
Analysis of Censored Data
IMS Lecture Notes - Monograph Series (1995) Volume 27

EXPLORATORY METHODS IN SURVIVAL ANALYSIS

J. CROWLEY, M. LEBLANC, FL GENTLEMAN, AND S. SALMON

ABSTRACT. Despite considerable research in the past two decades, much of
the practice of survival analysis retains a black box flavor. In this paper we re-
view some of the available exploratory methods for survival data and indicate
some directions for future research. Methods discussed include box plots, run-
ning median plots, nonparametric estimation of the Cox regression function,
and tree-based approaches to forming prognostic groups and building regres-
sion functions. The methods are applied to data on patients with multiple
myeloma treated on clinical trials conducted by the (US) Southwest Oncology
Group, a multi-institutional organization dedicated to finding cures for cancer.

1. INTRODUCTION AND NOTATION

Exploratory methods for survival analysis remain underutilized despite having
received increasing attention from methodologists over the past decade. There are
two aspects of survival analysis which are particularly responsible for the lag in
the development and use of exploratory methods. The first is the fact that in
most applications most survival data are subject to censoring. This means that for
some individuals only partial information is available on their survival time, making
many ordinary plotting methods less informative than they would otherwise be. The
second reason is that the regression model most used in survival analysis, the Cox
proportional hazards model, does not lend itself easily to pictorial representations
of the data.

By exploratory methods we shall refer to those methods that attempt to describe
the relationship between the response and the covariates of interest, putting very
few restrictions upon that relationship. The emphasis of such methods is to use the
available data to derive some idea as to the relationships that exist, rather than
to test hypotheses that certain relationships hold. These methods are particularly
well suited to the situation in which the data of interest have been collected and
analyzed for some specific purpose but are still available to explore other questions
of interest. The relationships would then be used to suggest directions for further
research.

Interest will be focused in two areas, graphical methods and recursive partition-
ing. The methods will be illustrated using data on patients with multiple myeloma,
a malignancy affecting the plasma cells of the blood.

1991 Mathematics Subject Classification. Primary 62G07; secondary 62P10 .
Key words and phrases. Survival analysis, exploratory methods, graphics, recursive partition-

ing .
55



56 J. CROWLEY, M. LEBLANC, R. GENTLEMAN, AND S. SALMON

We first provide notation that will be used throughout this paper. Let X be a
random variable with survivor function

S(t) = P(X >t),O<t < o o ,

and distribution function F(t) = 1 — S(t). We will focus on survival data which
are subject only to right-censoring, and for simplicity will assume random right-
censoring. Let C denote the random censoring time. The data consist of T = XΛC,
Δ = I(T = X), and Z, where Λ stands for minimum, /(•) is the indicator function,
and Z is some covariate which may be vector valued. Given Z, we assume X and
C are independent.

The hazard function or age-specific rate of failure given by

w λ|o h

is also of interest, as is the cumulative hazard function

/
Jo

= / X(u)du.
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2. SOME BACKGROUND ON MYELOMA

Multiple myeloma is a malignant tumor arising from the plasma cell series of im-
munocytes which are responsible for the production of the antibody-immunoglobulins
involved in the immune response. In patients with myeloma, a clone of malignant
plasma cells proliferates in the bone marrow and invades bone, causing lytic bone
lesions and releasing calcium into the bloodstream. Malignant progenitors also cir-
culate through the blood and thereby are able to colonize marrow and other bony
sites. The myeloma cells produce a homogeneous (monoclonal) immunoglobulin
which generally has no known antibody function. The tumor also suppresses the
production of normal antibody-immunoglobulins via clonal dominance over normal
plasma cell precursors, which are suppressed from responding to antigenic stimula-
tion. The monoclonal immunoglobulin or subcomponents of the myeloma protein
can be deposited in various tissues in the body and lead to various organ dysfunc-
tions including kidney failure. Other associated findings in myeloma include severe
anemia due to bone marrow involvement, bone pain and fractures due to tumor
infiltration and calcium loss, and increased susceptibility to infection due to the
impairment of the normal antibody response to foreign microbes.

The age-adjusted incidence rate of myeloma in the US is about 5 per 100,000
people per year, is somewhat higher in males than females, and is roughly twice as
high in African-Americans as in European-Americans. The incidence in Bombay is
about one per 100,000 per year. The etiology is largely a mystery, but radiation,
exposures associated with farming, and chronic antigenic stimulation have been
implicated. (Riedel, Pottern and Blattner, 1991).

The accepted treatment is with a class of chemicals called alkylating agents,
which includes melphalan, and steroid hormones such as prednisone. Median sur-
vival after treatment is usually in the range of 24-36 months in various reports,
but the course of the disease is extremely variable. Accordingly, there is interest
in being able to identify patients who will do well with conventional therapy, and
those who will not; more aggressive treatment approaches might be attempted in
the latter group, for example. A staging system does exist (Durie and Salmon,
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1975), based on a quantification of the number of tumor cells and a classification of
kidney function, but improvements may be possible based on blood measurements
and pathologic characteristics of the tumor cells. Much of the exploratory analysis
we will present is towards this aim of developing an improved staging system, or
prognostic grouping, for myeloma patients.

3. GRAPHICAL METHODS

3.1. Methods for a Single Qualitative Covariate. With the notation of Sec-
tion 1, let the observed data for a sample of n individuals be denoted by the triplet
[(tiβi, 2ί)]Γ=i> a n d for convenience assume there are no ties among the failure times.
If the covariates have no effect on survival, or if their effect is to be ignored, then the
estimation of the survivor function S(t) is of interest. The product-limit estimator
(Kaplan and Meier, 1958) of S(t) is given by

where r2- is the number of individuals at risk at U (the number with observed survival
times, censored or not, which are at least ti ). This reduces to the usual empirical
distribution function in the absence of censoring.

Figure 1 gives product-limit estimates for a succession of four clinical trials con-
ducted by the Southwest Oncology Group, a consortium of institutions in the US
dedicated to finding improved treatments for all adult cancers. Each of the trials
in Figure 1 was a randomized comparison of several treatment strategies (different
combinations of alkylating agents and steroids), but the various approaches are ig-
nored in this presentation. The year of initiation of the trial is given by the first two
digits of the label in the figure (study 7704 was started in 1977, etc.). One conclu-
sion is that we have made little progress in the past two decades in the treatment
of patients with multiple myeloma.

The variability of outcomes in patients with multiple myeloma is illustrated in
Figure 2A. There was a common treatment arm in all four of these trials (the details
of which are not important for our purposes here), and Figure 2A shows the results
by trial for patients treated with the same arm in the same research group. While
these product-limit plots are widely employed and understood, alternative displays
are possible which might have advantages in certain circumstances. For example,
box plots are commonly used with uncensored data. Since the features of a box
plot can be thought of as functions of the empirical distribution function (sam-
ple medians, other quantiles, eίc), extensions are readily available using the same
functionals of the product-limit estimator S(t) (Gentleman and Crowley, 1991a).
Box plots for the four samples in Figure 2A are given in Figure 2B. The median
and quartiles form the box in the usual way, and the whiskers extend to the small-
est (largest) observed failure time within a distance of 1.5 times the interquartile
range. Observations outside the whiskers can be given different symbols to indicate
whether they are censored or not. Since survival curve estimates do not typically
reach zero due to censoring, the value of the survival curve at the last observation
can be given in the plot. If the censoring is so heavy that the upper quartile can
not be estimated, the box can be extended to the largest observed failure time and
the value of the survival curve at that point can be given. Ad hoc adjustments
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can be made for the whiskers, but the plots lose meaning when censoring is heavy.
As can be seen from Figure 2B, the box plot presentation is especially helpful in
displaying the differences in medians and quartiles across the samples. A number
of other displays are discussed in Gentleman and Crowley (1992).

3.2. Methods for a Single Continuous Covariate.

3.2.1. Running Quantile Plots. It has long been known that a few outlying points
in a scatterplot can greatly affect the impression that one gets from that plot. When
plotting survival data the censored data points can act as outliers and distort the
message that the data are trying to provide. Simply using a different plotting
character for censored observations cannot remove all of this effect. Figure 3A is a
scatterplot of survival and the log of serum βi microglobulin, an enzyme which is
elevated by the output of the clone of myeloma cells and also reflects the degree of
kidney failure caused by the processing a large quantities of complex proteins. The
data for this figure, as for the examples in the remainder of this paper, are from
one of the trials shown in Figure 1, Southwest Oncology Group Myeloma Study
8229 (Salmon, Tesh, Crowley et.al., 1990). Censored observations are plotted with
open circles, uncensored ones with closed circles. It is difficult to discern trends in
this plot, both because of the censoring and because of the inherent variability of
the data.

Adding a line which goes through the center of the data (in some sense) should
provide useful information to the analyst. The usual scatter plot smoothers are run-
ning averages or running least squares lines. Neither of these extends particularly
well to survival data. Since the data are censored one cannot actually get reliable
estimates of the mean; as an alternative running medians have been examined by
Doksum and Yandell (1983), building on unpublished work of Beran (1981). The
general question of interest is to estimate the conditional distribution of the survival
time X given the covariate Z,

and to plot functionals of these estimators, such as the quantiles. Our approach is to
use the k nearest neighbors of a point z to estimate the distribution function, using
the product-limit estimator (Gentleman and Crowley, 1991a). Figure 3B shows the
same scatterplot of survival and the log of serum βi microglobulin, with the median
and two quartile estimates superimposed, using a symmetric neighborhood of about
one-third of the data. The tendency for survival to decrease with increasing values
of the covariate is more apparent from this plot.

3.2.2. Nonparametric Estimation of the Regression Function. The current method
of choice for analyzing the effect of covariates upon survival time is the proportional
hazards model suggested by Cox (1972). The most general form for the model is

where λo(tf) is an unspecified baseline hazard and ψ(z) is some unspecified function
of the covariate. If φ(z) — expβz then inference can be made about β without
specifying Xo(t) . The partial likelihood (Cox, 1975) provides the basis for calcu-
lating estimates of β and also estimates of the variability of these estimates. Given
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(tι, 61, z i) , . . . , (tn, <5n, zn), the risk set at time X{ is denoted by Ri and consists of
the indices j such that X{ < Xj. The partial likelihood is given by

i
and the log partial likelihood is given by

\ ΣΣ eχp β

Note that we have assumed that there are no ties in the survival times. This assump-
tion is for notational convenience only. Approximations such as those suggested by
Peto (1972) can easily be extended to all cases given herein.

Several authors have extended this basic proportional model away from the
strictly linear case. The extension involves replacing exγ>βz with exps(z), where
s(z) is some smooth function. Estimation of s( ) then relies upon the extension of
some technique for smooth likelihood based regression to the case of smooth par-
tial likelihood based regression. This usually involves putting some restriction on
the form that s( ) may take, since unrestrained maximization results in a function
which will not be smooth in the covariate. It seems natural to assume that what-
ever the effect of the covariate upon survival time that it is at least slowly varying
with regard to the covariate.

Tibshirani and Hastie (1987) suggested the method of local likelihood. This
method consists of making the assumption that within some neighborhood of Z{
the function s{zϊ) is linear, so that for z in that neighborhood s(z) = cti + βiz. One
then uses the nearest neighbors to estimate on and βi and thereby gets an estimate
of s{zi). The function s( ) is then estimated using s(zi),.. . , s(zn) and linear inter-
polation between the observed values of the covariate. For the proportional hazards
model it has long been known that one cannot estimate α; due the nature of the
model. Let D denote the set of indices i of the individuals who failed and let Ni
denote the indices of the nearest neighbors of z%. Then it follows that locally the
partial likelihood is given by

π expfoj + ftzj) _ -ι-r exp(βizj)

and therefore, a is not estimable. Tibshirani and Hastie noted that the estimate of
βi corresponds to an estimate of s'(zi) and suggested that s(z) could be constructed
via numerical integration. Estimation of the local parameter βi by the method of
local likelihood consists of putting weight l/k on each of the k nearest neighbors of
Zi. Note that only points close by are used to estimate the value s( ) at any point.

A variation of local likelihood which we have explored (Gentleman and Crowley,
1991b) consists of using an alternating scheme to estimate both the baseline cumu-
lative hazard function and the regression function. The baseline hazard function
Ao(t) is first estimated, using all the data and a preliminary estimate of ^so(z) of
s(z),using the estimator proposed by Breslow (1974):

(3-1) Aoi(ί) = T ^ —
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Then with Aoi(ί) considered fixed, the full likelihood is used, locally, to give an
updated estimate £1(2), assuming s is locally linear. The local log likelihood for
this step is given by

Thus for each value of the covariate a linear approximation to s is made and the
appropriate parameters estimated. This estimate ?i(z) is then used in (3.1) to
give an updated estimate Ao2(*)> a n d the cycle is repeated until convergence. This
procedure has the advantage over local partial likelihood of more truly reflecting the
proportional hazards model, in that the proportionality is forced to hold globally
with respect to the same baseline hazard function.

Figure 4A shows the result of estimating s(z) by local full likelihood for the
myeloma data from SWOG 8229 using the covariate serum β2 microglobulin, and
a neighborhood of about one-third of the data. It can be seen that the regression
function is decidedly nonlinear. This nonparametric estimate could be used as a step
towards building a multivariable regression function using the additive approach of
Hastie and Tibshirani (1986), or it might suggest a transformation of the covariate
that would improve the linearity assumption for more conventional Cox regression
function fitting. Figure 4B shows the result of fitting a Cox regression using the
log of serum βi microglobulin, showing a nearly linear relationship.

3.2.3. Remarks. The results of Beran (1981), Owen (1987), and Dabrowska (1987)
can be used to establish asymptotic properties of the running quantile plots, but
many practical questions remain, among them the choice of the smoothing param-
eter k. If the smoothing parameter is to be estimated via cross validation having a
distance measure will be important. A cross-validation scheme would proceed for
a given k by deleting each point in turn, estimating the conditional distribution
function without that point, then measuring the distance between that distribution
and the one-point distribution (extensions to censored points would be required).
Minimization over k would then lead to the choice of this smoothing parameter.

Asymptotic results for local partial likelihood should be obtainable using An-
derson and Gill (1982), but care would have to be taken in the trade-off between
having the neighborhood shrink while the number of points in the neighborhood
grows. Results for local full likelihood appear more difficult.

4. TREE-BASED METHODS

Prognostic stratification is often desired as a guide in the choice of medical treat-
ment and clinical trial strategy. Typically, techniques for developing prognostic
groups based on survival data use the Cox regression model to identify important
predictors, and ad hoc methods for using the regression function to divide the pre-
dictor space into several regions. While such staging schemes have proven useful,
a technique based on recursive partitioning has some advantages. This procedure
works in non-linear and synergistic situations, and results in easily described group-
ings which may be more interpretable to clinicians than scoring rules based on the
Cox regression model.

Recursive partitioning algorithms can be very briefly described as follows. A
rule is adopted to partition the predictor space into two regions or nodes. The rule
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is applied recursively to the data until the space has split into a large number of
nodes, each containing only a small number of observations; this partitioning can
be described by a binary tree. Secondly, there are rules that allow one to prune the
tree and choose the "best" pruned subtree.

Several authors have proposed tree-based methods for censored survival data.
Gordon and Olshen (1985) and Butler, Gilpin, Gordon and Olshen (1989) modify
the Classification and Regression Tree - CART™ algorithm of Breiman, Friedman,
Olshen and Stone (1984) to censored survival data by using "distances" between es-
timated survival curves in place of least squares. The distance measures suggested
by Gordon and Olshen are based on Lp and Lp Wasserstein metrics. The "vari-
ability" of a node is defined as the minimum distance between the product-limit
estimator for the node and any step function. Reduction of within node variabil-
ity is used to grow the tree. Important aspects of CART™ are adopted, such
as initially growing a large tree, and then pruning to obtain a nested sequence of
subtrees. Finally, the "best" pruned subtree is chosen by k-ίold cross-validation.
Typically, one would report the product-limit estimator or median survival at the
terminal nodes of the best pruned subtree.

Segal (1988) and Ciampi, Thiffault, Nakache and Asselain (1986) propose a
different recursive partitioning technique for censored survival data. Instead of
splitting based on reducing within node variability, between node splitting is used.
This allows one to construct trees using two sample censored data rank statistics,
such as the familiar logrank test (Mantel, 1966). While there are advantages to rank
based partitioning, there are some problems with the proposed algorithms. Since
there is no measure of within node variability, Segal fails to adopt cross-validation
to choose the best pruned subtree. Clearly, some method of assessing whether
branches describe real structure or are just noise is important. Without such a
method, there is a danger of overfitting the model to the data. Ciampi does use
Akaike Information Criterion (AIC) to evaluate trees, possibly as an approximation
to cross-validation. However, he stops splitting a tree on the basis of significance
tests. Breiman et. al. note that to stop splitting at fixed split value can lead to poor
results; one should initially grow a very large tree and prune back to avoid missing
structure. In order to compare the within node distance approach to a between
node approach based on the logrank test, we performed a simulation study of the
properties of the first split of the predictor space into two regions. The results are
given in Section 4.3 below, following some further notation and definitions.

4.1. Lp Wasserstein and Lp Metrics. Let X\ ~ F\ and X2 ~ F^. Then the Lp

Wasserstein distance between F\ and F2 can be expressed (Shorack and Wellner,
1986) as

\s:
The Wasserstein metric focuses on the horizontal distance between proper dis-

tribution functions. An adjustment needs to be made for estimated survival curves,
which do not reach 0 if the largest observation is censored. For product-limit esti-
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mates F\ and F2 of F\ and F2, let

lim Fι(u) = mi < 1,
U—t OO ~~

lim F2(u) = m2 < 1.

Without loss of generality assume πi\ <m2. Define m^ = iΓ

2~
1(mi) and

F2{u) = F2(u) iΐu<m3

F2(u) = mi i f i ί>m3.

The define the distance for censored data based on the Lp Wasserstein metric as

[f du\

/o
Note that small differences in the tails of the distributions will have a large effect
on the Lp Wasserstein distance.

Now consider the ordinary Lp metric. For 1 < p < oo the Lp distance between
proper distribution functions F\ and F2 is

IT ,(u) - F2(u)f du\ .
/o J

This focuses on the vertical distance between distribution functions. With censored
data, vertical truncation is used. Let m4 = min ίF1~

1(mi), jP2"
1(m2)J. Define the

distance based on the ordinary Lp metric to be

F1(u)-F2(u) du

4.2. Growing the Tree. Recall that the data are given by [(Utδi, 0̂]Γ=i> which in
the terminology of recursive partitioning is call the learning sample and is denoted
by Cn. Define a measure of node impurity based on a distance between the product-
limit estimator of the survival curve for observations at a node t, St, and a step
function δ-z which has a single jump that minimizes the distance between the any

step function with a single jump and the survival function St. For the L\ metric
and uncensored data, δ-g is a step function at the median of St, and for the L2

Wasserstein metric and uncensored data, δ^ is a step function at the mean of St.
Then the reduction in impurity at a node t based on the learning sample Cn is
given by

G(t) = P(t)d(St,δst)-

where p(t) is the proportion of observations falling into node t and d(St, δ^t) is the
Lp Wasserstein or Lp distance between St and the step function δ'st.

A tree is grown on the entire learning sample by partitioning the covariate space
recursively into groups based on the Lp Wasserstein or Lp reduction in impurity.
There are many types of binary partitions of the space that could be considered.
However, the easiest to interpret is a split on a single variable; that is, a split
of the form "Is Zk < c ?" for an ordered predictor, or of the form "Is Zk £ S
?" for a categorical predictor, where S is a proper subset of the set of values of
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Zfc. Since interpretability of the tree structure is important, usually only these
simple univariate partitions are considered. Each split is chosen by evaluating the
reduction in the impurity splitting statistic for every possible split point for each
covariate. The covariate space is split on the variable and the split point that
corresponds to the largest splitting statistic. Each of the resulting regions of the
covariate space and data corresponding to the regions is represented by a node.
The same rule is applied recursively to the resulting groups until there are only a
small number of individuals in each node.

The same partitioning scheme is used in Segal (1988) and Ciampi et. al (1986,
1988) except that the logrank test statistic is used to measure the performance of the
split instead of the reduction in impurity based on the Lp Wasserstein or Lp metric.
Each possible split point for each possible covariate yields a two sample logrank test,
and the space is partitioned based on the split point giving the maximum value of
the logrank statistic. Figure 5 is a plot of the value of the logrank statistic (in
χ 2 form) as a function of covariate value, for several candidate covariates in the
myeloma data set described above. Imposed on the plots are the 1% and 5% points
of the permutation distribution of the logrank statistic, based on sampling from all
possible permutations of the covariate values over the censored survival times. It
can be seen that the maximum value of the logrank statistic is for the covariate
serum /?2 microglobulin, at a value of 5.4 nanograms per milliliter; it also appears
that more than a chance mechanism is involved.

4.3. Simulation Study. A full tree grown by these techniques is likely to be too
complex, and some of the branches may only represent noise. Some pruning is
necessary, as will be described in subsequent sections. However, for the purposes
of this limited simulation study, we will only be concerned with the properties of
the splitting statistics used to grow the trees. Among the class of Lp Wasserstein
or Lp metrics, the L<ι Wasserstein and L\ (W2 and LI in Figures 7-8) were chosen
because of their association with splitting statistics based on squared and absolute
error loss for uncensored data; these will be compared with splitting based on the
logrank statistic (Lr in Figures 7-8). To keep the study simple only a single split
was computed for a range of survival and censoring distributions.

4.3.1. Method. We simulated data from four models with several different censor-
ing configurations. The failure time distributions were members of the Gp family
(Harrington and Fleming, 1982),

and censoring times were distributed uniformly on (0,7). Assume Fj and Gj
(j = 1,2) are distribution functions of survival and censoring times. Each data set
was produced as follows:

(1) Zi = i:i= 1, ,2m
(2) Xi generated from F{ if i < m or F2 if i > m
(3) Ci generated from G\ if 2 < m or G2 if % > rn
where Zi is the covariate value, Xi is the true failure time, and d is the censoring

time for individual i. The survival models and censoring configurations are shown
in Table 1, where the percent censoring corresponds to the group with the longer
survival times.
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Note that the values of the covariate Z were assigned the integers from 1 to 2m,
and that the splitting statistics are invariant under monotone transformations of
the covariate. Hence, one way to assess the performance of a split is to consider the
number of observations to the left and right of the split. If F\ and F2 are different, a
good split would divide the observations simulated above into two groups of about
size m.

Model A represents a case where the survival distributions are not related to the
covariate; all true survival times are exponential random variables with mean 1.
Models B, C and D describe simple survival structure such that the median for the
failure time distribution F\ is approximately 0.35 and the median for F% is approx-
imately 0.70 for each model. Hazard functions corresponding to the distributions
F\ and F2 for each model are presented in Figure 6. The hazard ratios between the
observations is constant or decreasing.

Only one sample size is reported here, for 2m = 100. The minimum allowed size
of a group resulting from a split was 10 observations. This allowed only 81 possible
splits for the sample of size 100. One thousand replications were used. The same
generated data sets were used for each combination of splitting statistic, survival
model and censoring scheme.

4.3.2. Results.
No Structure. Results from Model A are summarized in Figure 7; they are repre-
sented as histograms of the split points on covariate Z. CART™ tends to choose
splits that send almost all observations to one daughter node if little response
structure is present and if the minimum permitted node size is small. This is called
end-cut preference by Breiman et. al. (1984). In the simulations with uncensored
data (column one) and equal 20% censoring (column two), the end-cut preference
phenomenon exists for each of the three statistics considered. However, because
the number of observations was restricted to be at least 10, Figure 7 shows that the
effect is weak. Jesperson (1986) shows that end-cut preference can be a problem
with the logrank statistic. He considers splitting on a single covariate for the pro-
portional hazards model in large samples and shows that with high probability the
cut point corresponding to the logrank test, for any e > 0, occurs in the e fraction
of the largest or smallest covariate values.

The effect of uneven censoring on the splitting statistics was also investigated.
For Z < 50 the censoring distribution was C/(0,γi) and for Z > 50 the censoring
distribution was ί7(0,72). The parameters 71 and 72 were chosen so that there
was approximately 20% and 50% censoring in the corresponding regions of the
covariate space, respectively. The results are presented in the third column of
Figure 7. The logrank statistic was not seriously affected by uneven censoring in
this example with no structure. Both the L\ and L2 Wasserstein statistics show a
striking dependence on the censoring pattern. Since the upper limit of integration
in these distance measures depends on where the data run out, heavier censoring
in one daughter node tends to increase the value of the statistic. This explains the
large proportion of splits near the change in the censoring distribution.
Simple Structure. Figure 8A shows the results of generating data from models B, C
and D with no censoring. The split point minus 50 can be thought of as an error
in the splitting, since the best split would divide the data into two groups of size
50.
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The first column of Figure 8A shows that for uncensored data generated from
model B all the statistics detect the structure well. However, in uncensored data
from models C and D, the efficacy of the splitting statistics is reduced. For the
logrank test this result is expected, since in model B the hazard ratio for the
distributions F\ and F2 is constant, and for models C and D the hazard ratios
are decreasing. The L\ and L2 Wasserstein statistics split more frequently to the
right of the optimal split point among the observations with the longer expected
lifetime. The skewness is more pronounced for models C and D than for B. The
higher variability of the observations generated from F2 compared to F\ makes the
L\ and L2 Wasserstein statistics more variable for splits among the observations
generated from F2, increasing the chance of the maximal splitting statistic occurring
among these observations with higher variability. The same phenomenon was noted
by Breiman ei ai (1984) for the splitting statistic based on squared error loss.

Figure 8B shows histograms for the same models with mild uniform censoring
(20%). The row corresponding to the logrank statistic shows that the performance
decreases only slightly from the uncensored case. However, the L\ and L2 Wasser-
stein statistics perform poorly under mild censoring. The L\ statistic splits much
more frequently among the observations with the longer expected lifetime and cen-
soring, due to the increased variability of the product-limit estimator near the end
of the data. The results are similar for moderate censoring, approximately 50%, as
shown in Figure 8C.
Remarks. These limited simulation experiments showed that there is a striking de-
terioration of the performance of both the L\ and L2 Wasserstein splitting statistics
if even mild censoring is introduced. For homogeneous survival distributions and
uneven censoring the distribution of the split points depended strongly on the cen-
soring pattern. Therefore, improvements to these splitting statistics are needed
before they can be recommended for use in the analysis of censored survival data.
The logrank statistic does appear to have promise as a splitting criterion, however,
justifying further investigation into pruning algorithms, as discussed below.

4.4. Pruning the Tree. Because of the appealing aspects of rank tests and the
limited simulation results above, we have extended rank based partitioning to in-
clude some of the pruning aspects of the CART™ algorithm (LeBlanc and Crow-
ley, 1993). In CART'™, initially a large tree is grown, then the tree is pruned
to obtain a nested sequence of subtrees. The "best" subtree is chosen by cross-
validation. Since with a rank test there is no intrinsic notion of within node vari-
ability, which is key in CART™, pruning and choice of the subtree must be based
on between node statistics. Define G(t) to be the "goodness of split" at node t. Let
I be the set of labels of internal nodes. Then one could evaluate the tree by the
split-complexity measure

The second term is a penalty for the complexity of the tree. Define r(t) and l(t) to
be the right and left daughters of ΐ. Let p(i) be the proportion of observations that
fall into node t. This technique is consistent with those procedures using within
node variability, since one could define

G(t) = p(t)R(t) - p(r(t))R(r
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where R(t) is the variability of node t. In the case of rank trees let G(t) be a
two sample rank test; for instance, the two sample partial likelihood ratio, or the
logrank test.

As shown in LeBlanc and Crowley (1993), spit-complexity leads to an optimal
tree through weakest link cutting for each α. The parameter a would typically be
between 2 and 4 for test statistics expressed in an approximate χ2 form, where a
value of 4 corresponds roughly to a .05 p-value, and a value of 2 is in the spirit
of AIC. For a given α, G(T) is an over-estimate of the worth of the tree due to
the multiple split points considered. A bootstrap bias correction can be applied, in
which the overoptimism is estimated by creating a tree for each bootstrap sample,
and calculating G for this tree using both the bootstrap and the original sample,
then averaging. Applying this correction leads to smaller trees. Other methods of
bias correction can be based on cross-validation or permutation sampling.

A fuller implementation of the CART™ algorithm, including cross-validation
for the choice of α, can be achieved based on (a one-step approximation to) the full
nonparametric likelihood, using the Breslow estimator for the cumulative hazard,
as in Section (3.2.2). Likelihood deviance then substitutes for least squares as a
measure of within node variability. Details can be found in LeBlanc and Crowley
(1992).

4.5. Amalgamation. The first work on amalgamating nodes with similar survival
from distant parts of the final tree, to form a few prognostic groups, was done by
Ciampi, Hogg, McKinney and Thiffault (1988). They use a logrank partitioning
procedure for growing the tree, then use an algorithm based on minimal logrank
tests to combine nodes of the tree into classes. An alternative we have proposed
(LeBlanc and Crowley, 1993) is based on defining an ordered categorical variable
from some measure (such as median survival or hazard ratio) on the terminal nodes
of the tree, then subjecting this variable to a recursive partitioning procedure.
While an automatic procedure has some attraction, it is likely that the analyst will
want to retain control over which of the terminal nodes should be grouped to form
a staging system.

4.6. The Myeloma Data Set. We implemented a recursive partitioning scheme
on our myeloma data set, using the logrank test for splitting with a minimum node
size of 25 observations. The tree was pruned with the split-complexity algorithm,
where test statistics were bias-corrected using approximate degrees of freedom cal-
culated by permutation sampling. The parameter a was set to a value of 4 to yield
the tree given in Figure 9. Below each split in the tree the logrank test statistic and
the approximate degrees of freedom corresponding to the adaptive split are given.
Notice that the degrees of freedom decrease as one moves down the branches in the
tree because there are fewer potential split points in the lower nodes. Below each
terminal node the number of observations and the logarithm of the relative risk
compared to the left most node are presented.

The first split on the tree is on serum /?2 microglobulin (sb2m) at a value of 5.4.
The next two splits are both on a derived variable measuring immaturity of cells
(iandd) and further splits are on percent plasmablasts (plasmabl), albumin (alb),
calcium (cal), age and performance status (swogpf). Based on an ordering of the
terminal nodes by the relative risk, iouί prognostic strata were constructed : I -
node 1, 2, and 6, II - nodes 3, 4 and 7, III - nodes 8 and 10, and IV- nodes 5, 9 and
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11 (where the nodes are numbered from the left in Figure 9). The survival curves
corresponding to the 4 prognostic groups are illustrated in Figure 10A, contrasted
with the results based on the Durie-Salmon staging system (Figure 10B).

4.7. Remarks. Many questions remain about the properties of the tree-based
tools proposed here. The conditions needed for asymptotic results seem to require
that the terminal node size approach 0, a condition not generally approximated in
practice. Monte Carlo experiments are extremely computer-intensive, and require
careful specification of the objectives of the analysis and choice of the experimental
conditions. Perhaps the best proof of their usefulness will come with implementa-
tion by practitioners, including validation of results with external data sets.

5. CONCLUDING REMARKS

Several approaches for the exploration of survival data have been presented,
and implemented on a set of data on patients with multiple myeloma. It is our
hope that the methods presented will prove helpful to the legions of statisticians
involved in analyzing censored survival data, and to that end many of the routines
have been implemented in the S language (Becker, Chambers and Wilks, 1988) and
are available from the second author.
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TABLE 1.

Fι
Ψι,Pi

1.000,0.00
2.000, 0.00
2.184, 0.25
2.888, 1.00

F2

V>2,P2

1.000,0.00
1.000, 0.00
1.092, 0.25
1.444, 1.00

Uniform (0,7)
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