Chapter 10

Large deviations for
diffusion processes in
conuclear spaces and for

SPDEs

In Chapter 8, we studied diffusion processes in conuclear spaces governed by
stochastic differential equations. In these models, the drift term describes
the deterministic evolution of the voltage potentials of the neuron while the
diffusion term is added when random stimuli by electric impulses are present.

In this chapter, we derive a large deviation principle (LDP) for such pro-
cesses when the diffusion term depends on a small parameter which tends
to zero. The lower bounds are established by making use of the Girsanov
formula in abstract Wiener space. The upper bounds are obtained by Gaus-
sian approximation of the diffusion processes and by taking advantage of the
nuclear structure of the state space to pass from compact sets to closed sets.

This chapter is organized as follows: We study the LDP for a class of
random variables taking values in Banach spaces in Section 1. Then in
Section 2, we apply our basic results to stochastic differential equations in
the conuclear spaces investigated in Chapter 8. The material of this section
comes from Xiong [60]. In Section 3, we present our results obtained in [32]
for LDP of random field solution of SPDEs studied in Section 4.3. Finally, in
Section 4, we specialize the results to stochastic reaction-diffusion equations.

10.1 LDP for a class of random variables

Stochastic differential equations or stochastic integrals can usually be re-
garded as random transformations of some Wiener processes. In this sec-
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300 CHAPTER 10. LARGE DEVIATIONS

tion, we consider a family of Banach space valued random variables which
comes from such transformations. As the map is not pointwise, the usual
contraction principle for large deviation is not applicable in this case.

Let (i,H,f) be an abstract Wiener space and let P be the standard
Wiener measure on (€2, B(2)). Suppose that X C Y are two separable Ba-
nach spaces and Ay (resp. Ay) is a class of X-valued (resp. Y-valued)
random variables on €.

Definition 10.1.1 Let £ € L(H,Y), where L(H,Y) is the collection of all
bounded linear operators from H to Y. A Y-valued random variable £ is
called the lifting of £ if for any £, € L(,Y) which tends to £ in L(H,Y)
we have that £,(-), regarded as a sequence of Y-valued random variables,
converges to £ in probability.

Let A: X - Y and B: Ay — Ay be two mappings and {X*: e > 0} be
a family of X'-valued random variables on €2 with the following properties:
(A1) i) Ay and Ay are two linear spaces.
il) X C Ay in the sense that for any z € X fixed, the constant mapping
given by X(w) =z, Yw € £, is in Ay. Similarly, Y C Ay.
iii) For any h € H and X € Ay, we have T X € Ay, where (ThX)(w) =
X(w = h).
(A2) There exists a constant K such that

|A(z1) — A(z2)|ly < K||z1 — z2||x, V1,22 € X (10.1.1)

(A3) There exists a continuous map B : X x H — Y with the following
properties

i) For each z € X, B(z,-) : H — ) is linear and the lifting B(z,): Q —» Y
is an element of Ay.

ii) There exists a constant K such that, for any z1,z2 € &', h € H, we have

IB(e1, ) - B(za, W)lly < Klllulle: - 22l (10.1.2)

For each z € X, as the constant map X (w) = z is in Ay, we have that
B(z) = B(X) is an element of Ay and hence, B(z) is a J-valued random
variable. On the other hand, by Definition 10.1.1, the lifting B(z,-) is also
a Y-valued random variable. We make the following further assumptions:
iii) For any ¢ € X, we have B(z) = B(z, ).

iv) For any h € H, X € Ay, the map Bx(X) : Q — Y given by Br(X)(w) =
B(X(w),h)is in Ay and

B(X) — Br(X) = Ty (B(T-1X)). (10.1.3)
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(v) B is exponentially continuous in the following sense: For any L > 0,
there exists § > 0 such that for any {X;(€)}, {X2(€)} C Ax, we have

lim sup elog P(V/el B(X1(€)) ~ B(Xa(e)lly > V8,
1X1(e) — X2(e)llx < 6)
< -IL (10.1.4)

(A4) 1) {X¢} is exponentially tight, i.e., for any L > 0, there exists a compact
subset Cr, of X’ such that

limsupelog P(X* ¢ Cr) < —L; (10.1.5)

e—0

ii) For any € > 0, X© € Ay and satisfies the following equation in Y:
X€ = A(X®) +eB(X"), as. (10.1.6)

where A(X¢) is understood as A(X¢)(w) = A(X¢(w)), Yw € Q.

Let P¢ be the probability measure on X" induced by X¢. We proceed to
derive large deviation results for {P¢} as € — 0.

First, we study the LDP for the Gaussian random variables obtained by
freezing the right hand side of (10.1.6), i.e. Vz € X fixed, we consider the

following family of )-valued Gaussian random variables {X“® : ¢ > 0} given
by
X** = A(z) + VeB(z). (10.1.7)

We shall need the following theorem due to Kallianpur and Odaira [25]
(see also Stroock [52]).

Theorem 10.1.1 Let p be a centered Gaussian measure on a separable Ba-
nach space E. Let S be a continuous linear map from a separable Hilbert
space H to F such that

ISt = [ (eie))u(de), ¥e € B, (10.1.8)

where S’ : E' — H' = H 1is the dual of S. For € > 0, let u. be a probability
measure on E given by

Le(C)=p{z € E:+/ex € C}, VC € B(E).

Then {pe : € > 0} satisfies LDP with rate function

L(z) = inf {-;-uhu}, . he H such that S(h) = a;} . (10.1.9)
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Proof: If the linear map S is injective, the conclusion of the theorem follows
from Theorem 3.45 and Theorem 3.48 of [52]. If S is not injective, let
Hy = {h € H : S(h) = 0}. Then Hj is a closed subspace of H. Let H be
the orthogonal complement of Hp. S|z is then an injective continuous linear
map from H to E. It is easy to see that S’¢ € H and hence, S = (S|z)'¢,
VL € E', ie., (10.1.8) holds for S|g. Therefore {u : € > 0} satisfies LDP
with rate function

1 2 ] —
L(2) = { gilhuH JheH st S(h) =2 (10.1.10)

otherwise.
It is clear that I,(z) given by (10.1.10) coincides with the function defined
by (10.1.9). N

Theorem 10.1.2 {\/eB(z) : € > 0} satisfies the LDP with rate function
*°(y) = inf {%llh”%{ . h e H such that y = B(a, h)} .

Proof: As {/eB(z)} is a family of centered Gaussian random variables,
it follows from Theorem 10.1.1 that we only need to prove the following
equality:

E (|y[B@)]?) = 1B(z,-)¥/|l}y, foranyy €V,

where B(z,-)' : Y — M is the dual of the linear operator B(z,-): H — V.
In fact, let {e;} be a CONS of H. Then

2

ly' o Bz, )i} = E (WBE)P) "

1B, Yyl = Y {B)Y,e). = Y W1B(e)?

Theorem 10.1.3 {X*® : ¢ > 0} satisfies the LDP on Y with rate function
1 .
I*(y) = inf {—2-||h||%t heH st y=Ae)+ B, h)}.

Proof: Define a map 7 : Y — Y by my = A(z) + y. The result follows easily
from Theorem 10.1.2. i

Now we define a “rate function” I(z) on X.
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Definition 10.1.2 Let
I(z) = inf {%”h”% theD(y) st z= 'y(h)} (10.1.11)
where D(v) is the collection of h € H such that the following equation
¢ = A(z) + B(z, h) (10.1.12)
has a solution z, denoted by y(h), in X.

Remark 10.1.1 In general, v can be a multivalued map. Nevertheless, in
many applications, vy is a single-valued injection with D(y) = H.

We state the following Girsanov’s formula in abstract Wiener space the
proof of which can be found in Kuo [35].

Lemma 10.1.1 For h € H, we define a lingar transformation Ty on §2 by
Thw = w — h. Then the probability measure P = P o (Ty)™! is equivalent to
P and B
E—ﬁ(w) = ezxp (— < hw>y “5“”’“7{) .
To derive the large deviation lower bound, we need the following assump-

tion
(A5) Let h € D(vy), z = y(h) € X and Z° € Ay such that

Z¢ = A(Z° 4+ z) — A(z) + Br(Z° + ) — Ba(z) + VeB(Z° + z). (10.1.13)
Then, for any § > 0

Pw:[|Z°x <8)—1, ase—0.

Theorem 10.1.4 For any open set G of X, we have

lim iélf elog P(X® € G) > —inf{I(z) : z € G}. (10.1.14)

Proof: Without loss of generality we may assume that the right hand side
of (10.1.14) is finite. Then, for any é; > 0, there exists ¢ € G such that

I(z) <inf{I(y):y € G} + 61 < o0.

For any 1 > 0, there exists h € D(y) such that z = y(h) and

1
sIhlR < 1) + 7. (10.1.15)
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Let Y¢ = X¢ — z. It follows from (10.1.3), (10.1.6) and (10.1.12) that
Y¢S = A(X®) - A(z)+ VeB(X) - B(z, h)
= A(Y*+z)— A(z) + Br(Y* + z) — Bp(z)
+ve{B(Y* +2) - By e(Y* +2)}
= A(Y*+z)- A(z)+ Ba(Y* + z) — Bp(2)
+VeThy e { BT e(Y* +2))} -

Let Z¢ =T_y; zY*. Then

Z° = T_pe{A(Y® +2)— A(2) + Bp(Y* + ) — Br(z)}
+/eB(Z* +z) (10.1.16)
= A(Z°+z) - A(z) + Br(Z° + z) — Br(z) + VeB(Z* + z).

Finally, let § > 0 be such that {y : ||y — z||x < 6§} C G. Let P be given
by Lemma 10.1.1 with h replaced by h/y/e. Then by (10.1.15) and Lemma
10.1.1, we have

elog P(X® € G) > elog P(|| X — z||x < §) = elog P(||Y||x < §)
. 1 ~ 1 . )

= clogh (exp <W < hy@ > —-2—€||h||%1) Y (Topy el < 5)

—I(z) — 7+ elog P(|| 2(@)||x < 6)

E (exp (% <h@ >n);[12@)llx < 5)
P(||Z¢(@)|lx < &)

v

+elog

It follows from Jensen’s inequality, Holder’s inequality, (10.1.16) and As-
sumption (A5) that
elog P(X* € G)
> —I(z) — n+elog P(|Z°(@)||x < 9)
- 1 = -
+eB (2 < ho >l 2@ <) [ PUZ@x < )
~I(z) = 1+ €log P(||Z°(@)||x < 6)
. 3 Y2 000
—Ve (Bl <ha>n2) " (P(I1Z°@)llx < 8))
= —I(z) - n+elog P([| Z°(w)l|x < 6)

—Vellhllx (P(| Z(w)||x < )/
— =I()-n>-inf{I(y):ye€ G} -6 —.

v

-1/2

(10.1.14) follows as é; and 7 are arbitrary. |
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Now we consider the upper bound. The idea is to approximate the non-
Gaussian random variable by Gaussian random variables. We first obtain
the upper bound for compact sets and then extend to closed sets.

Lemma 10.1.2 Forz € X and L > 0, there exists 6 > 0 such that
lir?jgpelogP (||Xe —zl|lx < § || X" —z|ly > (1+ K)§+ \/5) < -L.

Proof: By (10.1.1), (10.1.6) and (10.1.7), we have

elog P (|| X* - 2[|x < &, [ X** — 2}y > (1+ K)§ + V3)

elog P (|| X° - zl|x < 6, | X** - X¥||y > K& + V)

elog P (|| X* —z|lx <6,

lA(X¢) - A(=)|ly + Vel B(X*) - B(a)lly > K6 +/3)

elog P (|1 X* — al|x < 6, Vel B(X) - B(z)lly > V).

IA A

IN

The conclusion of the lemma now follows from (10.1.4). |

Theorem 10.1.5 For any compact subset C of X, we have
limsup elog P(X€ € C) < —inf{I(z) : z € C}.

e—0

Proof: Let ¢ < inf{I(z) : ¢ € C}. From Theorem 10.1.3, for each z € &,
I*(y) is lower-semi-continuous in y € Y. For z € C, as I*(z) = I(z) > ¢,
there exists 6(z)’ such that I*(y) > ¢ whenever ||y — z||y < 26(z)". Let §(z)
be determined by 46(z)’ through 8" = (1+ K)§ + /6. Since C is compact in
X, there exist 27 € X, j = 1,2,---,n, such that

CCU]_I{yelely—ij;g <5’},

where 67 = §(z7). Hence

P(XceC) <

NE

P (X<~ 2’l|x < &)

[
1]
—

> P (11X = o7llx < &, 11X — 2y > 67)

WE

<.
Il

=~

+3 P (X - oi|ly < 87),

=1

Z p(l) + Z p(2)

7j=1
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By Lemma 10.1.2 and Theorem 10.1.3, we have

lim supelogpgl) <-L
e—0
and
limsupelogpg.z) <—-¢ j=1,--,n.

e—0

Hence

limsup elog P(X* € C)

e—0

liIZI_%lp elog ((2n) - max {pgk) :1<j< k= 1,2})

IN

< max(-L,—c).

The conclusion of the theorem then follows by letting L — oo and ¢ —

inf{I(z):z € C}. |

Theorem 10.1.6 For any closed subset C of X', we have

limsupelog P(X€ € C) < —inf{I(z):z € C}. (10.1.17)

e—0

Proof: For L > 0, let C, be the compact set given by (10.1.5). Then CNCy,
is compact and hence, by Theorem 10.1.5

limsupelog P(X € CNCL) < —inf{I(z):x € CNCL}
e—0
—inf{I(z): 2z € C}.

IN

Therefore

lim sup elog P(X* € C)

e—0

< limsupelog (2max{P(X*€ CNCL),P(X*€C\CL)})
e—0

< max (lim supelog P(X® € CNCL),limsupelog P(X°© ¢ CL))
e—0 e—0
< max(—inf{I(z):z € C},-L).
Letting L — oo, we see that (10.1.17) holds. i

Finally, we show that the function I defined by (10.1.11) is a rate function
in the sense of Donsker and Varadhan.
For each ¢ > 0, define the level set

Le={z € X :I(z) < c}.
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Theorem 10.1.7 I(z) is a lower-semi-continuous function on X.

Proof: Let {z"} C L. and ™ — z in X. We only need to show that I(z) < c.
Let h™ € D(y) be such that 2" = y(h") and ||A"||}, < 2I(z™) + 2. Let

y" = B(z,h") and y=z - A(z). (10.1.18)
Then by (10.1.1) and (10.1.2)

lv™ - ylly
|(Ba,p™) - B, 1) + " - 2) - (AG™) - A())]
(K[[p™ln + 1+ K) [|z™ - z]lx — 0.

IN

2 n TL,

it follows from Theorem 10.1.2 that I #0(y) < ¢. Hence for any 7 > 0, there
exists h € H such that y = B(z, k) and

1
§||h||% <c+n. (10.1.19)

By (10.1.18) and (10.1.19) we have h € D(y), z = y(h) and I(z) < c. |

Theorem 10.1.8 For each ¢ > 0, L. is compact in X.

Proof: Taking L > c, we only need to show that L. C Cr, where C, is the
compact set appearing in (10.1.5). If this is not true, there exists 2o € L:\CL.
As Cj, the complement of Cp, is open and z¢ € L, it follows from (10.1.5)
and (10.1.14) that

—¢ < =I(zg) < lim iélf elog P(X° € Cf) < limsupelog P(X* ¢ Cr) < —L.
e e—0

This contradicts the fact that L > ¢. Hence L. C C1, and compact. [ |

We summarize the above results into a theorem.

Theorem 10.1.9 Under assumptions (A1)-(A5), {X¢} satisfies the LDP
on X with rate function I given by (10.1.11).
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10.2 Application to stochastic differential equa-
tions on conuclear spaces

In this section, we consider the LDP of { X ¢} governed by the following SDE:
t t

Xi=¢+ / Cls, XE)ds + /e / G(s, X)dW, (10.2.1)
0 0

where C : Ry X ' — & and G : R} X ' — L(®', ®’) are two measurable
maps, £ € ®', W is a ®'-valued Wiener process with covariance Q.

To establish a unique strong solution of (10.2.1) for each € > 0, we assume
that (C, G, Q) satisfies the conditions (D1)-(D3) of Chapter 8 and
(DM)’ (Monotonicity) V¢ € [0,T] and v,v; € ®_p,

2< C(t,vl) - C(t,’Ug),’U1 — V2 >—q§ K”’Ul - ’Ug”z_q

and
1G(t,v1) = Gt v2)IIL ) g0y < Kllvr — w22,

As € is deterministic, the condition (D4) of Chapter 8 is satisfied. Hence,
by Theorem 8.3.1, the SDE (10.2.1) has a unique strong solution X* for each
€ > 0. It follows from Corollary 3.2.1 that there exists 7o > 0 such that
W. e C([0,T],®-,,) a.s. As X¢ is the strong solution of the SDE (10.2.1),
we may assume that the stochastic basis (2, F, P, {F:}) is given by

Q=C([0,T],2-r,), Ft = B:.(C([0,T], ®2--,))
and P is the probability measure induced by W on C([0,T], ®_,,).

Theorem 10.2.1 Let
H= {/ heds:h € L2([O,T],HQ)} .
0

Then H C Q and (i,’H, Q) is an abstract Wiener space, where i is the canon-

ical injection from H to Q. Further, P is the standard Wiener measure on
Q.

Proof: It is clear that H C Q. We identify Hj with Hg by the Riesz
representation theorem and let <i>_,.2 C Hg be the dual of ®_,, such that

<Lv>",, =<lv>gy, VE&_,,,veHyCd,,

where < -,- >"_,, is the pairing between &_,, and &_,,. We define @ C H
as the dual of Q in a similar manner.
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Define ,/Q,2(1) Hg — &_,, as the dual of the isometry V@, :®_,, —

Hg. Then, by Lemma 3.2.2, ,/Q,.Q( is an isometry from Hg onto ‘I'_,.2 and
for ey, e, € Hy,

< Jae, \/Q—m(1)62>
B ), (),
Q Q
= (VR e n g5 ) (Van en o 657 Y,
(

J

= > (e y/on JQ:¢"2> /e am)

J

= Z<el,¢;'2>_r2 <e2,¢ r2>_r2 =< e e >y (10.2.2)

where v; € ®_,, such that e; = \/Q, v;, t = 1,2. Let
HO == {f = / f,ds . Z € Cl([O,T],é_,?),eO = eT = 0} .
0

Then Ho C  is a dense subset of H. For any f € Ho, let h, € Hg be such
that £, = /Qr, 1)h_,. It is easy to see that

T /. /
< f,W > 2/ <ht, Qrz Wt> dt
0 HQ

is a Gaussian random variable with mean 0. To show that (i,M,Q) is an
abstract Wiener space and P is the standard Wiener measure on 2 we only
need to show that

E{< f,W >0} = |Ifli%-
Let vy € ®_,, be such that hy = ,/Qw'vt. Then
T Y 2
E{< f,W >} = E / < bty 4/Qr, Wi >H, dt
0

T
= F (/ < v, W, >, dt)
0

T T
[) /0 E { Wi [01‘2 'Ut]Ws [01‘2 'U.s] } dtds

2
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/oT /oT(t hs) < Qr;0r; Ve, 4/ Qry O, v,>r2 dtds
/oT /oT(t As) <\/Q_f:/”t’ \/Z?:vs> dtds

—rp
T (T .
= / / (t A 8) (heyhs) dtds.
o Jo L
On the other hand, by (10.2.2)

T t 1) A 2
/ / V Qrg hsds
0 0 Hq
T t t 1) i 1) )
L), i
0 Jo JO Ho
T T T,
= / / / <h31 ) h52 dsidsodt
0 t t —-r2

T T .
/ / (517 52) {huy, ey dsrdss. -
0 0 -T2

Let p; be an index such that p; > ¢; and the canonical injection from
®_,, to ®_,, is Hilbert-Schmidt, where ¢; is determined by p; through
Assumption (D). Let p3 > g2 be defined similarly. Now we regard X°¢ as
®_,,-valued processes and consider their LDP as ¢ — 0.

Let ¥ = C([0,T],®-p,), Y = C([0,T],®_p,), and let Ax (resp. Ay) be
the collection of ®_,, (resp. ®_,,) valued adapted continuous processes. It
is clear that Condition (A1) holds.

Let A: X — Y be given by

117117 dt

t
Az)e=¢ +/ C(s,zs)ds, Vz € X.
0

To verify the condition (10.1.1) we need the following assumption.
(D5) (Lipschitz) Vt € [0,T] and vy,v2 € ®_p,

IC (¢, v1) — Ct, v2)[I2 4 < Kllvr — w22,

24 S
Condition (A2) follows directly from Assumptions (D1) and (D5).
For X € Ay, let

B(X): = /0 " G(s, X,)dW,.

It is easy to see that B is a map from Ay to Ay. Now we verify the condition
(A3) for B with Y replaced by &’ (i.e. a stronger condition than (A3)).
We define a map B: X Xx H — X as follows

~ t .
Bz, h): = / G(s,zs)heds Ve € X,h € H.
0



10.2. APPLICATION TO SDE IN CONUCLEAR SPACE 311

As

18 = Bumlle = sy | ['(G2) ~ Glewhds]
< [ 16(s,22) ~ 66, 90 70,8 sl
< [ VRl il plilrgds
< VET|hlxlle - yllx,

and similarly, since
IB(z, e1) — B(z, e2)llx < VKT (1+ [l2]|)llex — ezl

B is a continuous map. It is clear that for each z € X, B(z,):H — Xis
linear and the lifting map B(z,-) : @ — X is given by

B(:c, Je= /Ot C(s,zs)dWs.

Hence B(z,-) = B(z) € Ax.
For any h € H, X € Ay, we have

Bh(X) = /0 *G(s, X )hods
in Ax. Further it follows from
B(X); - Ba(X): = /OtG(s,X,)dWS— /OtG(s,X,)ﬁ,ds
- /0 G5, X)d(W, — hy)
and
Tw(B(T_+X)), = Th ( / tG(s,X,(w+h))dW,)

= /: G(S, X_,)d(Ws - hs)v

that (10.1.3) holds. Therefore we have proved (i)-(iv) of Assumption (A3).
To verify the last condition of (A3) we need the following lemmas.

Lemma 10.2.1 (Garsia) Let (Z,d) be a metric space and let 3 be a con-
tinuous map from [0,T] to Z. Suppose that ¥ and p are increasing functions
in z > 0 such that ¥(0) = p(0) = 0 and ¥ is convez. Let

n= / / (d(;bqt_'ﬁ;)))dtds
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Then, for any t,s € [0,T], we have

|t—s|
A, v <8 [ ¥ u)dp(w),
where ¥~ denotes the inverse function.

Proof: The case of Z = R has been proved by Garsia [11]. For general
metric space, the lemma follows exactly from the same arguments.

Lemma 10.2.2 Let f : [0,T] x Q — L(3)(Hg,®-p,) be a measurable map
such that

2
Ozl:SpT ”f(t’ w)”L(g)(HQ,Q_p2) S Kl a.s.
where Ky is a constant. Let
. 1
b(t,w) =/ fs,w)dW, and 0<a< ;.
0
Then, for any L > 0, there exists a constant M > 0 such that

lim sup elog P ([1/)]_,,2,0, > —A—/I-> <-L,
e—0

Ve
where 16 - $(s)l
—_ S)Hi—
["»b]—pz,a: sup p P2,

0<s<t<T It - s|

Proof: Let
o(rw) = frw)lt— sl lpg(r) and = [ ()W

Then

(@) = $(s))lt = o™ = 7.

It follows from Ité’s formula that

elty = 3 [ 2000t 87, ;167
k

+ [ 19O

By Ité’s formula again, we have

V 1+ ”7T“2—p2 -1

T
= 3 [ (Y001, 87, (L 102 2w, (0]
k

1 (T 2 2 \-1/2
5 | 190N 01,0 L+ 10125 2

1 (T ~
-3 /0 Q (9(r) 0p,Yr, 9(r) O 7r) (14 [lyrl|2p,) "/ ?dr. (10.2.3)
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As the first term on the right hand side of (10.2.3) is a real-valued continuous
square integrable martingale, by Theorem 7.3 in Ikeda and Watanabe ([18],
p.86), it can be represented as W,, where W is a one-dimensional Brownian
motion and

R R O R ORI CRE A I
< / g (I gy 11 % (L 1912 ,)

< [ IO g argnmlt = o720 < KT,

Vit 1< sup Wi+ KiT,

te[O:KIT]

Hence

i.e.

2
Ivrll2,, < (1+ sup IWt|+K1T> -1
te[0,K1T)

It follows from Fernique’s theorem (see [35] p.159) that there exist constants
Ky, K3 > 0 such that

E exp (K2||7T||_p2) < Ks. (10.2.4)

[ /F #(t) — $(s)lI2,,
n_/o /0 exp( E s )dtds.

En< / ] Eexp (Kallyrll,, ) dtds < KsT?.

Let ¥(z) = eX2®° — 1 and p(z) = 2z for z > 0. Then ¥ and p satisfy the
conditions of Lemma 10.2.1 and

re= [ ) e (PO e
Hence

W6 -9l < 8[ ¥ (—;—Ti)p(du)

Let

Then

t—s
< 8/ \/ log 1+ }/K du®
=t 1 T_)d
- \/K2~/(; g +'U2/°‘) v
Jt—s|®
< _;2/0 (,/]Iogn|+\/log2+\/2llogv|/a) dv
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It is easy to see that, for any o < «, we have

: —a'/a * —
ll_)l%a /0 /|loguldu =10

and hence, there exists a constant K, such that

19(0) = $(l—5: < K (1/llogal +1) = oI

As a is any number in (0,1), we may replace o in (10.2.5) by . Hence

e—0

lim sup elog P ([¢]_p2,a > %)

IN

e—0

= limsupelog P > )
magpeen? (0> o0 | (2 -1) )
E

limsupelogP(K4 <1+ |logn> %)

< liI:ljélpelog {exp [— (\/EK4 - 1) ] } (I]\é>2.

Taking M = K4V/L, the lemma is proved.

Now we verify the last condition of (A3).
Theorem 10.2.2 B is exponentially continuous.
Proof: Let X,Y € Ax and % be given by Lemma 10.2.2 with
f() = 871G, Xe) = Gt Ye)) L Xe=Yalpy <5+
Then from (DM,

||f(t)“%(2)(Hq,<I>_p2) <6TK| X, - }ft”z—pgl”Xt—}’t”—p2<6 <K,

and hence

P (VEllB(X) - B(Y)||lx > V5, |1 X - Y|lx < §)
< P(IWlr> o) < P(TWlna > 7).

Our result follows from Lemma 10.2.2.

(10.2.5)

(10.2.6)

It is clear that the second condition of (A4) holds. The next two theorems

verify the first condition of (A4). For any M > 0 and « € (0,1/2), let

CJIVI = {:z: € C([0,T],2-p,) = sup |[lztll-p, < M}
0<t<T
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and

Clzw,a ={z € C([0,T],2-p,) : [2]-p,a < M}.
Theorem 10.2.3 For any L > 0, there exists M > 0 such that
lim sup elog P(X* ¢ C};) < —L. (10.2.7)
e—0

Proof: We have by Ité’s formula,
1 1
L+ X520 c = (L4 [1El12,,) (10.2.8)
1 ¢ € € l_
= < [ 20(s XDl X1+ X220 s

-p1

¢ 1_
+ [ IG (X a8 (L + IXEIE, ) s
2 ¢ 1_
+= 3 [ Xe0G (s XYL+ XS, ) g
Ve o

2(1 - ¢
+2029 [°Q (606, X2, X5, Gl X8, X2)

L+ || X212,,)* 2ds.

—Pp1
Let
T=inf {t > 0: || X{||-p, > M}

and 7 = oo if the set {t > 0: || X{||—p, > M} is empty. It follows from (D3)
and (10.2.8) that

1 1
B+ IXilp)t < A+ €l2,,)}
3 t
K (2-1) [ BO+ X502 b

€

From Gronwall’s inequality, we have

L . .
E(L4 | X525, < 1+ [|€]1%,,)c X @1,

Then

1

E (14 | X5arll2,, ) ©

(14 [|€]12,, ) ¢ eCK/— KT,

IN

(1+M?)tP ( sup [|1X;]|pr > M)
0<t<T

IA

Hence

elog P ( sup || X¢||l-p, > M)
0<t<T

—log(1+ M?) +log(1 + [|€1%,,) + (3K — eK)T.

IN
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Choosing M such that
L = log(1 + M?) —log(1 + [I€]1%,,) - 3KT,

we see that (10.2.7) holds. |

Theorem 10.2.4 For any o € (0,1/2) and L > 0, there exist two constants
M and M’ such that

lim sup elog P (Xe €Cis— C’}(,p,a) < —-L.

e—0

Proof: Let M be given by Theorem 10.2.3 and 4 by Lemma 10.2.2 with
f(t) =G X)) xg)_p, <M
Then

IFOIZ,, o) S KO+ IXE2 ) xep, <i < K(1+ M?).
(2)\HQ 2

Hence
P(X* € Cly — Clpro) = P(X* € Ch, [X9ppa > M)
< P(X‘ € Cir,
wp LICC K)o+ VAN = SO )
0<s<t<T |t — s|~
< P (\/zw]_m,a > M - K0+ M2)T1“°‘> .
The assertion of the theorem then follows from Lemma 10.2.2. |

Corollary 10.2.1 Let Cr, = C}, N wa'a. Then Cr, is a compact subset of
X and
limsup elog P(X€ ¢ Cr) < —L.
e—0

Proof: As {v € &_,, : ||v]|-p, < M} is compact in ®_p,, we see that C, is
compact in X'. Further,

lim sup elog P(X* ¢ CL)
e—0

< limsupelog {P(XE ¢ Cy)+P(Xe€Cly— C’?W’a)}
e—0
< -L. n

Next we verify Assumption (A5).



10.2. APPLICATION TO SDE IN CONUCLEAR SPACE 317

Theorem 10.2.5 Let Z° be given by (10.1.13). Then Z¢ converges to 0 in
P.

Proof: Asin (10.2.3), we have

12812, = 2VE [ (Gl 25+ 220025, 67, WA
k

b [ 160 Z5 4 2 B a0
+ /O (25 {C s, 25 + 31) — C(s,2,)}
+{G(s, Z; + z,) — G(5,2,) }hs)_,, ds.
Hence, by the Burkholder-Davis-Gundy inequality, we have

p(r) = E sup |IZf|2,
0<t<lr

IA

i 1/2
Ber (f QGLs, Z§+zs)'omzz,G(s,znms)'epzz:ms)

0
+& fo (K + 2VE|hsllg ) 122112 5, ds

E/rKl Z + 2|2 ) d
B [ eK (141125 +2.]12,,) ds

IN

:
8\/EE\/ [ K (4175 4 2a02,) 12812,

+\//(‘)" (K-I- 2\/E”il3”HQ)2 ds\/Ar p(s)%ds
+/Or eK (1 + 2p(s) + 2|]a:,]]2_p2) ds.

Hence, there exist two constants K5 and Kg such that
p(r)? < VeKs + Ks [ pls)'ds.
0

From the Chebyshev and Gronwall inequalities, we have V4 > 0,

P(|1Z¢||x > 6) < 67%p(T) -0 ase— 0. i

We summarize our results in the following theorem.

Theorem 10.2.6 Under Assumptions (D1)-(D3), (DM)' and (D5), {X*<}
satisfies the LDP on C([0,T], ®_p,) with rate function

I(z) = inf {%“h“%’{ . heD(y) st o= 7(h)}
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where D(v) is the collection of h € H such that the following equation

z, =€+ /Ot(C(s, z,) + G(s,2,)h,)ds. (10.2.9)

has at least one solution (denoted by z = y(h)) in X. N

Let us now make the following additional assumption.
D6): Vt € [0,T]and v € ®_,,,, G(t,v): Hg — ®_,, is invertible.
P2 Q P2

Theorem 10.2.7 i) Under Assumptions (D1)-(D3), (DM)' and (D5),
D(y) = H and v is continuous from H into X.
i) If, in addition, (D6) holds, then v is injective and I(z) is given by

I(z) = { %fg ”G(t’zt)_l{d’t - C(t,il?t)}quth if T, exists
00

otherwise.

Proof: i) First we consider h € H such that
|Allooc = sup ||ﬁt||HQ < 0.
0<t<T

For anyt > 0 and u € P, let
C(t,u) = C(t,u) + G(t,u)h; and G(t,u)=0.

It is easy to show that (€, () satisfies the conditions (D1)-(D3) and (DM)’
with po(T) and K replaced by max{po(T'), 1} and 2K (1+]|h||%,) respectively.
Hence (10.2.9) has a unique solution in C([0,T], ®_,,).

For any h € H, let h™ € H such that ||A"||cc < o0, Vn € N, and A™ — h
in H as n — oo. Let 2™ = y(h") € C([0,T], ®_p,). Then

t .
=+ / (Cls,27) + Gs,2D)hz) ds. (10.2.10)
0

For any u € ®_,,, let ¢,, € ® such that ¢, — v in ®_,,. Then for any
t €[0,T1],

2(CE W, = lm 2(0( én), by,

lim_20(t, ém) s

Jim K (1+[|¢ml,,)

K (14 |lul%,,) - (10.2.11)

IA

Il
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Hence by (D3), (10.2.10) and (10.2.11),
t
eIty = NEI2, + / 2(C(5,a%),2%)_, ds

+ / ;D) ds

< el +K/ (1+ l1221%,,) ds
42 [ 123l [ G5, 22)y @ 0 s
< Ny, +K [ (1+||z"u-m)
+2/t 27—, |G )\/CZ’ IIv:‘II-mds

Liz)(@

IN

€2, + K [ (14 11I2,,) ds
42 [ 15 KO H TE I 1 s,

where v € ®_,, such that h? = \/Q,, v?. By Holder’s inequality we have

714y, < B, + 30T + 4K [+ o712 ) ds. (10.2.12)

It follows from Gronwall’s inequality that for some constant K7 such that
|lz"||x < K7, Vn > 1. Now we prove that z™ converges in X'. Making use of
(10.2.10) again, it follows from the same arguments as in the derivation of
(10.2.12) that

|lz"™ — 2™||x < Kg||h™ — A™||n (10.2.13)
where Kg is a constant. Hence, there exists z € X’ such that 2" — z. It
follows from (10.2.10) again we see that z is a solution of (10.2.9). The
uniqueness of the solution of (10.2.9) and the continuity of y follows easily
from (10.2.13).
ii) It is easy to see that v is injective and hence I(z) is given by

1) [ HIBIE fheH st a=a(h)
(o9]

otherwise.

But z = vy(h) is equivalent to
h= / G(t, (l:t)—l{(iit - C(t, :I:t)}dt,
0

and hence, ii) follows immediately. [ |
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10.3 Application to SPDEs

In this section, we apply the results of Section 1 to random fields {X*(¢, q),
t >0, ¢ € O} governed by the SPDE

dX<(t,r) = (L(@)X(t,7)+ R(t,r, X (t,7)))drdt
+VeF(t,r, X (t,))W (drdt) (10.3.1)

with initial condition
X¢(0,r) =&(r).

In addition to Assumptions (RD1)-(RD4) made in Section 4.3, we assume
that F satisfies the following condition:
(RD5) There exists a constant K(R,F,T) such that, forall z € R, » € O and
0<t<LT,

|F(¢,r,z)| < K(R, F, T). (10.3.2)

To derive the large deviation result for random fields {X¢(¢,7)}es0, we
prove an analogue of Garsia’s theorem for a general bounded open domain
O satisfying the cone condition. The latter condition which we assume
throughout this section means that there exist two positive constants a and
ag such that, for any r € O, there exists a cone C, with vertex at r with
height @ and base radius ay.

For any hypercube Q in R?, we denote by Q' the hypercube in R? such
that @ and Q' have the same center with edges parallel to the co-ordinate
axes and e(Q) = 2¢(Q’), where e(Q) is the common length of the edge of Q.
For any set C C R, let |C| be its Lebesgue measure.

Lemma 10.8.1 1° There exists a constant Kg such that
QN O| > K|Ql, (10.3.3)
for any hypercube Q such that
e(Q) <a/Vd and Q' NO #0. (10.3.4)

2 Let Q be a hypercube satisfying (10.3.4). For anyr € @'NO and 0 < § <
e(Q), there ezists a hypercube Q1 C Q such that r € Q7 and e(Q1) = 6.

Proof: 1° Let r € Q' N O. As ¢(Q) < a/Vd, C, is not contained in Q.
Otherwise
a > diameter(Q) > diameter(C,) > a.

Let C} be the maximal cone contained in C, NQ such that its base is parallel
to the base of C,. Then the base of C} intersects with the boundary of Q.
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Let g be a point in the intersection mentioned above. Let b (resp. £) be the

slant edge of C (resp. C,). Then

e(@)
4

b = |rq| > distance(Q’,Q°) =

where Q° denotes the complement of Q.
It is easy to see that the height and base radius of C] are ‘—‘lﬁ and 529
respectively. Hence

ICl|  d™'Va, (aob/&)* " (ab/t) e(Q)
|Co| — d-1Vy_1a37la <e> < 44 ) '

where V_; is the volume of the unit ball in R4~!. Therefore

|Col
(4€)4

@nol> 100> {49V e = oo = xyal
2° Extend d segments through r with the following properties:
(i) they are orthogonal to each other and lie in Q;
(ii) each has length § and parallels to an edge of Q;
(iii) r divides each segment into two parts, the length of each being not less
than 6/4.
Construct a hypercube @ with edges parallel to those of @ and all the

end points of the d segments mentioned above are in the surface of Q. It
can be easily checked that r € Q] and e(Q) = 6. i

Lemma 10.3.2 Let 9 be a continuous function on O. Let ¥ and p be
increasing functions in ¢ > 0 such that ¥(0) = p(0) = 0 and ¥ convez. Let

n= / / <|¢1§€|)1° _?':I()q)l) drdg < 0.

Then, for any r,q € O with |r — q| < a/2, we have

2|r—q|
~ (g < v () 3.
lo(r) - ¥(g)| < 8 fo ( Kooaid ) P, (10.3.5)
where K1 is a constant and ¥~ denotes the inverse function.

Proof: If n = oo then (10.3.5) is obviously satisfied. Let 7 be finite. For
r,qg € O, if |r — q| < a/2, we have a hypercube Qj such that r,q € Qf and
e(Qp) < a/2+/d. Define Qo to be a hypercube having the same center as Q)
and e(Qo) = 2¢(Qp). Asr € QuNQO, it follows from Lemma 10.3.1 that |QoN
O| > Ky|Qo|. From here on we proceed similarly asin [11]. By Lemma 10.3.1
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again, there exists a decreasing sequence {Qn}n>0 of hypercubes such that
r € Q!, and p(z,_1) = 2p(z,) for all n > 1, where z, = v/de(Q,). Let

0=QnO and 9g=— /¢(r)dr

[
Then by (10.3.3) and Jensen’s inequality, we have

(ltbq;(mn?f?)"_l') : (|Qn-1||czn|/ i nwg()wnf(q”drdq)
= 16 1||Qn| /o/ . <I¢S()wn_f§Q)l) drds
[
K2|Qn-1nczn|/ o ¥ () e

2d
K10$n

since

@ntQn) = (@n)e@alf = (222) (22> 22

Here we have that Ko = d‘ng. Hence, noting that p(z,—1) = 2p(z,) =
4p(zn+1) we have

IN

- n
IQI)Q'n - 1le11—1| ‘I, ! <K10$2d) p(wﬂ—l)

= 49! (KIZm,%d) (p(zn) — P(Zn41))

Ly _ N
4 ¢! (K10u2d) p(du).

Tn4l

IN

Summing up over n from 0 to oo, we have

W) - vaul <4 [0 (m) plaw).
It is clear that the above procedure applies with r replaced by g, and hence
-1
$(r) = (@) <8 [ (g )p().

Making Qo as small as possible, we have z arbitrarily close to 2|r — g|. This
finishes the proof of (10.3.5).

It is easy to check that [0, T] x O also satisfies the cone condition. There-
fore, Lemma 10.3.2 is applicable to continuous functions defined on [0, T x O.
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Since only Corollary 10.3.1 below will be used in the rest of this section, we
will use the notation a for the height of the new cone although its value has
been changed.

Corollary 10.3.1 Let ¢ be a continuous function on [0,T]x O. Let ¥ and
p be increasing functions in z > 0 such that ¥(0) = p(0) = 0 and ¥ convex.

Let
_ (6, 7) = B, 4
1= [ L L (i) dardsas
Then, for any (t,7), (s,q) € [0,T] x © with p = p((,r),(s5,0)) < @/2, we
have

[0t ) - $(s, )] < 8 / v () slaw) (10.3.6)

where K11 is a constant and ¥~ denotes the inverse function.

As the solution X¢ is a function of the Brownian sheet {W(t,r) : ¢t €
[0,T],r € O}, we may assume that

Q=C(0x[0,T]), F=B(C(Ox[0,T])),

P is the probability measure induced by {W(¢t,7) : t € [0,T],r € O} and F; is
the sub-o-field of F generated by {w(s,r):s <tr € O}. Let H C Q be the
space of all h € Q with the following property: There exists & € L([0,T]x O)
such that

t R
h(t,r) = / / h(s, q)dsdq

0 Jo,

where O, = {q€ O :¢;<rjj=1,---,d}. For ej,e3 € H, let
T
< e, ey >H= / / é1(r,t)éy(r, t)drdt.
0Jo

Then < -,- >4 is an inner product on H under which H becomes a separable

Hilbert space.
Let 0 < a < a2 and X =Y = C([0,T], B,). Define

(A())(t,r) = /O G(t,0,7,9)¢(q)dg (10.3.7)

t
+/ / G(t,s,r,q)R(s,q,2(s,q))dgds, Vz € X.
0o Jo

Let Ay be the class of all B,-valued adapted continuous processes. For
X € Ay, define

BEO)Er) = [ [ 6sr (e X(s,0)Wdsdg). (1038

The next lemma is useful for the verification of (10.1.4) and (10.1.5).
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Lemma 10.3.3 Let f(s,q,w) be an adapted random field such that

| flloo = sup{|f(s,q,w)|: s €[0,T], g€ O andw € 2} < cc.
Let .
¢(t,r)=L /OG(t,s,r,q)f(s,q)W(dsdq).

Then for any 0 < a < agz, we have [1h]q < 00 a.s. and VL > 0 38 > 0 s.t.

lim sup elog P ([¢]a > %) <-L
€

e—0

where

(B -sel
o = sup { D=L (e, (5,0) <

MIQ
——’

Proof: For any 0 <ty <t; < T, rq,re € O, let

M, :/t/ G(tl,s,rl,q)—-G(tg,s,rg,q)
’ p((t1,71), (t2,72))*

f(s,q,w)W(dsdgq).

Then
Mo — P(ty, 1) — P(t2,72)
T =
p((t1,m1), (t2,m2))™
and {M;}ic(o,7) is a square integrable martingale with quadratic variation
process

|G(t1, s,71,9) — G(t2, s,72,9)|? 2 2
= <
<M >e= / / (tl,rl) (t2,72))% flo,q0pdsdy < | flloK

It then follows from the same arguments as those leading to (10.2.4) that
there exist two constants K14, K73 such that

Eexp (K12M72') < Kis.

[l [ (1, m1) — Blta, m) 2
77—/0 /O/(; /oexp (Km p((t1,71), (t2,72))%* ) dhrdridiydrs.

Then

Let

En < K13T?|0)? < .

It follows from Corollary 10.3.1 that, for any (¢1,71), (¢2,72) € [0,T] x O
with p((t1,71), (t2,72)) < /2, we have

$lersm) = 9l <8 [0 (g ) pld).

Knuzd
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By similar arguments as in (10.2.5), we have

[Wla < Kua (y/Tlogl +1)

where K4 is a constant. The lemma then follows from the same calculations
as in (10.2.6). ||

It is clear that the assumption (A1) holds for Ay. Now we verify the
assumptions (A2)-(A5) under the present setup.

Lemma 10.3.4 The assumption (A2) holds for A.

Proof: For z € A, we denote the two terms on the right hand side of (10.3.7)
by A; and Aj(z) respectively. By (RD4), 4; € X'. On the other hand, by
(RD2) and (RD3), we have

|A(2)(t1,m1) — A(z)(t2,72)]

\/f / |G(t1’s r,q G(t2as Tz,q)|2d3dq

T|0|K R, FT)(1+II$||X)

VE(T)p((t1,71), (t2,72))*(diameter([0, T] x O))**~*
T|0|K(R,F,T)(1+||$||x)-

IN

IA

Then [A(z)]a < 00 and hence A is a map from X" to X. Similarly, it can be
shown that

|A(z) — A(y)llx
v/ K (T)(diameter([0, T] x ©))** *T|O|K (R, F,T)||z — y||x.

Therefore, (A2) holds for A. |

Lemma 10.3.5 The assumption (A3) holds for B.

Proof: For X € Ay, let f(s,q,w) = F(s,q,X(s,q,w)). Then, by (RD5),
[l flleo < K(R,F,T). It follows from Lemma 10.3.3 that [B(X)]. < o0 a.s.,
i.e. B(X) € X a.s. By the definition of the stochastic integral, we see that
B(X) is adapted and hence B is a map from Ay to Ay. Let

R t R
B(z,h)(t,7) :/0 /OG(t,s,r, q)F(s,q,2z(s,9))h(s,q)dsdg Vz € X, h e H.
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It is easy to see that for each z € X, B(z,-) : H — XA is linear and its lifting
B(z,-): Q2 — X is given by

Bz, )(t,r) = /Ot ]0 G(t,s,r, Q) F(s,4,2(s, Q)W (dsdg)  (10.3.9)

which is an element of Ay. This verifies i) of (A3).
iii) and iv) of (A3) directly follow from (10.3.9) and the linearity of the
stochastic integral. Note that

|(B(e1,h) = B(ea, h)(t,7)|

[ [ 166,s,m,0l1F(s,0,21(5,0) ~ F(5,0,22(5, )lIh(s,0)ldsda

IN

IN

K(R) F; T)\//Ot \/0 |G(t1 s, 7, q)|2|$1(8, q) - :132(3, q)lZdeq”h”'H

IN

t
K B[ K@ 6~ o) dsllln ~ 2l
K(T) Tt
KR DN o - ol

\(B(zl, B) = B(a3, h)(t,m1) — B(a1,h) — B(za, h)(t, )|

t
/ / |G(ta sirl)q) - G(tts,"‘Z)q)I
0 Jo
|F(s,q,21(s,9)) — F(s,q,22(s,9))||~(s, g)|dsdg

t
K(Ra Fa T)\/‘/0 /0 IG(t1 $,T1, Q) - G(t, 5,72, q)lqudsllwl - $2||X”h”')-¢

< VE(DK(R,F,T)|lzr — z2|lxllAllnlry — 2|2
Hence, there exists a constant K5 such that
|1B(21, k) — B(z2, h)l|x < Kisl|hllxller — z2|x.

Hence, ii) of (A3) holds.
Finally, we verify the exponential continuity of B. Let X,Y € Ay (which
may depend on €) and let 9 be given by Lemma 10.3.3 with

f(si q, UJ) = 6_1(F(S, q, X(s’ q, w)) - F(Sa q, Y(S, q, w)))1|X(s,q,w)—Y(3,q,w)|<5'
Then
| £ (s, q,w)

IN

and

IN

IN

< J—IK(R, F, T)IX(3$ q, w) - Y(S, q, w)|1|X(s,q,w)—Y(s,q,w)|<5
< K(R,F,T).
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As

P (Vel[B(X,w) - B(Y,w)|x > V&, ||X - Y|x < §)

< P(Iwle> =)

and there exists a constant K6 such that ||¢||x < Kig[t¥]a, V¥ € X s.t.
(0, -) = 0, the exponential continuity of B follows from Lemma 10.3.3. N

Lemma 10.3.6 The assumption (A4) holds for {X¢}.

Proof: It is clear that the second part of (A4) holds. We only need to prove
exponential tightness for {X¢}. Let 8 € (@, a3). For M > 0, let

Cu={zeX:[z]g <M, z(0,-) =&}
Then Cp is a compact subset of X'. Let f(s,q,w)= F(s,q,X(s,q,w)) and

let ¢ be given by Lemma 10.3.3. Taking £, =0,¢; =tand ry =re =7 in
(4.3.4), we have

T
| [ 16,5, 9 dsdg < k(D)2
0 (9]

As
Xf = (Al)t + Az(Xe)t + \/Ei,bt, (10310)

by (RD3) and (RD4), we have

[X?lleo = sup{|X*(s,r) : s < t, r € O}

4l + Vlbllea-+ sup [ [ 1665, R(s, 0, X(5,0)ldsda
| A1ll7,0 + Vell®llz0

+K(R,F, T)T“?,/K(T)|0|\//Ot(1 4 [1X¢ls.0)2ds.

It then follows from Gronwall’s inequality that

IN

IN

14+ [| X lleo < Kir(1+ || AtllTo + Vell#llT,0) (10.3.11)

where K7 is a constant. Further, by (10.3.10) and (10.3.11), it can be shown
that there exist two constants Kig, Kig s.t.

[X€) < K15 + K19Ve[¥)g.
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Letting § be given by Lemma 10.3.3 and taking M > 0 such that
(M - K18)V6 = Ko,

it follows from Lemma 10.3.3 that

1
i log P(X® ¢ Cp) < i 1 P( >——><—L.
im sup € log (X ¢Cum) < im sup €log [ls 73) S ]

Lemma 10.3.7 Z¢, given by (10.1.13), tends to 0 in probability as ¢ — 0.
Proof: Let ¢ be given by the previous lemma. Then
Z(t,r)
= [ [ 65,70 {R(s,,7(5,0) + o(6,0)) ~ Rls,0,2(5,0)} s
+ [ [ 6o ) F(,6,25,0) + 2(5,0)
~F(s,q,2(s,9))}A(s, q)dsdq + Ve (t, 7).

By (RD2), (RD3) and Holder’s inequality, we have

1Zllo = sup |Z°(2, 7)|
reO

IN

t
Vel + K (R, F,T)sup [ [ 16(t,5,7,0)7%(s,)ldsdg
TE
t ~
+K(R,F,T)sup/ / |G(t,s,7,9)Z%(s, q)h(s, q)|dsdg
re0J0 JO

Vello + K(B F,T) (\/TIO]+ [l

IN

1

t 2
(ggg I |G(t,s,r,q)ZE(s,q)Pdsdq)
Vellblizo+ K(R F,T) (\/TIO]+ [1]1)

(/ K(T)(t - s)““lllz:n?,dsf .

IN

Hence, there exists a constant Kyg such that

t
1213 < 2€lbll3o+ Koo [ (¢ = ) 1 3ds. (10.3.12)
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Applying (10.3.12) to || Z¢||2 on the right hand side of (10.3.12), we have

t
176l < 2elliho+ Koo [ (¢ = 5 2ellglfpods

t s
Ko [ (¢ =) Ko [ (5= 1) 125, [3dsrds

Tl—a1
= 2¢|¥l%o 1+ Ko7
-0

4k [ ([ (oot - sy ords ) 125 o

Tl—al
= 2¢[[9l%o (1 + Kz al)
syt

t
+K [ 2( |- (t—s)'al(s—sl)-“lds) 12, 3dss
0 s1

2 Tl—a;[
< 2€|[plizo {1+ Kaog
K2022a / 1-2
t - s)i-2||Z¢
BT [ ez

If 1 —2a; > 0, we stop here; Otherwise, as 1 — 20y > —ay, continuing the
above estimate we will find two constants K9; and K55 such that

t
1Z:llo < enl[¥lfho+ Koz [ 125113
It follows from Gronwall’s inequality that

1Z°)170 < eKasl|¥|70, (10.3.13)

where Kj3 is a constant. By (RD2), (RD3) and Hélder’s inequality again,
we have

— Vedla < K@) (VTI10] + I0l) KR, B D)1 Zro. (10.3.19)
Therefore, there exists a constant Ko4 such that
1Z°||7,a < VeKa24[¢]a

and our result then follows from Lemma 10.3.3. |

In Lemmas 10.3.4-10.3.7, we verified the assumptions (A1)-(A5) under
the SPDE setup. Therefore, {X¢} satisfies LDP. Before stating our main
theorem in this section, we study the map <y defined in Definition 10.1.2.
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Lemma 10.3.8 v is a single valued map from H to X.

Proof: First we consider h € H such that ||hljrp < oco. For (t,r,z) €
[0,T] x O x R, let

R = R(t,r,z)+ F(t,r,2)h(t,r) and F =0.

Then
|R(t1 T, :L') - R(tv T y)l
S lR(ti L) :Z?) - R(tv Ty y)' + |F(t1 T, :23) - F(tv T, y)”i"(t: T)I
< K(B,FT)(1+lro) |z - 9|
and

|R(t, 7, 2)] |R(t, 7, 2)| + |F(t, 7, @) |A(2, )|

<
< K(R,FT) (1+|kllro) (1+ ).

It follows from Theorem 4.3.2 that the following equation

t ~
:c(t,r)='/OG(t,0,r,q)§(q)dq+/ / G(t,s,r, q)R(t,r, z(s, q))dsdgq
0 Jo
(10.3.15)
has a unique solution, denoting it by z = y(h), in X.
For general h, let h™ € H be such that ||h"||70 < o0, Vo > 1, and
|h™ — h|l# — 0 as n — oo. Let z™ = y(h™). Then

t .
o) = [ 660 r08@da+ [ [ 6ts,r )Rt r,a(s,q))dsdy.

(10.3.16)
Similar to the proof of the previous lemma, it can be shown that there exist
two constants K95 and Kog s.t.

lz"||lx < Kos(1 4+ ||R"|x) Vn2>1

and
|z — 2™||x < Kg||h™ — A™||%)  Vn,m > 1. (10.3.17)

Hence {z"} converges to an element z in X'. By (10.3.16), z is a solution of

(10.3.15). The uniqueness for the solution of (10.3.16) directly follows from
(10.3.17). N

Finally we summarize our results to the following main theorem of this
section.
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Theorem 10.3.1 Suppose that O satisfies the cone condition. Then, under
assumptions (RD1)-(RD5), {X¢} satisfies the large deviation principle on
C([0,T],Ba) (o < ag) with rate function I given by

I(c) = inf {% /0 ! /o |h(s,r)[*dsdr : h € H st. @ = 7(h)} (10.3.18)
where z = y(h) € C([0,T],Ba) is given by

o(t,r) = [ G000 (10.3.19)

+/Ot'/oG(t’ s,7,q)(R(s,q,2(s,9))+ F(s, q1$(5’Q))i‘(sa q))dqds.

Remark 10.3.1 LDP considered in this section has also been studied by
Peszat [44] and Chow [4]. The present section differs from their results in
the following aspects:

(i) Their methods are similar to the finite dimensional case, i.e. they resort
to a sequence of approzimate solutions for which the LDP is satisfied, and
then show that the LDP is preserved in the limit. Our method is to approz-
imate the probability that the solution lies in a small neighborhood by the
probability that a Gaussian process, obtained by freezing the right hand side
of the SPDE, lies in the same neighborhood.

(ii) The stochastic integral on the right hand side of (10.8.1) is different
from the one in their papers. They consider it to be the integral of a Hilbert-
Schmidt valued process with respect to a Wiener process. We regard it as the
integral of a real valued random field (both the time and space variables as
parameters) with respect to a Brownian sheet in space-time. The advantage
of this point of view is that the Hilbert-Schmidt property is not required and
hence, some of the conditions in their papers can be relazed.

10.4 Reaction-diffusion SPDEs

Now we apply our results to a class of reaction-diffusion SPDEs. In this
case, {L(t)} is a family of second order differential operators. Let d = 1 and
O = (0,£). Let {X*¢} be the solution of the following equation

dX<(t,r) = (L)X, 7)+ R(t,r, X(t,7)))drdt
+VeF(t,r, X<(t,r))W (drdt) (10.4.1)
X0,r) = £(r).

Theorem 10.4.1 Suppose that {L(t)} generates a two-parameter evolution
semigroup {U(t,s) : 0 < s < t} on C([0,€]) which has kernel function
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G(t,s,7,9),0<s<t, 0<rq<¥, satisfying the following conditions:
(i) There ezists a constant K such that V0 < t1,t, < T and 0 < r1,73 < ¥,
we have

1
1

T
/0 /0 |G(t1,5,71,9) — G(t2,5,72,9)|°dgds < K <|t1 —to? + |y — 7‘2|2)

(10.4.2)
where G(t,s,7,q) =0 for s > t.
(1)) V0 < s <t <T and r € (0,£), we have
T
/ / G(t, 5,7, q)dg < K(t —5)™3. (10.4.3)
0o Jo

(iii) (RD4) holds.
We also assume that R and F satisfy the condition (RD3).
Then for and o < L, {X*} satisfies LDP with rate function

I(z) = inf{ LIS s \t,r)|?dtdr : b e L2([0,T] x (0,2)) 5.t }
(10.3.19) holds with O = (0, £)

Remark 10.4.1 The conditions (i)-(iii) hold for most parabolic operators
% — L(t) (cf. Friedman [10]).

Example 10.4.1 Nonlinear stochastic cable equation

Consider the following nonlinear stochastic cable equation with small
noise:

0 € _ 82 € €
FTa (t,z) = (%5 - 1) v¥(t, z) + f(z, v (¢, 2))

. o*'w
+\/EU($, v (t, iv))a—té-a—:
v(0,2) = £(2)
Ové(t,0)  Ove(t,m)
oz - 0z
Suppose that f and o satisfy the condition (RD3) and o(z,v) # 0 for all
(z,v) € (0,7) x R. For any a < 1 and ¢ € C([0,T], Ba), let
2 (& - _ 2
6t¢(t1 :B) (332 1)¢(t1 (B) f(a:a ¢(t1 (E))

1 T r2m
S§(¢) = 5[) L 0‘(:13, qb(t,rc)) (10 \ 5)

if ¢ € W2 and ¢(0, ) = £; Otherwise, S¢(¢) = co. It follows from the proof

of Theorem 4.4.1 that the conditions (i)-(iii) of Theorem 10.4.1 are satisfied
92

for L= 55— 1.

(10.4.4)

0.

dtdz
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Theorem 10.4.2 {v°} satisfies the LDP on C([0,T],B,) (a < 1) with rate
function Sg.

Proof: It follows from Theorem 10.4.1 that {v®} satisfies the LDP on
C([0,T],B,) with rate function I. We only need to show that I = S,.

If S¢(¢) < oo, then ¢ € Wy'%, $(0,-) = € and
_ £¢t,2) - (£~ Dé(t,2) — f(z,4(t,2)

h(t,z) (. 6(t,2)) (10.4.6)
is in L2([0,T] x O). Note that (10.4.6) implies that
$(t,r) = /o G(t,0,7,9)¢(q)dg (10.4.7)

+ [ [ 665, a5, 805,0) + (e, s, ), )} dads.
0 JO

Hence I(¢) < oo.
_ On the other hand, if I(¢) < oo, then, for any § > 0, there exists
h € L*([0,T] x O) such that (10.4.7) holds and

S [ [ s r)Pasar € (1(9), 169)+ 8.

It is easy to see that his uniquely determined and coincides with the right
hand side of (10.4.6) (see Walsh [57] for details) and hence,

1 (T .
5/0 /0 |h(s,T)|?dsdr = I(4).
Therefore S¢(¢) < oo and S¢(¢) = I(9). |

Remark 10.4.2 Recently, Sowers [50] has derived the LDP for SPDE
(10.4.4) with periodic boundary condition. The following conditions were im-
posed: there exist constants F, f~,m, M and o~ such that, for any z € [0, 27]
and y,z € R, we have

|f(z,9)| < FA+y)), |f(z,9) - f=z,2)| < fTly - 2], (10.4.8)
and
0<m<o(z,y) <M, |o(z,y)—o(z,2)| < o7y — 2|, (10.4.9)

It is clear that the conditions (10.4.8) and (10.4.9) are stronger than the
condition (RD3). Further, by similar arguments as in the proof of Theo-
rem 4.4.1 that the conditions (i)-(iit) of Theorem 10.4.1 are satisfied for the
periodic boundary condition. Therefore, Sowers’ case can be derived as a
special case of Theorem 10.3.1.








