
Chapter 10

Large deviations for
diffusion processes in
conuclear spaces and for
SPDEs

In Chapter 8, we studied diffusion processes in conuclear spaces governed by-
stochastic differential equations. In these models, the drift term describes
the deterministic evolution of the voltage potentials of the neuron while the
diffusion term is added when random stimuli by electric impulses are present.

In this chapter, we derive a large deviation principle (LDP) for such pro-
cesses when the diffusion term depends on a small parameter which tends
to zero. The lower bounds are established by making use of the Girsanov
formula in abstract Wiener space. The upper bounds are obtained by Gaus-
sian approximation of the diffusion processes and by taking advantage of the
nuclear structure of the state space to pass from compact sets to closed sets.

This chapter is organized as follows: We study the LDP for a class of
random variables taking values in Banach spaces in Section 1. Then in
Section 2, we apply our basic results to stochastic differential equations in
the conuclear spaces investigated in Chapter 8. The material of this section
comes from Xiong [60]. In Section 3, we present our results obtained in [32]
for LDP of random field solution of SPDEs studied in Section 4.3. Finally, in
Section 4, we specialize the results to stochastic reaction-diffusion equations.

10.1 LDP for a class of random variables

Stochastic differential equations or stochastic integrals can usually be re-
garded as random transformations of some Wiener processes. In this sec-
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300 CHAPTER 10. LARGE DEVIATIONS

tion, we consider a family of Banach space valued random variables which
comes from such transformations. As the map is not pointwise, the usual
contraction principle for large deviation is not applicable in this case.

Let (ΐ, 7ί, Ω) be an abstract Wiener space and let P be the standard
Wiener measure on (Ω,#(Ω)). Suppose that X C y are two separable Ba-
nach spaces and Ax (resp. Ay) is a class of Λ'-valued (resp. ^-valued)
random variables on Ω.

Definition 10.1.1 Let ί G L(H,y), where L(H,y) is the collection of all
bounded linear operators from Tί to y. A y-valued random variable I is
called the lifting of £ if for any ίn G L(Ω, y) which tends to ί in L(H,y)
we have that tn{')> regarded as a sequence of y-valued random variables,
converges to ί in probability.

Let A : X —• y and B : Ax --> Ay be two mappings and {Xe : e > 0} be
a family of X-valued random variables on Ω with the following properties:
(Al) i) Ax and Ay are two linear spaces.
ii) X C Ax in the sense that for any x G X fixed, the constant mapping
given by X(ω) = cε, Vω G Ω, is in Ax. Similarly, y C Ay.
iii) For any h G U and X G Ax, we have ThX G Aχ> where (ThX)(ω) =
X(ω-h).
(A2) There exists a constant K such that

- A{x2)\\y < K\\xx - sail*, V*i, x2 € X. (10.1.1)

(A3) There exists a continuous map B : X x H —• y with the following
properties
i) For each x G X, B(x, •) :H -> y is linear and the lifting B(x, •) : Ω -> J
is an element of Ay.
ii) There exists a constant K such that, for any a?i, a?2 G <V, /ι G ?ί, we have

, Λ) - B(β2,Λ)||y < ^l|fc||w||*i " ^ I U (10.1.2)

For each x G A', as the constant map X(ω) = x is in >1^, we have that
B{x) = B(X) is an element of Ay and hence, B(x) is a J^-valued random
variable. On the other hand, by Definition 10.1.1, the lifting B(x, •) is also
a 3^-valued random variable. We make the following further assumptions:
iii) For any x G X, we have B[x) = B(x, •).
iv) For emyheH.Xe Ax, the map Bh(X) :Ω-^y given by Bh(X)(ω) =
B(X(ω)J h) is in Ay and

= Th {B(T-hX)). (10.1.3)
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(v) B is exponentially continuous in the following sense: For any L > 0,
there exists δ > 0 such that for any {Xt(e)}, {X2(e)} C Ax, we have

/VillBpr!^)) - B(X2(e))\\y > Vδ,

6) -X2(e)\\χ<δ)

< -L. (10.1.4)

(A4) i) {Xe} is exponentially tight, i.e., for any L > 0, there exists a compact
subset CL of X such that

limsup€logP(Xe £ CL) < -L\ (10.1.5)
€-»0

ii) For any e > 0, X c G *4# and satisfies the following equation in ̂ :

) , a.s. (10.1.6)

where A(X€) is understood as A(Xe)(ω) = A(Xe(ω)), Mω G Ω.
Let P€ be the probability measure on X induced by Xe. We proceed to

derive large deviation results for {Pe} as e —> 0.
First, we study the LDP for the Gaussian random variables obtained by

freezing the right hand side of (10.1.6), i.e. Vz G X fixed, we consider the
following family of ̂ -valued Gaussian random variables {X€>x : e > 0} given
by

Xe>x = A(x) + y/ΪB(x). (10.1.7)

We shall need the following theorem due to Kallianpur and Odaira [25]
(see also Stroock [52]).

Theorem 10.1.1 Let μ be a centered Gaussian measure on a separable Ba-
nach space E. Let S be a continuous linear map from a separable Hubert
space H to E such that

WS'iWπ = / (ΦO)V(ώO, W € E', (10.1.8)
JE

where Sf : E1 -> H1 = H is the dual of S. For e > 0, let μ€ be a probability
measure on E given by

μe(C) = μ{xeE:^xeC},VCe B{E).

Then {μe : e > 0} satisfies LDP with rate function

I μ ( x ) = Ίnfίh\h\\2

H :heH such that S(h) = x \ . (10.1.9)
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Proof: If the linear map 5 is injective, the conclusion of the theorem follows
from Theorem 3.45 and Theorem 3.48 of [52]. If S is not injective, let
HQ = {he H : S(h) = 0}. Then Ho is a closed subspace of H. Let H be
the orthogonal complement of i?0 S|# is then an injective continuous linear
map from H to E. It is easy to see that SΊ € H and hence, SΊ = (S\6)%
W <E E', i.e., (10.1.8) holds for S\6. Therefore {μe : e > 0} satisfies LDP
with rate function

p y oo otherwise.

It is clear that /μ(aj) given by (10.1.10) coincides with the function defined
by (10.1.9). I

Theorem 10.1.2 {y/eB(x) : e > 0} satisfies the LDP with rate function

Ix'°(y) = inf < - ||/ι||ft :heTί such that y = B(x, h) \ .

Proof: As {y/eB{x)} is a family of centered Gaussian random variables,
it follows from Theorem 10.1.1 that we only need to prove the following
equality:

E (\y'[B(x)]\2) = \\B(x, -Yy'fn, for any y' e y,

where B(x, •)': y' -> H is the dual of the linear operator B(x, •) :H->y.
In fact, let {ej} be a CONS of H. Then

\\B(χ, Yy% = y/(B(χ,-yy',e3)
2

u =

Theorem 10.1.3 {Xe>x : e > 0} satisfies the LDP on y with rate function

heH s.t. y = A(x) + B{x,

Proof: Define a map π : ^ —>• y by πy = i4(aj) + y. The result follows easily
from Theorem 10.1.2. •

Now we define a "rate function" I(x) on X.
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Definition 10.1.2 Let

I(x) = inf ji||Λ|fo : h G V{Ί) s.t. x = 7(Λ)} (10.1.11)

where V(η) is the collection of h ζTί such that the following equation

x = A(x) + B(x,h) (10.1.12)

has a solution x, denoted by j(h), in X.

Remark 10.1.1 In general, j can be a multivalued map. Nevertheless, in
many applications, 7 is a single-valued injection with V(j) = H.

We state the following Girsanov's formula in abstract Wiener space the
proof of which can be found in Kuo [35].

Lemma 10.1.1 For h G H, we define a linear transformation Th on Ω by
Thcυ — ω — h. Then the probability measure P = P o (Th)~ι is equivalent to
P and

—(ω) = exp ( - < h,ω >H -^||Λ||w)

To derive the large deviation lower bound, we need the following assump-
tion
(A5) Let h G P(τ), x = j(h) G X and Ze G Ax such that

Z* = A(Ze + x ) - A(x) + Bh(Ze + x ) - Bh{x) + ^B(Ze + x ) . (10.1.13)

Then, for any δ > 0

P(ω : \\Z*\\χ < δ) -> 1, as£->0.

Theorem 10.1.4 For any open set G of X, we have

liminf 6logP(X€ G G) > -inf{/(a:) : x G G}. (10.1.14)

Proof: Without loss of generality we may assume that the right hand side
of (10.1.14) is finite. Then, for any δι > 0, there exists x G G such that

I(x) < inf {/(y) : y G G} + δ1 < 00.

For any η > 0, there exists h eV(y) such that x = j(h) and

\\\h\\^<I(x) + η. (10.1.15)
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Let Ye = Xe- x. It follows from (10.1.3), (10.1.6) and (10.1.12) that

Ye =

yfe {B(Y< + x) - Bh/VΪ(Y< + x)}

Let Ze = T_h/y/ιY*. Then

Z* = T

+y/ϊB(Ze + x) (10.1.16)

= A{Ze + x)- A(x) + Bh(Ze + x)- Bh(x) + V^B(Ze + x).

Finally, let <5 > 0 be such that {y : \\y - x\\χ < δ} C G. Let P be given
by Lemma 10.1.1 with h replaced by h/^/e. Then by (10.1.15) and Lemma
10.1.1, we have

elogP(X e € G) > elogP(||Xe - x\\x < 8) = e\ogP(\\Ye\\x < δ)

= elogE (exp ( ^ < M >H ~\M^) ! 11^(^/^)11* <

> -I(x)-η + elogP(\\Zΐ(ώ)\\x<δ)

P{\\Z*{ώ)\\x < δ)

It follows from Jensen's inequality, Holder's inequality, (10.1.16) and As-
sumption (A5) that

elogP(X €GG)

> -7( ! r) -7 ? + €logF(| |^(ώ)|U<<5)

+eE (^=e<h,ώ >n; \\Z<(ώ)\\x < 6)/P(\\zr(ω)\\x < 8)

E\ < h,ώ >H | 2 ) 1 / 2 (P(\\Z'(ώ)\\x < δ))

-η + e\ogP(\\Z'{ω)\\x<δ)

-> -I(x) -η>- inf {J(y) : y G G} - δi - η.

(10.1.14) follows as δ\ and η are arbitrary.
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Now we consider the upper bound. The idea is to approximate the non-
Gaussian random variable by Gaussian random variables. We first obtain
the upper bound for compact sets and then extend to closed sets.

Lemma 10.1.2 For x € X and L > 0, there exists δ > 0 such that

limsup e logP (||X€ - x\\x < δ, \\Xe'x - x\\y > (1 + K)δ + Vδ) < -L.

Proof: By (10.1.1), (10.1.6) and (10.1.7), we have

elogP (||X£ - x\\x < δ, \\Xe'x - x\\y > (1 + K)δ+Vδ)

< elogP [\\Xe - x\\x < δ, \\Xe x - Xe\\y

e) - A(x)\\y + V~e\\B(Xη - B(x)\\y

< elogP (||Xe - x\\x < δ, V~e\\B(X*) - B(x)\\y > Vδ) .

The conclusion of the lemma now follows from (10.1.4).

T h e o r e m 10.1.5 For any compact subset C of X, we have

limsup e log P(Xe G C) <-inϊ{I(x) :xeC}.
€ - • 0

Proof: Let c < inf{/(z) : x G C}. From Theorem 10.1.3, for each x € X,
Ix(y) is lower-semi-continuous in y £ y. For x G C, as Ix(x) = I(x) > c,
there exists δ(x)' such that Ix(y) > c whenever \\y - x\\y < 25(z)'. Let δ(x)
be determined by δ(x)' through δf = (1 + K)δ + \/δ. Since C is compact in
X, there exist z J G X} j = 1,2, , n, such that

where 5J = δ(χi). Hence

p(x*ec) <

3=1
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By Lemma 10.1.2 and Theorem 10.1.3, we have

lim sup € log p^ ' < —L
€-+o J

and
(2)

lim sup € log p\ } < —c, j — 1, ,π.

Hence

limsupdogP(X€ G C)

< lim sup e log ί(2n) max j ^ f c ) : 1 < j < n; A; = 1, 2 j )

< max(-L,-c).

The conclusion of the theorem then follows by letting L —» oo and c —»
inf{/(α:) : a? G C}. I

Theorem 10.1.6 For any closed subset C of X, we have

l i m s u P € l o g P ( X € eC)< - i n f { / ( z ) :xeC}. (10.1.17)
0

Proof: For L > 0, let CL be the compact set given by (10.1.5). Then CnCL

is compact and hence, by Theorem 10.1.5

lim sup € log P(X€ eCΠCL) < - inf {I(x) :x eCΓ\CL}

< -inf{I(x):xeC}.

Therefore

limsupelogP(Xc 6 C)
€ - • 0

< lim sup e log (2 max{P{Xe 6 C Π CL), P(X e G C \ CL)})

< max (limsupelogP(X€ G C Π CL),limsupelogP(Xc

< max {- inf {I(x) : x G C}, - L ) .

Letting L —> oo, we see that (10.1.17) holds. I

Finally, we show that the function / defined by (10.1.11) is a rate function
in the sense of Donsker and Varadhan.

For each c > 0, define the level set

Lc = {xeX : I{x) < c}.
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Theorem 10.1.7 I(x) is a lower-semi-continuous function on X.

Proof: Let {xn} C Lc and xn —»• x in X. We only need to show that I(x) < c.
Let hn € V{η) be such that xn = j(hn) and \\hn\\^ < 2I(xn) + £. Let

yn = B(a:,/ιn) and y = x - A(x). (10.1.18)

Then by (10.1.1) and (10.1.2)

l|yn - y\\y

= I (B(x, hn) - B(xn, hn)) + (xn - x ) - (A(xn) - A(x

< {K\\hn\\H + l + K)\\xn -x\\x -+0.

From

it follows from Theorem 10.1.2 that Ix'°(y) < c. Hence for any η > 0, there
exists h 6 H such that y — B(x}h) and

\\\h\\n<c+η. (10.1.19)

By (10.1.18) and (10.1.19) we have h e £>(τ), x = τ(/ι) and I(x) < c. I

Theorem 10.1.8 For each c > 0, Lc is compact in X.

Proof: Taking L > c, we only need to show that Lc C CL where CL is the
compact set appearing in (10.1.5). If this is not true, there exists XQ £ LC\CL-

As C£, the complement of CL, is open and xo € Lc, it follows from (10.1.5)
and (10.1.14) that

-c < -I(zo) < liminf €logP(X€ G C£) < lim sup e log P(Xe <£ CL) < -L.

€-*0 e_,0

This contradicts the fact that L > c. Hence Lc C CL and compact. I

We summarize the above results into a theorem.

Theorem 10.1.9 Under assumptions (A1)-(A5), {Xe} satisfies the LDP
on X with rate function I given by (10.1.11).
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10 2 Application to stochastic differential equa-
tions on conuclear spaces

In this section, we consider the LDP of {Xe} governed by the following SDE:

XI = ξ + f C{s, Xl)ds + yfe f G{s, Xt)dWs (10.2.1)
Jo Jo

where C : R+ X Φ' -> Φ' and G : R+ X Φ' -+ £(Φ', Φ7) are two measurable
maps, ξ G Φ', W is a Φ'-valued Wiener process with covariance Q.

To establish a unique strong solution of (10.2.1) for each e > 0, we assume
that (C, G,Q) satisfies the conditions (D1)-(D3) of Chapter 8 and
(DM)' (Monotonicity) Vt G [0,T] and υi,t>2 € $ - P ,

2 < C(tf vi) - C(t, v2), vi - v2 > - q < *Ί |v i " v 2 | | - g

and

| |G(t, vx) - G(ί, v 2 ) | | l ( 2 ) ( f f Q ) φ _ p ) < ϋC||V l - v2||
2_p.

As ξ is deterministic, the condition (D4) of Chapter 8 is satisfied. Hence,
by Theorem 8.3.1, the SDE (10.2.1) has a unique strong solution Xe for each
e > 0. It follows from Corollary 3.2.1 that there exists r<ι > 0 such that
W. G C([0,T],Φ_ r 2) a.s. As X€ is the strong solution of the SDE (10.2.1),
we may assume that the stochastic basis (Ω, J7, P, {Tt\) is given by

and P is the probability measure induced by W on C([0,T], Φ_r2)

Theorem 10.2.1 Let

Then 7ί C Ω and (z, Ή, Ω) is an abstract Wiener space, where i is the canon-
ical injection from Ή to Ω. Further, P is the standard Wiener measure on
Ω.

Proof: It is clear that H C Ω. We identify H'Q with HQ by the Riesz

representation theorem and let Φ_ r 2 C HQ be the dual of Φ- Γ 2 such that

< i,V>~-r2 = < £,V>HQ, W G Φ-r 2 ,^ G HQ C Φ-
r 2 ,

where < , >~_r2 is the pairing between Φ_ r 2 and Φ _ r 2 . We define Ω C 7ί
as the dual of Ω in a similar manner.
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:Define y / Q^ : HQ ~+ *-r 2 as the dual of the isometry y/Q^' : Φ_ r 2

HQ. Then, by Lemma 3.2.2, y/Qr2 is an isometry from iϊg onto Φ_ r 2 and
for ei,e2 G HQ,

Λ\JQT2 €2 /

= Σ

—r2

(10.2.2)

where V{ G Φ-r2 such that ê  = \fQ72

vii i = 1,2. Let

Ho = {/ = ̂ s d s : * G C\%T\^.T2)^ = £T = θ} .

Then Tΐo C Ω is a dense subset of Ti. For any / G Wo, let /ιs G i/g be such

that ίs = <\ZQr2 hs. It is easy to see that

«= [T (huJθ72Wt)
Jo \ V /Ho

is a Gaussian random variable with mean 0. To show that (i,7ΐ, Ω) is an
abstract Wiener space and P is the standard Wiener measure on Ω we only
need to show that

Let υt € Φ-r2 be such that ht = \Λ?Γ2 υt Then

E{<f,W>~a}2 = EΠ\h

= Γ [T E{Wt[θr2vt]Ws[θr2υs]}dtds
Jo Jo
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fT fT I ! , \

= / / (tAs)(jQr2er2vuJQr2er2vs) dtds
JO JO \ v v I r2

fT fT / . , . , v
= / ( t A s ) ( \/Qr2 VU \/Qr2 Vs ) dtds

Jo Jo \ V V / -r2

= [ ί (tAs)(huhs) dtds.
Jθ Jθ X ' ~r2

On the other hand, by (10.2.2)

ll/llw = / f jQ^1]hsds\ dt
Jo Jo v

 \\HQ

fτ r* r* / I (i). I (i). \
= / / / \\IQf2 ^5i)vQr2 ŝo ) ds\ds2dt

Jo Jo Jo \ v v IHQ

ίT fT ΪΊ I* \= I I I \hSl,hS2) ds\ds2dt
JO Jt Jt X / ~r2

fT fT .
= / / ( 5i A s2) (hSl, hS2 ) ds\ds2.

Jθ Jθ X 7 ~ r 2

Let p 2 be an index such that p2 > q\ and the canonical injection from
Φ_ P l to Φ_ P 2 is Hilbert-Schmidt, where q\ is determined by pi through
Assumption (D). Let p$ > q2 be defined similarly. Now we regard Xe as
Φ_P2-valued processes and consider their LDP as e —> 0.

Let X = C([0,Γ],Φ_P 2), y = C([0,Γ],Φ_P 3), and let Λx (resp. Ay) be
the collection of Φ_ P 2 (resp. Φ- P 3 ) valued adapted continuous processes. It
is clear that Condition (Al) holds.

Let A : X -> y be given by

A(x)t = ξ+ C(s} xs)ds, Vz G X.
Jo

To verify the condition (10.1.1) we need the following assumption.

(D5) (Lipschitz) Vt G [0,T] and v1}v2 G Φ - p ,

Condition (A2) follows directly from Assumptions (Dl) and (D5).

F o r X G-4AΓ, let

B(X)t=
 t

It is easy to see that B is a map from Ax to Ax. Now we verify the condition
(A3) for B with y replaced by X (i.e. a stronger condition than (A3)).

We define a map B : X x 7ί -» X as follows

B(x, h)t = [ G(s, xs)hsds VxeX,heH.
Jo
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As

\\B(x,h)-B(y,h)\\χ = sup l[\G(8,x.)-G(s,y.))h.dsl
o<t<τ\\Jo | |_p 2

Γ< Γ \\G(s,xa) - G(s,y,)\\L(
JO

<
Jθ

< Vκτ\\h\\n\\χ - y\\χ,

and similarly, since

\\B(x, e i ) - B(x, e2)\\x < VKT(1 + ||*||Λ?)||ei - e 2 | | w >

B is a continuous map. It is clear that for each J G A ' , B(X} •) : 7ί —>• A' is
linear and the lifting map f?(z, •) : Ω —> A' is given by

,-)*= f C{s,xs)dWs.Jo

Hence B(JB, •) = JB(a ) G Aχ

For any /ι G H} X G ̂ 4Λ:> we have

Jo

in ^4^. Further it follows from

= /*G(s, Xs)dWs - f G(s, Xs)hsds
Jo Jo

= ίtG(s,Xs)d(Ws-hs)
Jo

and

= [tG(s,Xs)d(Ws-hs))
Jo

that (10.1.3) holds. Therefore we have proved (i)-(iv) of Assumption (A3).

To verify the last condition of (A3) we need the following lemmas.

L e m m a 10.2.1 (Garsia) Let (Z,d) be α metric space and let φ be a con-

tinuous map from [0,T] to Z. Suppose that Φ and p are increasing functions

in x > 0 such that Φ(0) = p(0) = 0 and Φ is convex. Let

Jo Jo
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Then, for any t,s £ [0, T], we have

d(<ψ(t),<ψ(s)) < 8 /*"' Φ - 1 ^ " 2 ) ^ ^ ) ,
Jo

where Φ " 1 denotes the inverse function.

Proof: The case of Z = R has been proved by Garsia [11]. For general

metric space, the lemma follows exactly from the same arguments. I

L e m m a 10.2.2 Let f : [0,T] x ί l ^ L(2)(iΪQ,Φ-p2) he a measurable map
such that

where K\ is a constant. Let

ft i
ψ(t,ω)= f(s,ω)dW8 and 0 < a < - .

Jo 2

Then, for any L > 0, there exists a constant M > 0 such that

l imsupelogP ([V>]-P2,α > -7= ) < - £ ,

where
( ) \

0<s<t<T

Proof: Let

g{r,ω) = f(r,ω)\t-s\-alM(r) and Ίu = Γ g(r)dWr.
JO

Then

It follows from Itό's formula that

By Ito's formula again, we have

= Σ l
k Jo

+\ [ \\9{r)\\\2){HQ>9_P2){l

I*-5 I*QiaWnWlryOrfr) (1 + ||7r||2-P2Γ
3/2<ir. (10.2.3)

o Jo
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As the first term on the right hand side of (10.2.3) is a real-valued continuous
square integrable martingale, by Theorem 7.3 in Ikeda and Watanabe ([18],
p.86), it can be represented as WT1 where W is a one-dimensional Brownian
motion and

r = Γ QigirYe^^girYe^yrXl + W-rrWl^-Hr
JO

Hence

< [
< f \\f(r)\\l(2)(HQt*_P2)\t - s\-**dr < KXT.

J S

e p 2 - l < sup
te[o,κ1τ]

i.e.

| | 7τ | | 2 - P 2 < ( l + _βup JWil + KxΓ) - 1 .

It follows from Fernique's theorem (see [35] p. 159) that there exist constants
K-z,Kz > 0 such that

ς κ3. (10.2.4)

Let

η = I exp I K2 j j ~^- I dtds.
Jo Jo \ \t — s\a J

Then

Eη<JJ Eexp (K2\\yτ\\2_p2) dtds <K3T
2.

Let Ψ(&) = eK2χ2 - 1 and p(x) = xa for x > 0. Then Φ and p satisfy the
conditions of Lemma 10.2.1 and

Jo Jo

Hence

*~S l log7/| + Λ/bg2 + ^2|logv|/α) dv



314 CHAPTER 10. LARGE DEVIATIONS

It is easy to see that, for any a! < α, we have

pa i

lim α~α ' / α / Λ/| \ogu\du = 0
α-+0 JQ V

and hence, there exists a constant K4 such that

||^(ί) - ψ(s)\\_P2 < K4 ίy|log77| + l j \t- 5|α/. (10.2.5)

As a is any number in (0, | ) , we may replace a1 in (10.2.5) by α. Hence

lim sup e log P ([ψ]-P2i<x > -j= ) (10.2.6)

< limsupelogP(ίΓ4 (l + J\\ogη\) > -=)
e->0 \ \ V / y/ej

i π( \( M

= lim sup € log P \η > exp I -

< limsupelog jexp [-

Taking M = K±\fL, the lemma is proved.

Now we verify the last condition of (A3).

Theorem 10.2.2 B is exponentially continuous.

Proof: Let X,Y £ Ax and φ be given by Lemma 10.2.2 with

/(ί) = δ-\G(t,Xt) -

Then from (DM)1,

and hence

- B(Y)\\X > Vδ, \\X - Y\\x < S)

Our result follows from Lemma 10.2.2. I

It is clear that the second condition of (A4) holds. The next two theorems
verify the first condition of (A4). For any M > 0 and a G (0,1/2), let

\i = \x € C([0,T],Φ_P2) : sup
o<t<τ

|_Pl <
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and

C2

M,a = {*£ C([0, Γ], Φ ^ ) : [z]_P2,α < M} .

Theorem 10.2.3 For any L > 0, there exists M > 0 such that

lim sup e log P(Xe (£ C^) < -L. (10.2.7)

Proof: We have by Itό's formula,

j " (10.2.8)

= - f 2C(s, xi)[θpixt](i + wxtt^-'ds

\
JO

(i + \\xi\\2-PlΫ~2ds.

Let
r = inf{ί>0: | |X t

e | |_ P l > M}

and r = oo if the set {ί > 0 : ||-X"t

e||-Pl > M} is empty. It follows from (D3)
and (10.2.8) that

+K β-lj £E(l+\\XtΛτ\\2_pi)Us.

From Gronwall's inequality, we have

Then

sup |
\o<t<τ

Hence

elogpfsup \\Xt\\-Pl > M]
\0<t<T )

- log(l + M2) + log(l + | | ί | | 2

p i ) + {ZK - eK)T.
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Choosing M such that

L = log(l + M2) - log(l 2

we see that (10.2.7) holds.

Theorem 10.2.4 For any a £ (0,1/2) and L > 0, there exist two constants
M and M' such that

limsupelogP ( x e e Cλ

M - C2

M, Λ < -L.

Proof: Let M be given by Theorem 10.2.3 and ψ by Lemma 10.2.2 with

Then

Hence

f{Λ e o M - oM/α j =

O11TΛ Is \\^{r^r)\\-P2^r ^ V ^\\Ψ\υ) ~ Ψ\*J\\-P2
g-Qp

0<s<t<T
'•)

The assertion of the theorem then follows from Lemma 10.2.2. I

Corollary 10.2.1 Let CL = C]^ Π Cj^, a. Then CL is a compact subset of
X and

limsupelogPpr ^ CL) < -L.
€ - • 0

Proof: As {υ G Φ_P2 : ||v||-Pl < M} is compact in Φ_P 2, we see that CL is
compact in X. Further,

limsupelogP(X€ $ CL)
€ - • 0

< lim8upelog{ί>(X i Cj,) + P(X' € C\, - C2
M,ia

< -L. "

Next we verify Assumption (A5).
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Theorem 10.2.5 Let Ze be given by (10.1.13). Then Z€ converges to 0 in
P.

Proof: As in (10.2.3), we have

+ f 2(Z\, {C(s, Z\ + x.) - C(s, xs)}
Jo

+{G(s, Z\ + xs) - G{s, zs)}/ιs)_p

Hence, by the Burkholder-Davis-Gundy inequality, we have

p{r) = E sup H^lli
0<ί<r

Q(G(s, Z\ + xJe^Zl, G(s, Z\ + xs)%2Zΐ)ds)
l/2

+E
J 0

\\Z% + * . | | ^ ) \\Zt\\lp2ds

ds.

Hence, there exist two constants K$ and KQ such that

p(r)2 < ̂ K5 + K6 Γ p(s)2ds.
Jo

From the Chebyshev and Gronwall inequalities, we have V5 > 0,

> δ) < δ~2p{T) -+ 0 as 6 -> 0.

We summarize our results in the following theorem.

Theorem 10.2.6 Under Assumptions (Dl)-(DS), {DM)1 and (D5), {Xe}
satisfies the LDP on C([0, T], Φ-P2) with rate function

I(x) = inf fy\h\\2

n : h € V{Ί) s.t. x = 7(Λ)}
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where V{pj) is the collection of h G 7ί such that the following equation

xt = ζ + / (C(s, x.) + G(s, xs)hs)ds. (10.2.9)
Jo

has at least one solution (denoted by x = *y(h)) in X. I

Let us now make the following additional assumption.
(D6): Vt € [0,T] and υ G Φ-P 2, G(ί,υ) : # Q -> Φ_P2 is invertible.

Theorem 10.2.7 i) Under Assumptions (Dl)-(DS), {DM)1 and (D5),
V(η/) = 7ί and 7 is continuous from 7ί into X.
ii) If in addition, (D6) holds, then 7 is injective and I{x) is given by

/(„.) = / I /oT ll^*. *t)-χ{it - C(t, Xt)}\\2

HQdt if xt exists
\ 00 otherwise.

Proof: i) First we consider h G H such that

Halloo = SUp ||Λt||Hg < OO.
0<t<T

For any t > 0 and u G Φ, let

(7(4, u) = C(ί, u) + G(t, u)ht and G(ί, u) = 0.

It is easy to show that (C,G) satisfies the conditions (D1)-(D3) and {DM)f

with po{T) and K replaced by max{po(Γ), ri} and 2X(l+||/ι||^o) respectively.
Hence (10.2.9) has a unique solution in C([0,T], Φ_P l).

For any h G W, let /ιnG?ί such that ||/ιn||oo < 00, Vn G N, and hn -± h
i n W a s n ^ o o . Let z n = 7(/ιn) G C([0, Γ], Φ-P l). Then

(s, x?) + G(5, ̂ ) λ ? ) ώ . (10.2.10)

For any u G Φ- P l , let ^ m G Φ such that <̂ m -> u in Φ_ P l . Then for any
te[o,Γ],

= lim 2{C{t,φrn),φrn)
rn—> oo ΓΛ

= lim
m—> oo

is1-,
(10.2.11)
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Hence by (D3), (10.2.10) and (10.2.11),

Γ 2 (<,<?(*,<)/£) ds

Jo N i -P2

ds
- P 2

+2 G(s,x»)jQ:

+2

where v^ G Φ-P 2 such that /ι̂  =

KH 4 - P 2 <

v™. By Holder's inequality we have

1̂ ) ί\l + |K||2_PJo
. (10.2.12)

It follows from GronwalPs inequality that for some constant Kγ such that
| |£n | | ;t ^ Kγ} Vn > 1. Now we prove that xn converges in X. Making use of
(10.2.10) again, it follows from the same arguments as in the derivation of
(10.2.12) that

W^-x^Wx^KsWhr-hTWn (10.2.13)

where K$ is a constant. Hence, there exists x G X such that xn —> x. It
follows from (10.2.10) again we see that x is a solution of (10.2.9). The
uniqueness of the solution of (10.2.9) and the continuity of 7 follows easily
from (10.2.13).
ii) It is easy to see that 7 is injective and hence I{x) is given by

= < 2

I 00

iίhen s.t. x = -y(h)
otherwise.

But x = j(h) is equivalent to

Λ= Γ Gfaxt^iώt-Cfaxtfidt,
Jo

and hence, ii) follows immediately.
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10.3 Application to SPDEs

In this section, we apply the results of Section 1 to random fields {Xe(t, q),
t > 0, qeO} governed by the SPDE

dXe(t,r) = (L(t)Xe(t,r) + R(t,r,X%r)))drdt

+^F(t,r,Xe(t,r))W(drdt) (10.3.1)

with initial condition

In addition to Assumptions (RD1)-(RD4) made in Section 4.3, we assume
that F satisfies the following condition:
(RD5) There exists a constant K(R,F,T) such that, for all x G R, r e O and
0 < t < T,

,T). (10.3.2)

To derive the large deviation result for random fields {Xe(t,r)}e>Q, we
prove an analogue of Garsia's theorem for a general bounded open domain
Ό satisfying the cone condition. The latter condition which we assume
throughout this section means that there exist two positive constants a and
α0 such that, for any r £ 0, there exists a cone Cr with vertex at r with
height a and base radius αo

For any hypercube Q in Rd, we denote by Q' the hypercube in R d such
that Q and Qf have the same center with edges parallel to the co-ordinate
axes and e(Q) = 2e(Q'), where e(Q) is the common length of the edge of Q.
For any set C C Rd, let \C\ be its Lebesgue measure.

Lemma 10.3.1 1° There exists a constant Kg such that

|Qn<9|>ff9 |Q|, (10.3.3)

for any hypercube Q such that

e(Q)<a/y/d and Q'nOφΦ. (10.3.4)

2° Let Q be a hypercube satisfying (10.3.4). For any r eQΉO and 0 < δ <
e(Q), there exists a hypercube Qι C Q such that r E Q[ and e{Q\) = δ.

Proof: 1° Let r e Q' Π O. As e(Q) < a/Vd, Cr is not contained in Q.
Otherwise

a > diameter(Q) > diameter(Cr) > a.

Let C'r be the maximal cone contained in Cr ΠQ such that its base is parallel
to the base of C r. Then the base of C'r intersects with the boundary of Q.
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Let q be a point in the intersection mentioned above. Let b (resp. ί) be the

slant edge of C[ (resp. Cr). Then

b = \rq\ > distance(Q', Qc) = —-—

where Qc denotes the complement of Q.

It is easy to see that the height and base radius of C'r are y and gψ

respectively. Hence

\C0\ d-W

where Vd-ι is the volume of the unit ball in R^"1. Therefore

> \C'r\ > [?ψ\ |Co| = ̂ \Q\ = Kt\Q\.

2° Extend d segments through r with the following properties:

(i) they are orthogonal to each other and lie in Q;

(ii) each has length δ and parallels to an edge of Q;

(iii) r divides each segment into two parts, the length of each being not less

than δ/4.

Construct a hypercube Q\ with edges parallel to those of Q and all the

end points of the d segments mentioned above are in the surface of Q\. It

can be easily checked that r £ Q'λ and e(Q) — δ. I

Lemma 10.3.2 Let ψ be a continuous function on O. Let Φ and p be
increasing functions in x > 0 such that Φ(0) = p(0) = 0 and Φ convex. Let

Jo Jo

Then, for any r,q G O with \r — q\ < a/2, we have

where K\Q is a constant and Φ " 1 denotes the inverse function.

Proof: If η = oo then (10.3.5) is obviously satisfied. Let η be finite. For
r , g G θ , if \r - q\ < α/2, we have a hypercube Qf

0 such that r,q £ Q'o and
e{QΌ) ^ aj<λ\fd. Define Qo to be a hypercube having the same center as Q'o
and e(Q0) = 2e{Q'o). As r £ Q'0nO, it follows from Lemma 10.3.1 that \Q0Γi
O\ > K9\Qo\. From here on we proceed similarly as in [11]. By Lemma 10.3.1
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again, there exists a decreasing sequence {Qn}n>o of hypercubes such that
r G Q'n and p(a;n_1) = 2p(xn) for all n > 1, where xn = y/de(Qn). Let

Q = QnO and φQ = -i-•

IQI
Then by (10.3.3) and Jensen's inequality, we have

p(Xn-l)

< \ f ί
p(\r-q\)

since

Here we have that Kio = dΓdK\. Hence, noting that p(xn-i) = 2p(a;n)
4p(xn+i) we have

1*3, - * « „ . , I < Φ"

Summing up over n from 0 to oo, we have

It is clear that the above procedure applies with r replaced by q} and hence

Mr) - φ(q)\ <

Making QQ as small as possible, we have XQ arbitrarily close to 2|r — q\. This
finishes the proof of (10.3.5). I

It is easy to check that [0, T] X Ό also satisfies the cone condition. There-
fore, Lemma 10.3.2 is applicable to continuous functions defined on [0, T] X Ό.



10.3. APPLICATION TO SPDES 323

Since only Corollary 10.3.1 below will be used in the rest of this section, we
will use the notation a for the height of the new cone although its value has
been changed.

Corollary 10.3.1 Let φ be a continuous function on [0,Γ] X O. Let Φ and

p be increasing functions in x > 0 such that Φ(0) = p(0) = 0 and Φ convex.

Jo Jo Jo Jo t,r),(5,g))

Then, for any (ί,r),(s,g) G [0,T] X Ό with p = p((t,r),(s,q)) < a/2, we

have

| ^ ( t , r)-^( β > g ) |<8j ί 2 p φ- 1
 ( ^ M ) P ( ^ ) , (10.3.6)

where K\\ is a constant and Φ " 1 denotes the inverse function.

As the solution Xe is a function of the Brownian sheet {W(t, r) : t G

[0, Γ], r G 0}, we may assume that

P is the probability measure induced by {W(t, r) : t G [0, T], r G 0} and .Ft is
the sub-σ-field of T generated by {w{s, r) : s <t r G O}. Let T ί c Ω b e the
space of all h G Ω with the following property: There exists h G ̂ 2([0, Γ] X O)
such that

h(t,r)= / / h(s,q)dsdq
Jo Jθr

where Or = {g G O : ?,- < r, j = 1, , <£}. For ex, e2 G W, let

<eι,e2>n= / ei(r,t)e2(r,t)drdί.

Then < , >7γ is an inner product on 7ί under which H becomes a separable

Hubert space.

Let 0 < a < a2 and X = y = C([0, T], Bα). Define

(A(x)){t,r) = ί G(t,0}r,q)ξ(q)dq (10.3.7)
Jo

+ / / G(t,s,r,q)R(s,q)x(s,q))dqds, Mx G X.
Jo Jo

Let Ax be the class of all Bα-valued adapted continuous processes. For

X € Ax, define

(B(Λ ))(t,r)= / ' / G(t,s,r,q)F(s,q,X(s,q))W(dsdq). (10.3.8)

The next lemma is useful for the verification of (10.1.4) and (10.1.5).
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Lemma 10.3.3 Let f(s, q,ω) be an adapted random field such that

ll/lloo = sup{|/(«,?>α;)| : s € [0,2*], q € O andω e Ω} < oo.

Let

φ(t,r)= f ί G(t,s,r,q)f(s,q)W(dsdq).
Jo Jo

Then for any 0 < a < a<i^ we have [ψ]a < oo a.s. and VL > 0 3δ > 0 s.t.

) < -limsupβlogP ([φ]a > - = ) < -L

where

Proof: For any 0 < tλ < t2 < T, ru r2 G 0, let

Λ/f /* / G f ( t i» g » r i»g)- g ( t 2,g,r 2 > g) r ^ / Λ W M .
Mt = / / 77 — ΓT t(s. q,ω)W(as

Jo Jo pttt i .r iMt^))" M .«. V
Then

and {Mt}tG[Ojτ] is a square integrable martingale with quadratic variation
process

It then follows from the same arguments as those leading to (10.2.4) that
there exist two constants K\2, K\z such that

Eexp(K12M%) <K13.

Let

,- /'/ f'f
Then

Eη < K13T
2\O\2 < oo.

It follows from Corollary 10.3.1 that, for any (ίi,ri), (t 2,r 2) € [0,T] x (9
with p((£i,ri), (t2jr2)) < a/2, we have

\Φ(tι, ri) - V(*2, ra)| < 8 j ί ' ' Φ" 1 ( ^
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By similar arguments as in (10.2.5), we have

where K14 is a constant. The lemma then follows from the same calculations
as in (10.2.6). I

It is clear that the assumption (Al) holds for Aχ Now we verify the
assumptions (A2)-(A5) under the present setup.

Lemma 10.3.4 The assumption (A2) holds for A.

Proof: For x £ X, we denote the two terms on the right hand side of (10.3.7)
by Ai and A2(x) respectively. By (RD4), A\ G X. On the other hand, by
(RD2) and (RD3), we have

< \ [• ί \G(t1,s,r1,q)-G(t2,s,r2,q)\2dsdq
V Jo Jo
ΓjO|JiΓ(Λ, J? T)(l + ||aj||^)

), (ί2>r2)Πdiameter([0,T] x

T\O\K{R,F,T){l+\\x\\x).

Then [A(ίc)]α < 00 and hence A is a map from X to X. Similarly, it can be
shown that

[0, T] x O))a2-aT\O\K(R, F, T)\\x - y\\x.

Therefore, (A2) holds for A. I

Lemma 10.3.5 The assumption (AS) holds for B.

Proof: For X € Ax, let f(s,q,ω) = F{s,q,X(s,q,ω)). Then, by (RD5),
ll/lloo < K(R,F,T). It follows from Lemma 10.3.3 that [B(X)]a < oo a.s.,
i.e. B{X) € X a.s. By the definition of the stochastic integral, we see that
B(X) is adapted and hence B is a map from Ax to Aχ Let

B(x, h)(t, r)= I I G(t, s, r, q)F(s, q, x(s, q))h(s, q)dsdq \/x € X, h € H.
Jo Jo
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It is easy to see that for each x G X, B(x, •) : H —• A' is linear and its lifting
J3(x, •) : Ω —> A* is given by

B(x, )(ί, r)= f I G(t, a, r, g)F(a, q, x(s, q))W{dsdq) (10.3.9)
Λo Jo

which is an element of Aχ This verifies i) of (A3).
iii) and iv) of (A3) directly follow from (10.3.9) and the linearity of the

stochastic integral. Note that

(B(Xl,h)-B(z2,h)(t,r)\

< ί ί \G(t,s,r,q)\\F(s,q,x1(s,q))-F(s,q,x2(s,q))\\h(s,q)\dsdq
Jo Jo

< K(R,F,T)Jf ί
V Jo Jo

< K(R, F,T)Jj* K(T)(t - ^-"nfsllΛHwHs! - x2\\x

and

\{B{Xl,h) - B(x2,h)(t,n) - B{xi,h) - B(x2,h)(t,r2)|

< ί [ \G(t,s,ri,q)-G(t,s,r2)q)\
Jo Jo
\F(s, q, zi(s, q)) - F(s, q, X2(s, q))\\h(s, q)\dsdq

< K(R,F,T)J f ί \G(t,S,r1,q)-G(t,S,r2,q)\ >dqds\\x1-x2\\x\\h\\n

V Jo Jo
, F,T)\\Xl - x2\\x\\h\\H\ri -

Hence, there exists a constant ΛΓ15 such that

1, h) - B(x2, h)\\x <

Hence, ii) of (A3) holds.
Finally, we verify the exponential continuity of B. Let X, Y € Ax (which

may depend on e) and let φ be given by Lemma 10.3.3 with

/(a, q, ω) = δ'1 (F(s, q, X(s, q, ω)) - F(s, q, Y(s, q, ω)))lμf (,Λ>u,)_y(,,ςi(1,)|<ί

Then

| / ( S ) q, ω) < δ^KiR, F, T)\X(s, q, ω) - Y(s, q,ω)\l\x(Stq<ω)_γ{s^ω)\<δ

< K(R,F,T).



10.3. APPLICATION TO SPDES 327

As

,ω) - B(Y,ω)\\x > Vδ, \\X - Y\\x < δ)

and there exists a constant Kχ6 such that \\φ\\χ < -KiβMαj W> £ X s.t.
, •) = 0, the exponential continuity of B follows from Lemma 10.3.3. I

Lemma 10.3.6 The assumption (A4) holds for {Xe}.

Proof: It is clear that the second part of (A4) holds. We only need to prove
exponential tightness for {X6}. Let β G (α, α 2 ) . For M > 0, let

Then CM is a compact subset of X. Let /(s, g, α;) = F(s, q, Xe(s, g, ω)) and
let *φ be given by Lemma 10.3.3. Taking t 2 = 0, ίi = ί and ri = r 2 = r in
(4.3.4), we have

Γ f \G(t,s,r,q)\2dsdq<K(T)ta\
Jo Jo

As

XI = (A^t + A2(Xe)t + yfeψu (10.3.10)

by (RD3) and (RD4), we have

||A-β | | t i 0Ξsup{|A-β(«,r):β<ί l r e O}

ί ί \G(t,s,r,q)R(s,q,X€(s,q))\dsdq
Jo Jo

•t

+K(R)F)T)Ta>yfK{T)\O\Jjo (1+ \\X%i0)
2ds.

It then follows from GronwalΓs inequality that

1 1 II V € l l / If (Λ I II A II i Π-\\Λ\A\ \ / i n o 1 1 \

+ \\Λ Wtβ S -̂ -17(1 + II^IIIT^ + v6IW|τ,oJ (lu.o.iij

where Kiγ is a constant. Further, by (10.3.10) and (10.3.11), it can be shown
that there exist two constants JKΊβ, -K19 s.t.
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Letting δ be given by Lemma 10.3.3 and taking M > 0 such that

(M - Kls)Vδ = K19,

it follows from Lemma 10.3.3 that

limsupelogP(Xe £ CM) < limsupelogP ί[φ]β > - = ) < -L. |

Lemma 10.3.7 Ze, given by (10.1.13), tends to 0 in probability as e -+ 0.

Proof: Let φ be given by the previous lemma. Then

Z*{t,r)

= G(t,s,r,q){R(s,q,Ze(s,q) + x(s,q))-R(s,q,x(s,q))}dsdq
Jo Jo

+ f f G(t,s,r,q){F(S,q,Ze(s,q) + x{s,q))
Jo Jo

-F(s, q, x(s, q))}h(s, q)dsdq + y/eφ(t, r).

By (RD2), (RD3) and Holder's inequality, we have

V~e\\φt\\o +K{R,F,T)sup f ί \G(t,s,r,q)Ze(s,q)\dsdq
reoJo Jo

+K(R,F,T)sup ί f \G(t,s,r,q)Ze(s,q)h(s,q)\dsdq
reoJo Jo

sup/ ί \G(t,s,r,q)Ze(s,q)\2dsdq)
reoJo Jo J

Hence, there exists a constant K2o such that

74\\l < *W\\τfi + K20 fit - s)-a* \\Z%ds. (10.3.12)
Jo
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Applying (10.3.12) to \\Z\\\l on the right hand side of (10.3.12), we have

+K20 ί\t-s)-a'K2Q [\s-Sl)-ai\\Ze

Sl\\2

0dSlds
Jo Jo

+K2 ^ (J*(t -
20 j^ (J

^ — (t-sγ
1 - αi Jo

If 1 — 2αi > 0? we stop here; Otherwise, as 1 — 2αχ > — αi, continuing the

above estimate we will find two constants IΪT21 and iί 22 such that

Jo

It follows from Gronwall's inequality that

mlo < ^23||VΊIτ,o, (10-3.13)

where K23 is a constant. By (RD2), (RD3) and Holder's inequality again,
we have

| W ) K{R,F,T)\\Z%Tfi. (10.3.14)

Therefore, there exists a constant K24 such that

\\Ze\\τ,a < V~eK24[Ψ]a

and our result then follows from Lemma 10.3.3. I

In Lemmas 10.3.4-10.3.7, we verified the assumptions (A1)-(A5) under
the SPDE setup. Therefore, {Xe} satisfies LDP. Before stating our main
theorem in this section, we study the map 7 defined in Definition 10.1.2.
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Lemma 10.3.8 j is a single valued map from 7ί to X.

Proof: First we consider h £ Ή such that ||/&||T,O < 00. For (t,r,x) 6
[0, T] x O x R, let

R = R(t, r, x) + F(t, r, x)h[t, r) and F = 0.

Then

\R(t,r,x)-R(t,r,y)\

< \R(t,r,x)-R(t,r,y)\ + \F(t,r,x)-F(t,r,y)\\h(t,r)\

< K{R,F,T)(l + \\h\\Tfi)\x-y\

and

\R(t,r,x)\ < \R(t,r,x)\+\F(t,r,x)\\h(t,r)\

It follows from Theorem 4.3.2 that the following equation

z(t,r)= I G(t,O,r,q)ξ(q)dq+ ί ί G(t,s,r,q)R{t,r,x(s,q))dsdq
Jo Jo Jo

(10.3.15)
has a unique solution, denoting it by x = j(h), in X.

For general h, let hn € H be such that | |hn | |τ,o < 00, Vn > 1, and
\\hn - h\\n -> 0 as n -> 00. Let xn = j(hn). Then

xn<
ι (ί ,r)= / G(t,O,r,q)ξ(q)dq+ I ί G(t,s,r,q)R(t,r,xn(s,q))dsdq.

Jo Jo Jo
(10.3.16)

Similar to the proof of the previous lemma, it can be shown that there exist

two constants K25 and K26 s.t.

| | s n H*<ff 2 5(l+| |Λ n H«) V n > l

and

\\χn _ χmy < K 2 β | | Λ n _ fcm||wj Vn, m > 1. (10.3.17)

Hence {xn} converges to an element x in X. By (10.3.16), z is a solution of
(10.3.15). The uniqueness for the solution of (10.3.16) directly follows from
(10.3.17). I

Finally we summarize our results to the following main theorem of this
section.
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Theorem 10.3.1 Suppose that O satisfies the cone condition. Then, under
assumptions (RD1)-(RD5), {Xe} satisfies the large deviation principle on
C([0,T],Bα) (a < 0L2) with rate function I given by

I(x) = inf\lf [ \h(s, r)\2dsdr :heH s.t. x = j(h) i ( 1 0 . 3 . 1 8 )
[ 2 Jo Jo J

where x — j(h) G C([0, T], B α ) is given by

x(t,r) = f G{t,Q,r,q)ξ(q)dq (10.3.19)
Jo

+ ί ί G(t, 5, r, q)(R(s9 g, x(s, q)) + F(s, g, »(«,
Jo Jo

Remark 10.3.1 LDP considered in this section has also been studied by
Peszat [44] and Chow [4]. The present section differs from their results in
the following aspects:
(i) Their methods are similar to the finite dimensional case, i.e. they resort
to a sequence of approximate solutions for which the LDP is satisfied, and
then show that the LDP is preserved in the limit. Our method is to approx-
imate the probability that the solution lies in a small neighborhood by the
probability that a Gaussian process, obtained by freezing the right hand side
of the SPDE, lies in the same neighborhood.

(ii) The stochastic integral on the right hand side of (10.3.1) is different
from the one in their papers. They consider it to be the integral of a Hilbert-
Schmidt valued process with respect to a Wiener process. We regard it as the
integral of a real valued random field (both the time and space variables as
parameters) with respect to a Brownian sheet in space-time. The advantage
of this point of view is that the Hilbert-Schmidt property is not required and
hence, some of the conditions in their papers can be relaxed.

10.4 Reaction-diffusion SPDEs

Now we apply our results to a class of reaction-diffusion SPDEs. In this
case, {L(t)} is a family of second order differential operators. Let d = 1 and
O — (0,£). Let {X6} be the solution of the following equation

dX£(t,r) = (L(t)Xe(t,r) + R(t,r,Xe(t,r)))drdt

+y/€F(t,r,Xe(t,r))W(drdt) (10.4.1)

Theorem 10.4.1 Suppose that {L(t)} generates a two-parameter evolution
semigroup {U(t,s) : 0 < s < t} on C([0}£\) which has kernel function
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, 5, r, q), 0 < 5 < t, 0 < r,q < ί, satisfying the following conditions:

(i) There exists a constant K such that VO < £1,̂ 2 < T and 0 < rχ,r2 < I,

we have

f f \G(h,8,n,g) - G(t2,s,r2>q)\2dqds < K (\tx - t2\
2 + | n - r 2 | 2 ) *

Jo Jo v y

(10.4.2)
where G(t, s, r, g) = 0 /or s > t.
(ii) VO < s < t < T and r E (0, ί ) , w e Λai e

/ [ IGfrs^qtfdqKKίt-s)-*. (10.4.3)

^•π; (RD4) holds.

We also assume that R and F satisfy the condition (RD3).

Then for and OL<\} {Xe} satisfies LDP with rate function

I(x) = infί UoJo\H^r)\2dtdr: h G L2([0,Γ] x (0,/)) sΛ. \
K } \ (10.3.19) holds with O = (0,£) )

Remark 10.4.1 The conditions (i)-(iii) hold for most parabolic operators
§-t - L{t) (cf. Friedman [10]).

Example 10.4.1 Nonlinear stochastic cable equation

Consider the following nonlinear stochastic cable equation with small

noise:

^ (10.4.4)

υe(0,x) = ξ{x)

dυe(t,0) = dv<(t,π) _Q

dx dx

Suppose that / and σ satisfy the condition (RD3) and σ(x1v) φ 0 for all

(x,υ) G (O,τr) X R. For any a < \ and φ G C([0,T],Bα), let

-\ίί
2. Jo Jo

WtΦ^x) -(&- W(*.x) ~ /(*. Φ& *)) dtdx
σ(x,φ(t,x))

(10.4.5)

if φ e W]'2 and <̂ >(0, •) = ξ; Otherwise, Sζ(φ) = oo. It follows from the proof

of Theorem 4.4.1 that the conditions (i)-(iii) of Theorem 10.4.1 are satisfied

for L — •§-* — 1.



10.4. REACTION-DIFFUSION SPDES 333

Theorem 10.4.2 {υe} satisfies the LDP on C([0, T], Bα) (a < \) with rate
function Sξ.

Proof: It follows from Theorem 10.4.1 that {υe} satisfies the LDP on

C([0,T], Bα) with rate function /. We only need to show that I = Sξ.

If Sξ(φ) < oo, then φ <Ξ W2

1>2, φ(0, •) = ξ and

is in L2([0,T] x O). Note that (10.4.6) implies that

φ(t,r) = f G(t,O,r,q)ξ(q)dq (10.4.7)
Jo

+ [ f G(t, 5, r, g){/(g, ^(5, g)) + σ(g, ̂ (s,
7o Jo

Hence I(φ) < 00.

On the other hand, if I(φ) < 00, then, for any δ > 0, there exists

h e L2([0}T] x O) such that (10.4.7) holds and

I \h(s,r)\2dsdre[I(φ)J(φ) + δ].
o Jθ

It is easy to see that h is uniquely determined and coincides with the right
hand side of (10.4.6) (see Walsh [57] for details) and hence,

\Γ I \k*,r)\2

2 Jo Jo

Therefore Sξ(φ) < 00 and Sξ(φ) = I(φ).

Remark 10.4.2 Recently, Sowers [50] has derived the LDP for SPDE
(10.4-4) wtth periodic boundary condition. The following conditions were im-
posed: there exist constants F, / " , 772, M and σ~ such that, for any x £ [0,2τr]
and y,z E R, we have

\f(x,y)\<F(l + \y\), \f{x,y) - f(x,z)\ < f~\y - *|, (10.4.8)

and

0 < m < σ(x,y) < M, \σ(x,y) - σ(x,z)\ < σ~\y - z\} (10.4.9)

It is clear that the conditions (10.4-8) and (10.4-9) are stronger than the
condition (RD3). Further, by similar arguments as in the proof of Theo-
rem 4-4-1 that the conditions (i)-(iii) of Theorem 10.4-1 are satisfied for the
periodic boundary condition. Therefore, Sowers' case can be derived as a
special case of Theorem 10.3.1.






