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Abstract

For testing the null hypothesis that a life distribution is exponen-
tial against the NBUE (or NWUE) class, the structure of progressively
censored TTT statistics is critically examined and incorporated in the
study of some linear and Kolmogorov-Smirnov type tests essentially
proposed by Koul (1978b) and Kumazawa (1989). Their distribution-
freeness property under the null hypothesis (conditionally, under some
censoring schemes) is established, and related asymptotics are pre-
sented.

1. Introduction. Nonparametric notions of aging have been popular and

useful for modeling degradation in performance in a wide variety of con-

texts ranging from reliability engineering to biomedίcal applications. Corre-

spondingly, the development and investigation of statistical tests, based on

complete or censored life-test observations, for testing the null hypothesis of

exponentiality against various aging alternatives has been an active area of

research. In particular, the need for statistical inference with censored data

occur when observing all units in the sample is not feasible.

Among the standard aging notions (viz., Barlow and Proschan 1991),

the NBUE (New Better than Used in Expectation) is a relatively weak form

of aging assumption, often made when one is unwilling to invoke a stronger

assumption such as IFR, IFRA or NBU. A continuous life d.f. F on R + =

[0, oo), with a finite mean μ and survival function F = 1 - F, is said to be

(strictly) NBUE if

(1.1) Γ F{x)dx{<) < μF(t) , VI > 0.
Jt
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type tests; NBUE; resampling plans; total time on test (TTT); weak convergence.
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The dual property NWUE (W = Worse) is defined by reversing the inequal-
ity. The nonparametric class of d.f.s so defined includes the exponential
distributions, characterized by pointwise equality in (1.1).

We intend to test for the null hypothesis Ho : F is exponential, against
the class of alternatives H* : F G NBUE class. Tests for this and other
nonparametric alternatives available in the literature (viz., Hollander and
Proschan 1972, 1975, Koul 1978a, b, Koul and Susarla 1980, and Kumazawa
1986a, b, c, 1989) are all based on the total-time-on-test (TTT) statistics at
successive failures, and they exploit the asymptotic normality of the TTT-
statistics under HQ. Our main objective here is to focus on various types
of censoring, commonly encountered in practice, and critically examine the
role of progressively censored (PC) TTT statistics in this context.

The standard results and large sample properties of various estimators
and tests based on either the KS-type statistics or the Kaplan-Meier empiri-
cal process arising in random censoring have been extensively studied in the
literature; we may refer to Shorack and Wellner (1986), Fleming and Harring-
ton (1991) and Andersen et al. (1993), among others. However, these tests
are considered either in a goodness of fit or in a two sample setup; whereas
our proposed tests relate specifically to NB(W)UE alternatives, and hence
a different approach is needed.

In the uncensored case, treated in Section 2, our motivation leads to an
alternative formulation of a KS-type test which was derived earlier by Koul
(1978b). With Type-I and Type-II censoring, considered in Section 3, an
appropriately modified version of the test statistic in the uncensored case is
shown to remain distribution-free (conditionally in Type-I censoring) under
HQ. Issues concerning the computation of 'Bahadur efficiency' under such
censorings are explored. In the random censoring case, Koul and Susarla
(1980) proposed a different type of test. Kumazawa (1986a,b,c; 1989) ex-
tended their test and formulated a KS-type statistic for the NB(W)UE al-
ternatives. However, his treatment is based on some stringent regularity
assumptions. Moreover, in order to apply his statistic for actual testing, the
related distribution theory needs further exploration for the random cen-
soring case. We intend to fill in this gap ( in Section 4) by incorporating
suitable resampling methods and more appropriate asymptotics to match
less stringent regularity assumptions. We propose suitably jackknifed and
bootstrapped versions of KS-type and linear test statistics and explore their
properties using functional jackknifing and bootstrap methodology.

2. Preliminary notions. We summarize some standard results to facilitate
the presentation in subsequent sections. Note that by (1.1) F is (strictly)
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NBUE iff

(2.1) ξF(t) = μ^iμFit)- / F(u)du}(>) > 0, V* G R +

Jt

The opposite inequality holds for a NWUE d.f. F. Further, ξF(t) = 0 iff
F is exponential. The functional £ F = {f/r(*)>* ^ ^-+} under complete or
censored life-tests naturally leads us to our various test statistics.

In the uncensored case, with observed lifetimes X i , . . . , X n , the (sam-
ple) empirical </./. Fn(x) = n " 1 ΣΓ=i I{χi < z),z G R + , is an unbiased
optimal estimator of F. Here I{A) stands for the indicator function of the
set A. Let Xn:o = 0 < Xn-.i < . . . < Xn:π < -^nm+i = oo be the or-
der statistics corresponding to X\,..., Xn (ties neglected with probability
one). Then Fn(x) = (k - l)/n, for Xn:fc-i < a: < Xn:A;,A; = l , . . . , n + 1.
To estimate ^ , it is quite appealing to construct the empirical functional
ξFn = {ξFn(t)-,t G R"1"}, by replacing F with F n in (2.1). Here, μ is replaced
by Xn = /0°° Fn(x)dx, where ^ n = 1 - Fn. Thus the plug-in estimator of

(2.2) | n (ί) - fFn(t) - X-^^n^nW- Π Fn{u)du),

The normalized spacings dno = 0, dnjt = (n — fc + l){Xn :^ — Xn :^_i}, A; =

l , . . . , n lead to the cumulative normalized spacings Dnk = Σj<kdnj =

Σj<kχn:j + (n - k)Xn:k, 0 < k < n. The fofa/ /ime on test (TTT) at

time point t G [Xn:A;,^n:A:4-i) is defined as

(2.3) Dn(t) = l?Λib + (n - *)(< - Xn:k), for * = 0,1, »., n.

Thus

(2.4) ξn(t) = {Dn(t)/Dnn - Fn(t)}9 Xn:k < t < Xn:k+u 0<k<n.

Let us examine the nature of the stochastic process {£n(0?^ — 0} Note
that Fn is a step function with jumps of magnitude n~x at the points
Xmij.. .,Xn:n>) while jDn(O is continuous and piecewise linear though its
first derivative is discontinuous at the failure points Xn:i> -jXnk- There-
fore, motivated by (2.1) and (2.4), we may consider a KS-type test for NBUE
alternatives based on the statistic

(2.5) K+ = supt>oίn(<) = max {ξn{Xn:k)} = max {Dnk/Dnn - k/n}.

For NWUE alternatives, the appropriate test statistic is

(2.6) K- = mzx{(k/n - Dnk/Dnn :0<k<n}.
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The statistics K+,K~ were considered earlier by Koul (1978b) and revis-
ited by Kumazawa (1989). In the following we present the relevant dis-
tribution theory from a different perspective wherein we have a slightly
different normalizing factor. Note that under H0(F is exponential with a
finite mean), the dnk are i.i.d. exponential, so that the joint density of
u n = D~^(dnU..., dnn) is given by

(2.7) Γ(n)dui...A*n, uά > 0, un =

which does not depend on the mean μ. Thus, under H0,K+ (or, K~) is

distribution-free and its exact distribution can be obtained by direct enu-

meration. We introduce a stochastic process Wn = {Wn(t),t G [0,1]} by

letting Wn(t) = (n - lf'2{Dn[nt] - tDnn}/Dnn, t G [0,1], where [s] =

largest integer < s. Then # + = y/n - l[sup{Wn(ί) : t G [0,1]}], and a

similar representation holds for K~. By an appeal to (2.7), it can be easily

seen that under H

(2.8) Wn ^ D W°, in the Λ-topology on D[0,1],

where W° is a Brownian bridge on [0,1]. Thus, we have

(2.9) Jim^ P{(n - 1)1/2K+ > λ \ Ho} = e~2χ2, Vλ > 0,

and the same holds for K~. It is worth pointing out here that based on the
multivariate beta distribution in (2.7), our normalizing factor is y/n — 1 in-
stead of the conventional ^/n, and this adjustment may make the asymptotic
distribution closer to the exact one for moderate sample sizes as well. The
asymptotic non-null distribution theory, including the Bahadur efficiency
results, studied in detail in Koul (1978b) remain pertinent to our scheme as
well, and hence, we avoid this repetition.

3. Type I and II censoring. In a Type-I censored or right truncation

model life-testing is confined only to a finite time interval (0,/*]. Thus,

the failures occurring in (0,/*] are observed, while the units surviving at

t*(< oo) and the corresponding unobserved survival times are regarded as

censored at that point. In Type-II censoring, for a prefixed positive integer

r*(< n)-> life-testing experiment is curtailed at (a stochastic) time point Xn:r*

corresponding to the r*th failure. In Type-I censoring r*(= njPn(**)), the

number of failures occurring in (0,Γ), is stochastic though t* is pre-assigned

(nonstochastic). In Type-II censoring, generally, we choose r* such that

r r V = i > * e (0,1).

In Type-I censoring, Fn(t*) - n~λr^ = p*, is stochastic, and p* -+ p* =

F(t*) a.s., as n —• oo. For testing Ho : F is exponential against NBUE
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alternatives, by analogy with (2.5), we consider the test-statistic

(3.1) JSΓ+(f) = m a x { l W A < - * / < : 0 < k < < } .

The conditional density of U* = D~* (cfnl,..., dn r ), given r*, is

(3.2) Γ(r*)dtAi cίttr , Uj > 0, «i + h t*r = 1.

Therefore, under Ho, K+(t*) is conditionally (given r* > 0) distribution-
free. Conventionally, we let if*(£*) = 0 when r* = 0, which occurs with
probability {F(t)}n -> 0 as n -+ oo. Parallel to (2.7)-(2.8), we set here
Wn* = W ( ί ) = Λ / ϊ ^ { A ψ r ]/Mir - *},* € [0,1]}. Then, as in (2.8),
under Ho, given r*, W£ weakly converges to a Brownian bridge W£, and as
r*/n —• p*(> 0) a.s., as n —> oo, we have under #0?

(3.3) W* -+D W°, in the Skorokhod Λ-topology on 2J[0,1].

Thus, we obtain that for every λ > 0,

(3.4) n ^ p { « - I ) 1 / 2 # ί ( * ) > A I ̂ 0} = β~2λ2.

Likewise, we modify K~ in (2.7), define ίf~(ί*), proceed as in (3.2)-(3.4),
and show that (3.4) applies to the asymptotic null distribution of K~(t*).

Let us place the Type-II censoring case side by side. Here, r* is non-
stochastic, so that we may define the test-statistic K^r* as

(3.5) K+r. = mzx{(Dnk/Dnr*) - k/r* :0<k< r * } ,

and an analogous expression holds for iΓ~r*. In this setup, ϋf+r« (or ϋΓ~r ) is
distribution-free under Ho and the same limiting distribution in (3.4) holds.

The Bahadur efficiency results obtained by Koul (1978b) in the uncen-
sored case need considerable modifications for both Type-I and II censoring
schemes. Fortunately, the null distributions are conformable in both the
uncensored and censored cases in the sense that they differ only via their
normalizing factor, and the same limiting distribution prevails. Therefore,
the essential task is to study the a.s. convergence properties of ϋί+, uf+r,
etc. when the null hypothesis may not hold. We deal here only with Type-II
censoring case as the other one can be handled similarly.

We define the p-value (or level attained) of K*r* (at t) by Ln(t) =
P{K+r* > t I Ho}, t > 0, so that by (3.4) we have

(3.6) i n ( ϊ + 0 - exp{-2(r*-l)( i ί :+0 2 [ l + ^(l)]} a.s.

Note that n^r* —• p* > 0 as n —*• 00. Thus, under the alternative

hypothesis, whenever K*r* —• wp* a.s., as n -+ 00, we may conclude that the
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Bahadur slope for K+r* is 4p*Wp* = c(p*, w), say. To formulate wp* suitably

we recaU that rΓλΌnk = f*n:k xdFn(x) + F(Xn:k)Xn:k, k = 0,1, ...,n. Also

for every u G (0,1), let

(3.7) tf(tι) = / {F~1(s)ds + (1 - u)^~V) = / ^ ( » ) ώ .
Jo Jo

Note that the Dnk are all appropriate i-statistics, and hence, the general
asymptotic results including Bahadur representations for such Z-statistics
[studied in details in Chapter 4 of Jureckova and Sen (1995)] can be incor-
porated to conclude that

(3.8) mzxUn^Dnk - S(k/n)\ : 0 < k < n} -> 0 a.s., as n -+ oo.

Moreover δ(u) is nonnegative, / in u G (0,1) with 6(1) = μ. Therefore,
from the above discussion, it follows that for every p* > 0,

(3.9) w; - sup{δ(u)/δ(p*) - (u/p*) :0<u<p} = < / % * ) , say,

When p* = 1, one may proceed as in Koul (1978b) and compute the Bahadur
slope in specific cases. However, for p* < 1, the situation is more complex,
mainly due to the fact that for NBUE distributions, δ(u) > μu for all u G
(0,1), but the excess δ(u) — μu may not be monotone or even a simple (e.g.,
linear) function of u. For this reason, when p* < 1, we may compute the
limiting Bahadur efficiency by considering a sequence {Fj,j > 1} of NBUE
distributions, with the same mean μ < oo, converging to an exponential.
Corresponding to the sequence of d.f.s Fj, define the functions δj(u) , 0 <
u < 1, j = 1,2,... as in (3.7), and assume that δj(u) = μu + gj(u),0 < u <
1, j > 1, where gj(u) —* 0 as j —• oo, for each u G (0,1). Then writing
wp*j for wp* when F = Fj, we have

( 3 . 1 0 ) t v j = (p*2μ)-1suV{p*gj(u) - u9j(p*) :0<u< p*}[l + o ( l ) ] ,

and this may be incorporated in the study of the limiting Bahadur efficiency
of {K£r*} with respect to {K+}. A similar picture holds for {K~r*} (with
respect to {K~}) for NWUE alternatives with a finite mean. In passing, we
may remark that NBUE (NWUE) alternatives are not of parametric nature
(e.g., location / scale purturbations), and hence the conventional definition
of Pitman relative efficiency may not apply here. Also, for a sequence Fj
of NBUE (NWUE) d.f.s converging to an exponential F, the asymptotic
distribution theory of KS-type statistics may not conform to a simple pattern
for which some other conventional measure of asymptotic relative efficiency
is readily adoptable. Large deviation results for NBUE (NWUE) classes
of distributions are therefore of considerable interest in the study of such
asymptotic properties of KS-type tests.
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4. Random censoring. In random censoring schemes, the set of censoring

variables TΊ, ...,Tn are i.i.d. according to a d.f. G defined on R + , such that

Ti and Xi are independent for each i = 1,. . . , n. Both G and F are assumed

to be continuous, so that ties can be neglected with probability 1. It is

customary to let the censoring d.f. G belong to a general family Q. The

observable random elements are

(4.1) Zi = min(H,Xt-)> * = T(zi = χi), = l , . . . , n .

In this random censoring scheme, for testing Ho of exponentiality of F
against NBUE (NWUE) alternatives, G is a nuisance parameter (functional).
Note that the Z t ,i = 1,.. . ,n are i.i.d. with d.f. H{z) = 1 — S(z), where
# ( z ) = F(z)G(z). H e n c e the exponential vs. NBUE (NWUE) property of
F may not be preserved by H when the censoring distribution G is arbitrary.
Therefore, in order to apply the methodology developed in sections 2 and
3, to develop a test based on the observed responses (Z^ , J;), an alternative
approach based on weak convergence results is used and presented below.

For this purpose, we invoke the usual product-limit (PL) estimator of F
to estimate the criterion functional ξpQ in (2.1) and modify the estimate
| Λ ( . ) in (2.4). Letting Nn(t) = Σ . < n / ( Z t > *)> * e R + , and setting
α t (ί) = I(Z{ < ί,/t = 1), ί > 0, i = 1,.. . ,n, and τn = max{Z; : 1 < i <
n}, the Kaplan-Meier (1958) PL-estimator of F, based on the observations
(Z t , /i), i = 1, . . . , n is defined as

(4 2) p m - π f * w ) r t(t )m < r) - π
(4.2) Pn(t) - XI ( ^ ( z 0 + χ ) /(* < rn j - XX

where 5 n ( ί ) = n'1 Σi<n

 J(zi > *) = n-λNn{t),t > 0. The estimator of the

mean μ, based on Pn(/j, is /i* = /0°° Pn{u)du = JJ"n Pn{u)du, and hence, we

consider here the empirical measure £* = {fn(*)?* - }̂? where

(4.3) £(t) = (μ j-^/i Pnίί) - Γ Pn(ιι)di£}/(< < rn).
Jt

Let ( Z n : 0 = 0) < Zn:1 < ••• < Zn:n(< Zn:n+1 = +oo) be the order
statistics corresponding to the observations Z, , i < n. These order statistics
correspond to both failure points (for which /; = 1) and censored points
(where I{ = 0). Let mn = Σi<n ai(τn) be the total number of failure points,
and let these ordered failure points be denoted by Z * : 1 . . . , Z * : m n . We write
equivalents Z* : J = Zn:Sj, j = 1,. . . , m n , where {6Ί,. . . , Smn] C {1, . . . , n}.
Then clearly, Nn(Z*:j} = (n - Sj), for j = 1,. . . , m n . Hence, by (4.2),

(4.4) Pn(t) = {[ [ _ s ' 1 ) , for Z*:j < t < Z ; : j + 1 , 0 < j < m n ,
i<3 n j +
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where Z* : 0 = 0 and Z^:mn+1 = +00. Consequently, Pn( ) is also a step-

function with downward steps only at the failure points 2Γ*:J-, 1 < j < mn.

Therefore, in (4.3), Pn is a step-function, while /J^1 Pn(u)du is continuous

and piecewise linear (between successive Z* :J ). Hence, as in the uncensored

case, we may consider the following KS-type test statistic

(4.5) KtR = max{C(Z;:j) : 0 < j < mn}.

A variant form of this statistic has been considered by Kumazawa (1989),
although not as explicitly by incorporating (4.3) to structurize the pic-
ture. Since G is arbitrary, K*R is not genuinely (or, even conditionally)
distribution-free. Nevertheless, it is possible to consider some asymptotic
tests for Ho vs. NBUE alternatives, based on the following weak conver-
gence and resampling methodology results. In passing we may remark that
without this additional consideration of the asymptotics, the statistic in (4.5)
is not by itself usable as a test statistic. Further, in view of the exponen-
tiality of F, not all the regularity assumptions in Theorem 2.1 of Kumazawa
(1989) are needed in the current context.

We rewrite ξF(t) = ξ(F\ t), t G [0,oo),F G T where £(.) : f x R + -> R,
is a functional of F G T and a real valued function of t G R + . Following
Ren and Sen (1991), we may call £(.) an extended statistical functional.
In the same vein, we let £*(<) = ξ(Pn;t), t G R + . Recall that ξF(t) =
F(t) - UΓ_F(y)dv)IU™ F(y)dy),te R+, SO that for F defined on R+ with
μF = Jo°° F(y)dy < oo, £ F ( 0 is a bounded and differentiate functional. As
such, we follow the usual differentiable statistical functional approach as in
Ren and Sen (1991), and arrive at the following:

(4.6) e ; ( ) f ( , ) /

for t G R + , where ξι(y; £, F) stands for the Hadamard or compact derivative

of ξ(F t) at (F,t), and the remainder term

(4.7) Rem(Pn,F;*) = o ( | | P n - F | | ) , uniformly in ί E R + .

At this stage, we can appeal to the usual weak convergence results on the

PL-estimator [viz., Shorack and Wellner (1986) and Pollard (1991)], and

claim that under the assumed regularity conditions, as n —• oo,

(4.8) nι'\Pn-F) -+D WZ = {WZ(t),teR+},

where the Gaussian WQ can be expressed in terms of a standard Brown-
ian motion B = {B(t),t > 0} by the relation W$(t) = F(t)B(C(t)),t G
R+, where C(t) is nonnegative, nondecreasing and is defined by C(t) =
!o{F2{y)G{y)]~1dF{y), t G R+. Note that in the uncensored case, G(y) =
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Viy < oo, so that C(ί) = F(t)/F(t), t > 0. Hence, in this case, we have,
W*(t) = F(t)B(F(t)/F(t)) = B0(F(t)), t > 0, where {B0(t),t G [0,1]} is
a standard Brownian bridge.

In statistical modeling and analysis of censored data, the Cox (1972) pro-
portional hazard model (PHM) is often invoked to yield manageable (albeit
generally nonrobust) solutions. Here we set

(4.9) G(x) = {F(x)}\ x G R + , λ > 0 .

We can verify that there exists a monotone time transformation s = h(t) with
Λ(0) = 0 and h(oo) = 1, such that WJ(Λ-χ(θ)) = W0(s) = B0(s), s G [0,1].
This simplification, also noted by Kumazawa (1989), may not generally hold
in random censoring sans the PHM assumption. In any case, to define
C{t) properly, we need that G(y) > 0V y for which F(y) > 0. Since F is
exponential under Ho, we therefore assume that G does not have a finite
upper endpoint.

The process £*(/) - £p(*)> underlying our proposed tests, differs from the
conventional empirical process in (4.8) or its two sample versions. However,
we note that under HQ,

/

oo _

Pn(y)dy - e

where μ* = /0°° Pn(u)du. Since F is exponential (μ) under Ho, the PHM
condition on G asserts that G is exponential with mean v = μ/λ, and this
characterization of G under the PHM makes it redundant to impose some
other conditions such as in Theorem 2.1 of Kumazawa (1989). For random
censoring with an arbitrary G with G(x) < 1 for all x < oo, such a reduction
(in law) to a Brownian bridge by a time-transformation may not be taken for
granted. Consequently, there is a genuine need to find out the asymptotic
distribution of K^R m (4-5), under the null hypothesis without the PHM
assumption. It seems quite possible to address this issue by incorporating
some resampling methods, and in the rest of this section, we probe into such
possibilities.

It is worth mentioning in this context that for this specific NBUE test-
ing problem, Koul and Susarla (1980) proposed a linear test statistic with
the property of asymptotic normality. Their findings were extended by
Kumazawa (1986a,b; 1989), who also studied asymptotic efficiency results.
These test statistics can be expressed, in a unified form, as a linear functional
Ln = / 0~&(ί)ΛIn(t), where Πn(<) is | in t G R + ,Π n (0) = 0,Πn(oo) = 1,
and is a step-function with jumps ank(> 0) at the points Z*:A., k = 1,..., mn.
Thus, Ln can be expressed as

(4.11) Ln = Σ *nkC(Z*n..k).
k<mn
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We assume that there exists a proper measure Π, such that Πn —• Π a.s.,as
7z —• oo, where Π(0) = 0 and Π(oo) = 1. Based on our weak convergence
results and general asymptotic results on i-statistics (viz., Chapter 4 in
Jureckova and Sen 1995), by letting λ* = /0°° &r(ί)dΠ(ί), it readily follows
that

(4.12) n i / 2 ( Z n _ λ * ) ^ iV(O,7

2(Π,F,G)),

where the asymptotic variance function η2 = 7 2 ( Π , J F , G) depends on the
known Π and unknown F and G. Even under Ho (when F is exponential),
as G is unspecified, j2 is not specified and may not be a scalar multiple
of μ2 or some other function of the exponential d.f. Therefore, even if one
wants to use this asymptotically normal test statistic (with λ* = 0 under
exponentiality), there is a need to estimate η2 consistently from the experi-
mental data set. For this purpose, both jαckknife and bootstrap methods can
be effectively incorporated.

First, consider the jackknife methodology. Let L)*!_ι be the countrerpart

of Ln for a sample of size {n — 1) obtained by deleting the i-th observation

from the base sample, and let Lnj = nLn — X^_l9 1 < i < n, be the

pseudoυalues generated by the jackknifing method. Further let

(4.13) LnJ = n-1 Σ Ki, VnJ = (n - I ) " 1 £(£ Π | t - - LnJ)
2.

Then, Lnj is the jackknifed version of Ln and Vnj is the (Tukey-) estimator
of 7 2 . From general results on functional jackknifing ( viz., Sen 1988a, b), it
follows that even if F is not exponential

(4.14) K j ^ 7 2 ( Π , F , G ) a . s . , as n -> oo.

Thus we may consider the test statistic Tn = Lnj/y/Vnj, and select the
(asymptotic) critical level as τa = Φ - 1 ( l — a).

Next, consider the bootstrap version. From O n = {(Zt ,/ t ), 1 < i < n},
the collection of the random elements in (4.1), draw with replacement (SRS)
a sample of size n and denote this collection by O* = {(Z*,/*), 1 < i < n}.
Then P{(Z;,/f) = (Za,Ia) \ On } = 1/n, for every α = l , . . . , n and
i = 1,.. .,n. The usual multinomial law can be brought in to describe the
conditional probability structure of O*, given O n . Let P^AΓ denote the
product limit estimator in (4.2) and its derived mean when O n is replaced
by O* and incorporate them to define i * , the bootstrap counterpart of
Ln in (4.11). Then generate a large number M of such bootstrap samples
(which are conditionally independent, given O n ), and denote the correspond-
ing bootstrap statistics by £*^ , j = 1,..., M. Then a bootstrap d.f. of Ln

can be formulated as

(4.15) H*nM(y) = M-1 £ I{yfi(Kj " Ln) < y}, V € R+
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From the general results on bootstrapping (viz., Efron and Tibshirani 1993)
and by virtue of the inherent asymptotic normality results, it follows that
as n, M increases,

(4.16) βupJJ5Γ^(»)-Φ(y/ 7 )H P O.

Therefore, the upper α-quantile of H*M provides a consistent estimator of
the critical level. Alternatively, one may define the bootstrap variance esti-
mators

M

(4.17) V:M = ^

and consider the test statistic T* = VnLn/y/V*M, for which τa provides a
consistent estimator of the critical level.

In the current context, K*R is a functional of £*(.), which is attracted
in law by a Gaussian process. As such, such resampling methods need some
modifications. For bootstrapping, we proceed as in before. Based on O*, we
incorporate P^,μ** etc. in the construction of the KS-type statistic, which
we denote by K^. Then parallel to (4.15), define

(4.18) H*nM{y) = M-1 £ I{^/ϋK^ < y}, y e
3<M

We take the upper α-quantile of this empirical bootstrap d.f. as the critical
level of K*R] its consistency may then be proved as in Huskova and Janssen
(1993), who have considered similar functionals of degenerate {/-statistics.
Our basic weak convergence results again provide the desired theoretical
justifications.

Finally, we consider a version of jackknifing which may be applied here
under suitable regularity conditions. Recall that

(4.19) ξ*(t) = Pn(ί) - (J™ Pn(y)dy)/μ*n, t > 0.

Let PJ i-L and μ^_x be the PL-estimator and its derived mean based on a
sample of size (n — 1) obtained by dropping the ith. observation from the

base sample, and let ξ*nψ = P^t) - (/#!*)" * /« P^.M^t > 0, for
i = 1,..., n. Then the pseudovalues (processes) are denoted by

(4.20) Cti(t) = < ( ί ) - ( n - l ) £ S ( ί ) , < > 0 , l < ί < n .

By an appeal to functional jackknifing methodology (viz., Sen 1988a, b), we
define

inΛt) = n " 1 £ & , , - ( * ) , ί > 0 ,

Tb JL
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for s,t £ R + . We need to compute the above only at the observed failure
points Z * : J , 1 < j < mn. Using the transformation s —• Pn(s), t —• Pn(t), we
write v^j(a^b) = vnj(s,t), where a = Pn(s), and 6 = Pn(t). If ϋ*j(α,6),0 <
a < b < 1 conforms to any bell shaped form (zero at the two extremities and
positive otherwise), then a reduction of the process to a Brownian bridge
is possible by time-transformation, and hence, the limit law in (2.9) still
remains intact (as K^R 1S invariant under time-transformation). Looking at
(4.8), we see that such is the case when G dominates F in an appropriate
sense. For example, under PHM, if in (4.9) we have λ < 1, so that G is
stochastically larger than F, then we get a tied-down Gaussian process. On
the other hand, if under PHM, G < F pointwise, i.e., λ > 1, then we have
F2(t)C(t) = (1 + λ)-1{(JP(/))1"λ - F\t)} t oo as* I oo, so that in (4.8), we
may not have a tied-down Gaussian function at the upper extremity. This
is the main reason we make the assumption that

(4.22) G(x) > F(x), for x > a?0, for some x0 > 0.

In view of the null hypothesis of exponentiality, we are essentially assuming
that the survival function of the censoring variable eventually lies above an
exponential survival function. This then justifies (4.8) and also validates
the jackknife methodology. In this case, there is even no need to compute
v*j(α,δ), and the time-transformation takes care of the limit laws. In fact,
bootstrapping is also therefore not needed under (4.22). The Bahadur ARE
can be worked out as in the uncensored case under (4.22), but the slopes
will depend on the unknown G. We conclude this section with a remark
that as under the null hypothesis F is exponential (while G is arbitrary), we
may even use a semi-parametric bootstrap method wherein we estimate the
mean of F by using the PL-estimator of F and use parametric bootstrap for
F, while a nonparametric one for G. This may have some advantage in the
estimation of the critical levels, but essentially for asymptotic power studies
such estimators may not be that robust. For this reason, we advocate the
use of the proposed nonparametric bootstrapping methodology.
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