so F < Hi + H2. This means that F does not have mass
on sets in which no observations can occur.

Condition (M3) is needed to ensure consistency. Moreover, without this
assumption the functionals we are interested in are not well-defined. So dis-
crete F should be excluded from Ts>
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Note that what we do observe can be seen as a measurable transformation
S of what we would observe if there would be no censoring:

with domain {(x,t,u) |0 < x, 0 < t < u}. This domain will be called the
hidden space, and the image space will be called the observation space. In
our model P is induced by F and # , and is from now on written as QF,H >
having density

?F,*(ί,M,7) = h(t,u)F(t)δ(F(u) - F(ί)Γ(l - Fin))1'8-*

with respect to λ2 ® 1^2 •, where v<ι denotes the counting measure on the set
{(0,l),(l,0),(0,0)}.

We are interested in estimation of some functional K(F) of F. However,
K(F) is only implicitly defined as O(QF,H)I with H acting as a nuisance
parameter. In particular, we will be concerned with the problem whether
the NPMLE Θn of Θ(QF,H) satisfies

x^(Θ n - Q(QFtH))^N(0, \\θQFiH\\2).

All Hellinger differentiate submodels at QF,H that can be formed, to-
gether with the corresponding score functions, are induced by the Hellinger
differentiable paths of densities on the hidden space, according to the fol-
lowing theorem:

Theorem 4.1 Let V <C μ be a class of probability measures on the hidden
space (y,B). P E V is induced by the random vector Y. Suppose that the
path {Pt} to P satisfies

for some a £
Let S : (y^B) —> (Z->C) be a measurable mapping. Suppose that the induced
measures Qt = PtS~λ and Q — PS~X on (Z,C) are absolutely continuous
with respect to μS~x, with densities qt and q. Then the path {Qt} is also
Hellinger differentiable, satisfying

J [t'\Vq~t -y/q)~ \άy/q]2 dμS-1 - 0 as t [ 0

witha(z) = EP(a(Y)\S = z).

Proof: See BICKEL el al (1993).
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Note that α G L^{Q). The relation between the scores α in the hidden

tangent space T{P) and the induced scores ά is expressed by the mapping

AP : α( ) H+ EP(α(Y)\S = •)•

This mapping is called the score operator. It is continuous and linear. Its
range is the induced tangent space, which is contained in L^Q).

Now Theorem 4.1 yields the tangent space T(QF,H) of the induced Hellinger
differentiable paths {Qt} at QF,H with score operator A : L^{F) 0 L^H) —>>
T(QF,H) given by:

[AFfH(« + *)](*> «> «> 7) = EFfH{a(X) + e(T, U) | (T, U, Δ, Γ) = (ί, t*, ί, 7 ) }

Having specified the Hellinger differentiable paths in the observation

space, we can also determine differentiability of the functional

Note that Θ(QF,H) is defined unambiguously by condition (M3).

In our censoring model, differentiability of Θ(QF,H) along the induced
Hellinger differentiable paths in the observation space can be proved by
looking at the structure of the adjoint A*FH of the map AF}H according
to Theorem 4.2 below, which was first proved in VAN DER VAART (1991)
in a more general setting, allowing for Banach space valued functions as
estimand. Then the proof is slightly more elaborate.

Recall that the adjoint of a continuous linear mapping A : D —> E, with
D and E Hilbert-spaces, is the unique continuous linear mapping A* : D —>
E satisfying

< Ag,h>E=< g,A*h>D Mg eG.he H.

The score operator from Theorem 4.1 is playing the role of A. Its adjoint
can be written as a conditional expectation as well. If Z ~ PS"1, then:

[A*Pb](y) = Ep(b(Z)\Y = y) a.e.-[P]

Theorem 4.2 Let Q = VS"1 be a class of probability measures on the image
space of the measurable transformation S. Suppose the functional Θ : Q —• IR
can be written as Θ(Qp) = K(P) with K pathwise differentiable at P in the
hidden space, having canonical gradient Rp.

Then Θ is differentiable at Qp G Q along the collection of induced paths in
the observation space obtained via Theorem 4-1 if and only if

kp e 1Z(A*P) (14)



120 P. Groeneboom

If (14) holds, then the canonical gradients ΘQP of Q and kp of K are related
by

kp = A*PθQp

Proof: See VAN DER VAART (1991) or GESKUS AND GROENEBOOM (1995C).

D

Now K(F) is only implicitly defined as Θ(QF,H)-> with H acting as a nui-

sance parameter. Note that Θ(QF,H) is defined unambiguously by condition

(M3). The key equation that is needed is the following

kF e TZ(Ll)

and if this holds, then the canonical gradient is the unique element θ in
satisfying

L\θ = kF. (15)

The operators L\ and L<ι have the following form:

M adF
a.e.-[QF f H]

[L2e](u, υ, δ, 7) = e(u, v) a.e. - [QF,H]

(16)

The adjoint of Lx can be written as [L\b](x) = EP(b(U, V, Δ, T)\X = x) and

we get

rM rM
[L\b){x) = b(t,u,l,Q)h(t,u)dtdu +

Jt=χJu=t
rx rM

/ / b(t,u,O,l)h(t,u)dtdu+ (17)
Jt=θJu=x

rx rx
/ I n( "/• it Γ\ Π 1 rt (~t 7 / 1 /Ί~t /ill 54 P» I r» I

Many functionals that are pathwise differentiable in the model without

censoring, lose this property in the interval censoring model. Any func-

tional K with a canonical gradient that is not a.e. equal to a continuous

function cannot be obtained under L\. So not all linear functionals remain

pathwise differentiable. For example, n(F) = F(to)> with canonical gra-

dient l[o,ίo]( ) ~ F(to), l ° s e s this property. This is in correspondence with

F(to) not being estimable at λ/n-rate. However, functionals of the form

K(F) = / c(x)dF(x), with c sufficiently smooth, can be shown to remain

differentiable under censoring. Hence for these functionals the above infor-

mation lower bound theory holds.
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We will be concerned with the problem whether the NPMLE Θn of
®(QF,H) satisfies

In the interval censoring model, both case 1 and case 2, the function

rM

φ(x) := / a(t) dF(t) with a G L%(F).
Jx

appears explicitly in the score operator L\. Therefore it plays an important
role. It is called the integrated score function. ^From its definition we know
that φ satisfies φ(Q) = φ(M) = 0 and that φ is continuous for F G Ts-

We now investigate solvability of the equation

in the variable a G L^{F). By the structure of the score operator L\ this
can be reformulated as an equation in φ:

kF(x) = Γ Γ ^Kh{t,u)dudt
Jt=OJu=t v ;

- f Γ P$E^h(t,u)dudt (18)
rM rM

~ P&h(t,u)dudt a.e.-[F].

The support of F may consist of several disjoint intervals. However, (18) is
not defined on intervals where F does not put mass, and these intervals do
not play any role. So without loss of generality we may assume the support
of F to consist of one interval [0, M].

Unlike case 1, differentiating equation (18) on both sides does not yield
an explicit formula for φ. Instead, we get the following integral equation:

φ(x)+dF(x) |/i=o ίjf)Ξί$ Λ(ί, x) dt - Jt=χ ί g Ξ | g h(x, t) dίj = k(x)dF(x),
(19)

with dp{x) being the function

F(x)\i-F(χ)]
[lF(x)]+h2() - h1(x)[l-F(x)]+h2(x)F(x)^

writing k(x) instead of κf

F(x). Although k may depend on the underly-
ing distribution, we do not explicitly express this dependence. Apart from
the model conditions (Ml) to (M3), some extra conditions will have to be
introduced.
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(51) hi and h2 are continuous, with hχ(x) + h2(x) > 0 for all x G [0, M].

(52) h(t, u) is continuous

(53) Prob{?7 - T < β0} = 0 for some e0 with 0 < e0 < 1/2 M, so Λ does not
have mass close to the diagonal

(54) F is either a continuous distribution function with support [0, M], or a
piecewise constant distribution function with a finite number of jumps,
all in [0,Λf]; F satisfies

F(y) - F(t) >c>0,iΐu-t>eo

(S5) k is continuous

The integral equation for φ belongs to a well-known family of integral
equations, which have been studied extensively, the family of Fredholm in-
tegral equations of the second kind. Using this theory, it is proved that
equations (19) have a (unique) solution. If we impose some extra smooth-
ness conditions, we can derive some smoothness properties of the solution.
These smoothness properties also imply solvability of Rp = L\L\a for the un-
known absolutely continuous distribution function F. The extra smoothness
conditions are:

(LI) The partial derivatives Δ*(f) = ^h(t,x) and Δ^(ί) = ^h(x,t) exist,

except for at most a countable number of points #, where left and right

derivatives exist. The derivatives are bounded, uniformly over t and

x.

(L2) k is differentiate, except for at most a countable number of points

x, where left and right derivatives exist. The derivative is bounded,

uniformly over x.

We now can specify the structure of the canonical gradient θp €

ΦF{u)-φF{t) φF(u)

7 + ( 1 * τ 0 7 f r7 F{u)_F{t) +( 1 *τ0lΓ7fr) '

where φp satisfies the integral equation (19).

4.2 Asymptotic efficiency of the NPMLE

In this section, we will denote the underlying distribution function by Fo.
Under uniqueness, proposition 1.3 in GROENEBOOM AND WELLNER (1992)
gives an alternative criterion which is necessary and sufficient for the NPMLE.
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Given a sample (Ui, Vi, Δi, Γi) , . . . , (Un, Vn, Δ n , Γn), let T be the class
of distribution functions F satisfying

F(Ui) > 0 , if Xi < Uh

F(Vi) - F(Ui) > 0 , if Ui < Xi < Vi,
1 - F(Vi) > 0 , if Xi > Vh

and having mass concentrated on the set of observation points augmented
with an extra point bigger than all observation points. It is easily seen that
Fn belongs to this class. For distribution functions F G ί , the following
process t h * Wp{t) is properly defined:

ΎTT / ι\ I C 7~1/ \ — 1 J/^S ( C
1/1/ 7—11 T 1 —— I A H 1 ηi I fil 1 I 7/ 7) Λ '

- / 7 {F(υ) - Fίuϊ^dC
JuGlOΛ]

7 {F(υ) - F(u)YιdQn(u, υ, ί, 7)
υ£[O,t]

(1 - 6 - 7) {1 - F(υ)} 1c?Qτι('w,7j,^,7),

for t > 0,

where Qn is the empirical probability measure of the points (£/;, VJ, Δ t , Γt ), i —

Let Ji = [τ2 _i, rt ), i = 1,..., k + 1, To = 0, τjς+i = M and rt is a point
of jump of F n , i = 1,..., k. So τ\ and r^ are the first and last point of jump
of Fn respectively. Restriction to a compact interval [0, M] is only needed
to obtain the efficiency result Theorem 4.3, but not needed for Proposition
4, Corollary 4.1 and the consistency result (24).

Now proposition 1.3 in GROENEBOOM AND WELLNER (1992) says

Proposition 4 The function Fn maximizes the likelihood over all F G T if
and only if

dWPn(t')<0, V ί > r i , (22)ί
and

ί Fn(t)dWPn(t) = 0. (23)
J[ri,rk]

Moreover, Fn is uniquely determined by (22) and (23).

Note that there may be observation points before τ\ and beyond r*.
However, there the NPMLE should be 0 and 1 respectively. (See the dis-
cussion before proposition 1.3 in GROENEBOOM AND WELLNER (1992).) Now
the following corollary, proved in GESKUS AND GROENEBOOM (1995B) is an
immediate consequence.
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Corollary 4.1 Any function σ that is constant on the same intervals as Fn

satisfies

for i = 2, ...,&.

Remark. In fact corollary 4.1 follows from Fenchel duality theory (see e.g.

ROCKAFELLAR (1970), theorem 28.3).

Moreover we have uniform consistency of the NPMLE of Fo (see GROENE-

BOOM AND WELLNER (1992), part II, section 4.3):

Prob {jim^ \\Fn - F0\\oo = θ} = 1 (24)

Another result that will be needed can be deduced from VAN DE GEER

(1993).

Lemma 4.1 For i — 1,2,

\\Fn - F0\\Hi = Cyn-^Qogn) 1 / 6 ) as n - oo,

where H\ and H2 are the first and second marginal distribution function of

H, respectively.

In order to be able to use Lemma 4.1 one further specification is made

to the kind of functionals that are allowed:

(Dl) K(G) - K(Fo) = J R(x) d(G-)(x) + O(\\G - Fo\\2

2),

for all distribution functions G with support contained in [0,M], and where
||G - F0II2 is the X2-distance between the distribution functions G and Fo
w.r.t. Lebesgue measure on IR.

We also make the following assumption:

(D2) The underlying distribution function Fo has a density bounded

away from zero.

By condition (D2) and the strong consistency of the NPMLE, there exists

a constant c, such that

Fn(u) - Fn(t) > c, if u - t > £0, (25)
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if n is sufficiently large.

Combining all preceding results we then obtain the following theorem

(Theorem 2.1 in GESKUS AND GROENEBOOM (1995B)), showing efficiency of

the NPMLE:

Theorem 4.3 Let the following conditions on FQ, H and κFo be satisfied:
(Ml) to (MS), (SI) to (S5), (LI) and (L2) of the preceding section, and (Dl)
and (D2).
Then we have

Vύ(K(Fn)-K(F0))-^N(0,\\θ\\2

QFo) as n -+ oo (26)

Sketch of proof:
The proof boils down to proving the following relation

n) - K(Fo)) = V^J θFo d(Qn - QFo) + op(l). (27)

Then an application of the central limit theorem yields that the NPMLE of
K(FQ) has the desired asymptotically optimal behavior. The proof consists
of the following steps.

I. By conditions (SI) and (Dl), and lemma 4.1 we have

n) - K(Fo)) = V^J «F0 d(Fn - Fo) + op(l)

II. For F G / , one can define a function φp as a solution to the integral
equation (19). This solution can be used to extend definition (20) to
ΘF for F E f , where φF(u)/F(u) and φF(v)/(l - F(v)) are defined to
be zero if F(u) = 0 or if F(v) = 1, respectively. Note that θp no longer
has an interpretation as canonical gradient. In lemma 2.2 in GESKUS

AND GROENEBOOM (1995B) the following is shown for θp :

kFΰ d(Fn -F0) = -j θFn dQFo.

III. Corollary 4.1 implies

where <?Λ denotes the function defined in (20), but with the function
•t'n

φp replaced by φp , which is constant on the intervals of constancy

of the NPMLE (and equals φp at one point of the interval). We then

get

pn dQFo = V^Jθpn d{Qn - QFo) + V^J(θpn - θpn)dQFo

The second term can be shown to be op(l).
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IV. The first term is further split into

Pn - θFo)d(Qn - QFo)

The last term can be shown to be op(l), using a Donsker property of

the class of functions under consideration.
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