Chapter 6

Stochastic differential
equations on @ driven by
Poisson random measures

Stochastic differential equations (SDE’s) on infinite dimensional spaces arise
from such diverse fields as nonlinear filtering theory, infinite particle sys-
tems, neurophysiology, etc. In this chapter, we study SDE’s on duals of

nuclear spaces driven by Poisson random measures. Namely, we consider
the following SDE

t t ~
Xt=X0+/ A(s,Xs)ds—l-/ LG(s,X,_,u)N(duds) (6.0.1)
0 0

on the dual of a CHNS @, where A: Ry x &' - &' G: Ry x ¥ xU — ¥,
(U, &, p) is a o-finite standard measure space, N(duds) is a Poisson random
measure on Ry x U with characteristic measure u(du) and N(duds) is the
compensated random measure of N(duds). Motivated by neurophysiological
problems, such equations were first considered by Kallianpur and Wolpert
[27] [28] for finite dimensional equations (corresponding to the case when the
neuron can be regarded as a single point) and for infinite dimensional linear
equations. The general case was studied by Hardy, Kallianpur, Ramasubra-
manian and Xiong [13], most of the results of this chapter being taken from
that paper.

The following assumption will be made throughout the rest of this book:
There exists a sequence {¢;} of elements in ®, such that {¢;} is a CONS in
$( and is a COS in each space ®,,n € Z.

Let ¢7 = ¢;||és||nt, »n € Z,1 € N*. It is easy to see that {¢?} is a CONS
in ®,,. ,
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172 CHAPTER 6. STOCHASTIC DIFFERENTIAL EQUATIONS

6.1 Weak convergence theorems

In this section we establish the existence of a weak solution of (6.0.1) by
weak convergence technique for ®’-valued stochastic process sequences. The
idea is as follows: Consider a sequence of ®’-valued process {X™} governed
by a sequence of SDE’s of the type of (6.0.1) with coefficients (A", G™) tend-
ing to (A4, G) in some sense (cf. Assumption (A2) below). Under suitable
conditions, show that the distribution sequence {£(X™)} is tight and its clus-
ter points are solutions to the martingale problem corresponding to (6.0.1).
By making use of the representation theorem for purely-discontinuous ®’-
valued martingales introduced in Chapter 3, we then obtain a weak solution
of (6.0.1) from the solutions of the martingale problem.
We define the weak solution of (6.0.1) first.

Definition 6.1.1 A probability measure A on D([0,T], ®') is called a weak
solution on [0,T] of the SDE (6.0.1) with initial distribution Ao on the
Borel sets of ' if there exists a stochastic basis (2, F, P, (F)) and a Poisson
random measure N with o-finite characteristic measure p, a ®'-valued process
X such that A and Ao are the distributions of X and X respectively and for
any ¢ € ®,t € [0,T], we have

X:[¢] ZXOM’]-}'/Oit A(S,Xs)[¢]ds+/()t/;IG(S,X,_,u)[¢]N(duds) a.s.

(6.1.1)
If [0,T] can be changed to [0,00) and (6.1.1) holds for any t > 0, then we
call A on D([0,00),®’) a weak solution of (6.0.1).

The next lemma is useful in calculating the norm ||¢||—, for r > 0.

Lemma 6.1.1 For anyr >0 and j > 1, we have

ll65ll-ll5ll- = 1. (6.1.2)

Proof: Note that

1 = ¢;[8;] < #5111l 95l
l6;ll- sup{s;[4] : ¢ € &, ||¢ll- = 1}

= ||¢;ll- sup {d’] l:Z < &, Pk >r ¢1I;} 194l = 1}
k

= sup{< ¢, ¢} >r:p€® g, =1} < L.

To show the existence of a weak solution of (6.0.1), we impose the fol-
lowing assumptions (I) for (4, G, p): VT > 0, 3po = po(T) € N, such that,
Vp > po, 3¢ > p and a constant K = K(p,q,T) such that
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(I1) (Continuity) V¢ € [0,T], the maps v € ®_, — A(t,v) € ®_, and
ve®_p, — G(t,v,-) € L*(U, u; ®_p) are continuous.
(12) (Coercivity) Vt € [0,T] and ¢ € &,

24(t, 9)[0p¢] < K(1+[|9112,); (6.1.3)
(I3) (Growth) V¢ € [0,T] and v € ®_,, we have
A )2 < K(1+]vlZ,)

and

[ 1660 w2 () < K+ [o]2,).
Remark 6.1.1 The left hand side of (6.1.3) is well-defined as 6,® C ®.

Proof: We only need to show that for any p,» > 0 and ¢ € ®, we have
6,4 € ®,. Note that

9p¢ = op {Z < ¢’¢; >r ¢;}
J

A {Z <6, >, ||¢j||;1||¢,~n:1¢;?}
J
2o <85 >0 ldillp 1651177 6
2

S < .85 >0 163l
J

and

IN

TH< .85 >0 18352 < < 4,455
J

j
= |lll7 < oo.
Therefore 8,0 € $,. |

Now we consider a sequence of ®'-valued processes { X"} satisfying SDE’s
of the type of (6.0.1) with coefficients A™, G™, characteristic measures p"
and initial distributions Aj. We shall give conditions such that this sequence
is relatively compact and its cluster points are characterized by the SDE
(6.0.1). We fix T > 0 and consider ®'-valued processes on [0,T].

We make the following assumptions (A) for the sequence (A", G™, u™, A3):
(A1)(1°) The assumptions (I) are satisfied by (A", G", u") for each n. Fur-
thermore, the continuity in (I1) is uniform in n, the indexes p, g, po and the
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constant K in (I) are independent of n.
(2°) For each n > 1, the following SDE

¢ t -
X: = Xo +/ A”(s,X,)ds+/ / G™(s, Xs-,u)N"(duds)
0 0o JU

has a weak solution A" on [0,T] with initial distribution AJ. Let X™ be
a ®'-valued process on a stochastic basis (", 7", P", (F*)) corresponding
to the weak solution A". We further assume that there exists an index
p=p(T) > po and a constant K > 0 independent of n such that Xred ,,
P"-as. Vt € [0,T] and

EFP" sup ||X{'||2_p <K.
0<t<T

(A2)(1°) p™ = p;
(2°) Vt € [0,T], v € ®_,, and ¢ € B, we have

A™(t,v)[9] — A(t, v)[4];
(3°) Vt € [0,T], v € ®_p,, we have

/; ”Gn(t’ v, u) - G(ta v, u)Hz_pll-lf(du) — 0.

We need the following definition and Theorem 6.1.1 about real-valued
stochastic processes taken from the book of Jacod and Shiryaev ([22], p317,
Corollary 3.33 and p322, Theorem 4.13).

Definition 6.1.2 A sequence of probability measures {\"} on D([0,T],R)
is C-tight if it is tight and all cluster points are supported on C([0,T],R).

Theorem 6.1.1 For each n, let A\™ be a probability measure on D([0,T],
R) induced by a real-valued semimartingale £§ + M + A} on a stochastic
basis (", F™, P, (FI)), where £} is a random variable, M™ € M%(R) and
A € A. If {€3} is tight in R, {< M™ >} and {A™} are C-tight, then {\"}
is tight.

Let p; = p1(T) > p be an index such that the canonical injection from
®_, into ®_,, is Hilbert-Schmidt.

Lemma 6.1.2 Under assumption (A1), {\"} is tight in D([0,T], ®_p,).
Proof: For any ¢ € ®, let

cr = [ An(s, XD)I8ds
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and .
MP = / / G™(s, X, w)[$] N™(duds).
0 JU
Then Ve > 0, 3§ = 6. > 0 such that

sup P" ( sup |Cy —Cjl > e)
n 0<B—a<é

B
| 4n(s, xp)lglas

a

= supP" sup
n 0<B—a<é

IN

>€)
0<s<T

5\?% _pn
sup (2) B (K <1+ sup ||X:u2_p) ||¢||§)
n \€ 0<s<T
K&%|9ll;(1+ K)/€ <e.

1 pn I
sup 6—2EP (52 sup |A (s,X,)[¢]I2)

IA

IN

The set

K.= {f ccq,mR): JO=0 (9O <27, }

Vm>1and|s—t| < bep-m

is relatively compact and

oo
P*(C" ¢ K,) < Z 2™ =¢ Vn>1,

m=1

i.e. {C™} is C-tight. Similarly we can prove the C-tightness for {< M™ >}.
Furthermore, the sequence {X§[4]} is tight in R as

j€”¢”g} < € E|X™ 2 <
e S T A=

Hence, it follows from Theorem 6.1.1 that, V¢ € ®, the sequence of semi-
martingales X'[¢] = X¢[¢] + CF + M is tight in D([0,T],R). It then fol-
lows from assumption (A1)(2°) and Theorem 2.5.2 that {A"} is tight in
D([0,T],®_,,).

pr {1X3[¢]I2 >

Let A* be a cluster point of {A"} in D([0,T],®_p,). To characterize
A*, we need a connecting idea which is the martingale problem formulated
below. Let

Jh € C°(R) and ¢ € ® such
o(FN — . & 0
Dg*(®) = {F ¥R that F(v) = h(v[¢]), Vv € &
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For F € D§°(®'), consider the map L,F : ® — R defined by

LsF(v) = A(s,v) (1R (v]4])

+ /U{h(v[¢] +G(s,v,u)[¢]) - (v[¢]) — G(s, v, w)[8]A(v[@]) }u(du).
For Z € D([0,T], ®'), let

MF(Z), = F(Z(t)) - F(Z(0)) - /0 Lo F(Z(s))ds. (6.1.4)

Definition 6.1.3 A probability measure X on D([0,T],®") is called a solu-
tion on [0,T] of the L-martingale problem with initial distribution \g if,
VF € DP(®'), {MF(Z):,0 < t < T} is a A\-martingale and Ao Z(0)™1 = X,.
If X is a probability measure on D([0,0),®') such that YF € D (¥,
{MF(Z):,0 < t < oo} is a A-martingale and X o Z(0)~! = Ao, we call A
a solution of the L-martingale problem with initial distribution Ag.

Now, we proceed to prove that {M¥(Z);,0 < t < T} is a A*-martingale
for every F € D3°(®'). We define MF (Z); in a similar fashion as in (6.1.4).
From assumption (A1) and Ité’s formula, it is easy to see that { M (Z):,0 <
t < T} is a A™martingale. To pass to the limit, we need the following
Lemmas.

Lemma 6.1.3 Under assumption (Al), MF is a A\™-martingale and

BN |\M7 (2).* < |IW|IZKI$lI5(K +1)T, VF € DF(¥') and n. > 1,
where ||W'||o = supzer |H'(2)]-
Proof: Applying the Ité’s formula (Theorem 3.4.4) to (6.0.1), we have

My (X"™),
= [ [ K+ G, X5 )8 ~ A 6} (duds).
Therefore MY (X™) is a P™-martingale and hence, MF(Z) is a A™-martin-
gale. Further
EY M7 (2)
= B [ [ X8+ 6o, X3 0l — BOC )P (s

t
< WIRER [ [ 167 X2 wigllun (du)ds
t
< IWIEET [ [ 16706 X7 0l el (du)ds
< IWISKIEE + DT "
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Lemma 6.1.4 Under assumption (A1), we have

EX OiltlngZtu? <K. (6.1.5)

—P1

Proof: As A\* is a cluster point of {A"}, without loss of generality, we may
assume that A™ converges to A* weakly. By Skorohod’s Theorem, there exists
a probability space (2, F, P) and D([0, T'], ®_p,)-valued random variables £
and £ on it, such that £” and £ have distributions A™ and A* respectively,
and £™ converges to € a.s. It follows from (A1) that

E sup ||€711%,, < E sup |12, = BF" sup ||IX7|2, < K.
0<t<T 0<t<T 0<t<T
Let » — 00, using Fatou’s Lemma, we have

EX sup ||ZJ|%,, E sup [I&]%,,
0<t<T 0<t<T

2

. . n
< lminfE swp €712,

liminf EF"
n—oo

IA

sup || X712, < K.
a7, .

The following corollary will be used in Chapters 8 and 9.

Corollary 6.1.1 Under assumption (A1), we have Z; € ®_,, A*-a.s. Vt €
[0,T]. Further

E* sup 1212, < K.
0<t<T

Proof: Using the notations of Lemma 6.1.4, we have

E* sup iZt[q&?P E sup ift[gb?P

0<t<T ;o 0<t<T ;o

o0
< liminf F su Ak
= 00 OStET;Et [¢j]

= liminf EF" sup ||th||2—p <K. B
<t<T

n—oo 0

The following two lemmas are elementary and we leave their proofs to
the reader.

Lemma 6.1.5 For h € C§°(R), let

H(z,y) = h(z +y) — h(z) — k'(z)y, Vz,y € R.
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Then, for any z, y, 1, 2, y1 and y, € R, we have the following inequalities:
|H (2, y)| < 1M ]looy?;

|H (21,y) — H(z2,9)| < K" [|o0y|21 — 22l (6.1.6)

[H (2, 41) — H (2, y2)| < 12" ]loo(l2] + ly2D)ly1 — el (6.1.7)

Lemma 6.1.6 Let Cy be a compact subset of ®_p,. Under assumptions (A),
we have that for any t € [0,T] and ¢ € &,

sup |(A"(¢,v) — A(t, v))[¢]l — 0,
v€Co

and

sup [ IIG™(5v,0) - G(s,v,u)|2,,p(du) — 0.

The following lemma is the major step in passing to the limit.

Lemma 6.1.7 Suppose that (A, G, p) satisfies assumptions (I) and {(A™,
G™, p™)} satisfies assumptions (A). Let £* and § be D([0,T], ®_p,)-valued
random variables on a probability space (R, F, P) such that &™ converges to

£ a.s.
Then, for F € DP(®') and t € [0, T\ N, ME (€™): converges to MF (£),
in probability, where N' = {t : P(w : & # &-) > 0}.

Proof: As £™ converges to &, then, for any € > 0, there exists a compact
subset C of D([0,T], ®_p,) such that

Pw:"€C)>1~-¢ and Pw:£€C)>1-c (6.1.8)

It follows from Theorem 2.4.3 that there exists a compact subset Cp of ®_,
such that

C c{Z e D([0,T),®_p,) : Zs € Co, ¥s €[0,T]}.
Let M > 0 be such that
Co C{z € p, : [l2]l-p, < M}

For F € DP(®'), let h € CP(R) and ¢ € & such that F(v) = h(v[4)])
for v € ®'. By the definition of M¥(Z); and M¥(Z),, for w such that {™(w)
and £(w) € C, we have (suppressing w for convenience)

| My (€™)e — M (&)
< |R(ER[Q)) — h(&eld]) — R(&GT8]) + h(éol4))]

+ [ 147G, B8 - Als, LA E.LoDIds

+ /Ot /U |H (E]4), G™ (5,7, w)[d]) — H(E[d], G(s, &, w) (@) | p(du)ds
Il + I2 + I3.



6.1. WEAK CONVERGENCE THEOREMS 179

Note that

I; <

IN

[ [ 1E€16, 675, 0180 - HE181,67(6, €8, w8 (o)
+ [ [ 1HE08,676,€5, 016) - HEI8), 6o, €5, w) g (du)ds
+ [ [ 108,606,600 - HELS), 6,6 v)ign(du)ds
1l Gn (o, €5, wIAIPIESTE) - &, s

+ / S IR (1G™ (5,2, w8 + 65,3, 0
IG™(s, &, w)[¢] — G(s, €7, ) [@]|u(du)ds
+/0 /U||h”||oo(|G(s, = w8l + 1G(s, &, w)[4])

|G(s1 & u)[¢] - G(S,f,, u)[qb]lp.(du)ds
I3y + I3z + I33, say,

where the second inequality follows from (6.1.6) and (6.1.7). For w such that
&*(w) and &(w) € C, we have (again suppressing w),

t
T < Wl K (14 M6, [ 16716~ Elllds — 0, ass

2
IB2

and

IN

7o [ / (16" (s, €2, I8l + IG5, €5, w4 *u(du)ds
[ [ 16768006 - 66,65, widlPu(dun)ds
||h"||oo4KT<1+M2)n¢np,

t
/ sup HG"(s v,u) — G(s,v,u)||%, u(du)ds — 0;
0 veCy

IN

I < ||R")|AKT(1+ M?)|¢|l2,
t
”G(S,f?»“) - G’(s,f,, u)[|2_pl,u(du)ds — 0.
o JU

Hence, for w such that £”(w) and {(w) € C, we have I3 — 0. The same
arguments yield that I, — 0. It is easy to see that, for ¢t ¢ A/, we have that
I; — 0 a.s. So, combining with (6.1.8), we see that, for t ¢ N, MF (&™),
converges to M (¢); in probability. |

The next result characterizes A\*.
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Theorem 6.1.2 Suppose that (A, G, ) satisfies assumptions (I) and {(A",
G™,u™)} satisfies assumptions (A). Then A* is a solution on [0,T] of the
L-martingale problem.

Proof: Let &, and £ be as given in the proof of Lemma 6.1.4. By Lemma 6.1.3,
for fixed t, we can easily see that {MI (¢");},cN is uniformly integrable.
Hence, for any bounded continuous B,-measurable function f on D([0,T],
®_,,), we have that {f(£")MF(€")i}neN is uniformly integrable. So, by
Lemma 6.1.7, for t,s ¢ A and s < t, we have

ENMF(2).f(2) = EMT(€):f(€) = im EM (€"):f(€")
= lim EN'MF(2),f(2) = lim EN'MF(2),f(2)
= lim EM; (), £(€") = EMT(€),(€)
= EYMF(2),f(2).

ie.

EXM"(2):f(2) = EX MF(2),£(2). (6.1.9)
For general s < t, as NV is countable, we can find two sequences s, and t,
decreasing to s and t respectively such that s,,t, ¢ M and s, < t,. Then,
(6.1.9) still holds with (s,t) replaced by (sp,ts) as f is also B,,-measurable.
By the right continuity and the uniform integrability of M¥(2),, f(Z) and
M¥(Z),, f(Z), passing to limit, we see that (6.1.9) still holds for any ¢t > s.
Define two signed measures on B, by

Vi(A) = BN MF(2)14(Z) and V,(4) = EX MF(2),14(2).

Then, from the above, we see that the integrals of f with respect to signed
measures V; and V, coincide for any bounded continuous B,-measurable func-
tions f. Hence V; = V, on B,. i.e. {MF(Z)t} is a A*-martingale. [ |

It remains to prove that A* is a weak solution on [0,T] of the SDE (6.0.1).
The idea is to show that the martingale My(t, Z), defined in Lemma 6.1.9 be-
low, can be represented as a stochastic integral with respect to a Poisson ran-
dom measure. We do this by proving that My(t, Z) is purely-discontinuous
in Theorem 6.1.3 and characterizing the jump process AMy(t, Z) in Lemma
6.1.11.

Lemma 6.1.8 There exist two sequences of real functions {pm}, {gm} on
R and a constant L such that, Ym € N, p,, € C°(R) and

(1) pm(z) = z when |z| < m —1 and |pm(z)| < L|z| for any z € R;

(2) pnlleo < L, 1pthllco < L/m, and [|pmpt o < L;

(8) gm € Co(R) are nonnegative functions increasing to z* as m tends to
0.

Furthermore, for each m, there exists d,, such that gm(z) = 0 when |z| < dpy,.
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Proof: Let p,, be a sequence of odd functions defined in R as follows:

T as0<z<m
pm(z) = 0 . , as ¢ > 2m
—letpl (eepl j dem) 1) asm<z <om.

Then g, € CZ(R) and for any z € R,

234
5m(2)] < 14, |7n(2)] < 64 and [(2)] < 2. (6.1.10)

Let J be the Friedrichs mollifier given by

J(z) = k -exp{—(1 - z?)71} for |z] < 1
- for |z| > 1,

where k is a constant such that [J(z)dz = 1. Let
pm(2) = (b + 1)(@) = [ T(@ = 9)m(w)dy.
Then p,, € CP(R). As pm € C2(R), integrating by parts, we have
Pul@) = [ I(e - 9)a W)y (6.1.11)

and

Pm(z) = / J(z — y)pm(y)dy.

Then, for |z] < m — 1,

Pn(@) = [ = 0)indy= [ IW)5n(@ - vy

- /J(y)dy —1
As pn(0) = 0, we have
pm(z) =2  as|z|<m-—1.

In addition, by (6.1.10) and (6.1.11), we have

234
lomlleo <64 and |lpmlleo < o

Furthermore, by (6.1.11) again, p},(z) = 0 as |z| > 2m 4 1. Hence

234 234
lompmllco < sup 64|:c|— < 64|2m + 1|— <L.
Jz|<2m+1
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(3) Let g, be an even function given by

ifo<z< Lorz>m;

- m

gm(z) =< (z—m™1)? ifm1l<z<m-1;
(m-m™! - 1)%(m - 2) fm-1<z<m.
It is easy to check the condition (3) for gy,. [ |

Lemma 6.1.9 V¢ € ¥, let

My(t,2) = 204}~ 2618 ~ [ Als, Z0)[glds

Under the conditions of Theorem 6.1.2, {My(t, Z)}i<T is a A*-square inte-
grable martingale.

Proof: Let p,, be given by Lemma 6.1.8. Let F,, € D (®’) be given by
Fin(0) = pm(o[4]). Let

={Z € D({0,T],2_) : | Zell-pr < (m— D)ll5,, V¢ € [0,T]}.

Then, for Z € X, we have |Z,[¢]| < m — 1 and hence,

MFn(2), = My(t, Z) - / / Ho(Z:[8], G(s, Zs, w)[#])u(du)ds, (6.1.12)

where H,, is defined as in Lemma 6.1.5 with h replaced by p,,. Hence, by
(6.1.12), Lemma 6.1.5, assumption (I3) and (6.1.5), we have

EXN|M™(2), — My(t, 2)|1x(Z)
B> / | 1nllclG s, Z2, )]} s

< —75K(1+K)||<}.'>||1:,1 —0 asm — oo.

IN

On the other hand,

1 : 1o,
XY ——— B | sup ||Z)%, | < —B—-K -0,
()< o o101 <osf’ 121 ) (m -1

as m — 00. So, Ve > 0, we have
3 {z e D([0,T),2_,,) : [M™"(2), — My(t, Z)| > e}

< (X + %E”}MF"*(Z)t _ My(t, Z)|1x(2) — 0.
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i.e.
MFm(Z)y — My(t,Z) in probability A*. (6.1.13)

Next, by assumptions (I) and the properties of p,,, it is easy to show that
there exists a constant C’ independent of m such that

'MFm(Z)t‘ <c' (1 +021:§T||Zt||2_pl) . (6.1.14)

Hence, by Lemma 6.1.4, the left hand side of (6.1.14) is integrable with
respect to A* uniformly in m. Then, by (6.1.13),

EM

MF(Z), - My(t, Z)| = 0.

But {M*m(Z),;} are \*-martingales, so {My(t, Z)} is a \*-martingale. Fi-
nally, by assumptions (I), it is easy to see that there exists a constant C”
such that

|My(t, Z)|> < C"” (1 + sup IIZtIIEm) .
0<t<T
Hence, by Lemma 6.1.4 again, {My(t,Z)} is a A*-square-integrable-martin-
g ¢

gale. [ |

Lemma 6.1.10 Let < My > (t,Z) be the quadratic variation process of the
square integrable martingale My. Under the conditions of Theorem 6.1.2,
we have

< My> (t,2) = /0 t /U (G(s, Zs, w)[])2(du)ds. (6.1.15)

Proof: V¢ € &, let
Ng(t,Z) = Zi[$)* — Zo[4)* - 2/(: A(s, Z,)[¢9)Z,[p)ds
~ [ [ (66, 20 wisutinyis.
0 JU

Then, by a similar argument as in the proof of Lemma 6.1.9, {Ng(t, Z) }:<T
is a A*-martingale. By the definition of My, it is easy to see that

AZ[§) = AMy(s,Z) and < M§ >e=< Z[$]° >, (6.1.16)

where M and Z[¢]|° are the continuous parts of the semimartingales My
and Z[¢] respectively. It follows from Theorem 3.4.2 that

[Z1¢])e = Y (AZ[¢])*+ < Z[g]° >1= [My)e. (6.1.17)

s<t
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By (6.1.16), (6.1.17) and Ité’s formula, it is easy to show that

2P = Zldl+2 [ Al Z)GZ0glds

+2 [ 2, [#1aMys) + (2141 (6.1.18)

Hence, by the definition of Ng(t,Z) and (6.1.18), we have
Ny(t, Z)

= 2 [ 2 M) + 80 - [ [ (606, Zu w8 (s

= 2 [ 2 [81aM(0) + M~ [ [ (6o, Zus ().
Therefore

<My>(t,2) - / t / (G(s, Zs, w)[#))*u(du) ds (6.1.19)
= (< My > (8,7) - [Mgly) + N(t, Z) - 2 / Z,_[$dMy(s).

The right hand side of (6.1.19) is a martingale as all three terms are mar-
tingales. On the other hand, the left hand side of (6.1.19) is in A and
predictable. (6.1.15) then follows from the Doob-Meyer decomposition the-
orem. i

Theorem 6.1.3 Under the conditions of Theorem 6.1.2, My(t, Z) is purely-
discontinuous.

Proof: Let g € Co(R) be non-negative and such that g(z) = 0 when |z| < a
for some @ > 0. Let Y™ and F™ be functionals defined on D([0,T], ®_,,) by

(@)= [ [ oG, 2o wld)u(du)ds

and
FM2)= ) 9(AZ[¢) -Y™(2)
0<s<t

Similarly, we define functionals Y and F on D([0,T], ®_p,). Let £™ and £ be
as given in the proof of Lemma 6.1.4. By the same arguments as in the proof
of Lemma 6.1.7 it follows that Y™(£™) converges to Y (§) in probability. By
Corollary 2.4.2

Y (AL — D 9(A&lg)  as,

0<s<t 0<s<t
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and hence, F™(§™) converges to F(£) in probability.
On the other hand, from

X746 / A™(s, XT)[4]ds + f / G™(s, X7, u)[$|N"(duds)
we have .
AXT[¢] = G"(s, X7, p"(s))[4]1Dn(s)

where p™(-), D™ are the point processes and jump sets corresponding to the
Poisson random measures N™. Hence

Y. 9(AXT[B) = D a(G(s, X7, p"(s)[¢]Llpn(s))

0<s<t 0<s<t

= Y oG5 X2, (5)#)10m(5)

0<s<t

- / |, 9675, X2, wlg)N(duds).

So
Fr(xm) = [ [ 9(6n(s, X3 w)[6) Fm(duds).
Hence
B{F™(g")} = B {F*(X")} =0
and

BENEYV) = BT (X))

= 57 [ [ 46 X0 u)ighuldu)ds
87 [ [ K6 (s, X204 u(du)ds
K7 [ [ 167, X0, 0l 101, )
< KI4ILKA+RIT,

where K|, is a constant such that |g?(z)| < Kyz?. So, {F™(£")} is uniformly
integrable and, passing to the limit, we have E{F(§)} = 0. i.e.

B Y oad) =B [ [ o(Gls,enn)ghudnds

0<s<t

IA

IN

So

EX S g(AZ,[¢) = B / / 9(G(5, Zoe,w)[@))p(du)ds.  (6.1.20)

0<s<t
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Let g, be given by Lemma 6.1.8, then (6.1.20) still holds with g replaced by
gm- As gm(z) T 22 when m 1 oo, it follows from the monotone convergence
theorem and Lemma 6.1.10 that

EY 3 (AMy(s))? = EY Y (AZ[¢])’

0<s<t 0<s<t
= 8 [ [ (6l 2wl u(an)ds
= EY < My > (t,Z) = EX'[My](t, 2).
Hence, by (6.1.16) and (6.1.17)
EY < M§ > (t,2) =0,
ie. Vt, < Mg > (¢,Z) = 0 as. Then, by the continuity of < Mg > (t,Z)

in t, we get < Mg > (t,Z) = 0 Vt, as.. This proves that My(t,Z) is
purely-discontinuous. [

We next identify the compensator of the point process AZ,.
Lemma 6.1.11 Let

T= {AGB(Q_,,I\{O}):E” > 14(AZ,) < o0, vo<th}.

0<s<t

Then, for A € T,

S 14(AZ,) - /0 t /U 14(G(5, Zs, u))p(du)ds

0<s<t
is a A*-martingale.

Proof: Let h be a bounded non-negative continuous Bs;-measurable function
on D([0,T],®_,,) and let f be a smooth function on R given by

F) = { exp(vE/(VE - 1)) for 0 <t < 1;

0 fort > 1.
Let 0 < a < @’ and
Saa={z€®_p 1a<|2]|-p <a'}.
For any closed subset F of ®_,, contained in S, o and k > 3, we define

fi(z) = f(K*p(z, F)*/a?)
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where p(z, F) is the distance from x to set F in ®_,,. Let {X"}, {¢"}
and £ be as defined in the proof of Lemma 6.1.4 and Fg, be functionals on
D((0,T],®-,) given by

tZ AZ) — G"(s,Zs,u du)ds.
@)= 3 5(0z) [ [ 5166, 20 wutan)

Define the functionals Fj; similarly. Then, for fixed k,

|FRe(€™) = Fee(6)l < | D0 f(AE) - D fu(AE)

0<s<t 0<s<t
t
+ / /U Fu(G(5,€2,0)) = Fio(G(s, &0y w))pu(du)ds|.

The first term converges to 0 a.s. and, for the second term, let b" =
p(G™(s,&2,u), F) and b = p(G(s,&s,u), F). Then

ot/Ufk(G"(s’ €,1)) — fu(G(s, &, v))u(du)ds

IN

[ 167, 88,00) ~ (6o, & ) amsg g
+ / t / Fe(G™(5, €7, 0)) Lyng 3 5 5 i du)ds

4 [ [ (G161 g e uldun)ds

190 (B) [ [ 1@ (0,70, P2 = (G5, 00, P

lincs pesia(du)ds
t
+‘/0 /;Ifk(Gn(S;f?,u))hﬂs%,b)%u(du)ds
t
+ [ [ (G510 )l g ldu)ds

’ &)2 /t / nlo ogn oy
171 (3) [ [ 16700680 - 606, €)l-n
(bn + b) 15"S %:bs %,u(du)ds

+2Atu{u:|b" b| > (l— %) }ds
10 (5) [ [ 16me.60, - 60,60l

R (Ot A SRR CRLE
g [ IGM 688 0) — o W )i

IN

IN

IN
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which converges to 0 in probability by the same arguments as in the proof
of Lemma 6.1.7. It follows as in the proof of Theorem 6.1.2 that, for fixed k
and t, {F7’;(¢")} is uniformly integrable and

ER(E™)(FE4(€7) — FRs(€7)) = 0.

Letting n tends to oo, we get

ER(§)(Fit(€) — Fr,s(€)) =0

Hence, we have

A* ¢ _
E h(Z){Kzr:St f(AZ,) - / fU fk(G(r,Z,,u))p(du)dr}_O.

Since fi decreases to 1r as k — oo, by the monotone convergence theorem,
we have

EXWZ) Y 15(AZ,) = B h(Z) / t / 17(G(r, Z,,w))u(dn)dr (6.1.21)
s<r<t s JU

for any closed subset F of S, 5. As both sides of (6.1.21) define two measures
on S, o and coincide for all closed sets, (6.1.21) holds for any Borel subset

of Sg,a. Letting @ — 0 and @’ — 00, (6.1.21) holds for any Borel subset of
®_,,. This proves the lemma. |

Theorem 6.1.4 Under the conditions of Theorem 6.1.2, \* is a weak solu-
tion on [0,T] of the SDE (6.0.1).

Proof: From Lemma 6.1.11 we know that the point process AM; = AZ, has
compensator Nap(dtdv) = ¢(t, dv,w)dt while

q(t, B ,w) = p{u: G(t, Z;-,u) € E}.

Therefore by Theorem 3.4.7, on an extension (Q, F, P, .7:}) of the stochastic
basis

(D([Ov T]a Q—Pl)’ B(D([Ov T]1 Q_Pl))7 )‘*’ Bt)’

there exists a Poisson random measure N with characteristic measure p such
that

M, = /0 t /U G(s, Z,—,w)N(dsdu).

Hence

2(t) = 2(0) + /0 *A(s, Z,)ds + fo t /U G(s, Zs_, ) N (duds). N
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6.2 Existence of a weak solution

In this section, we use the basic results of last section to derive the existence
of a weak solution of the SDE (6.0.1). The idea is as follows: first, we prove
the existence of the weak solution on [0,T] of (6.0.1) when the nuclear space
® is finite dimensional, say R%. Then, employing the Galerkin method, we
project the coefficients of the equation (6.0.1) to a sequence of finite dimen-
sional subspaces and consider the corresponding SDE on these subspaces.
We get the desired existence by proving that this sequence of equations sat-
isfies the assumptions (A1) and (A2) of Section 6.1. Applying the results to
the intervals [0,T], [2T,3T], - - -, we get a sequence of solutions of (6.0.1) in
these intervals and, connecting them, we obtain a solution on the interval
[0, 00).

First of all, let us consider (6.0.1) when & = R?. In this case, &, = R?
for all p. The SDE (6.0.1) can be rewritten as

T = f-{—/ot a(s,w,)ds-l—/Ot/Uc(s,a:,_,u)N(duds) (6.2.1)

where a : Ry X R* - R% and ¢ : Ry X R? x U — R are two measurable
mappings, N is a Poisson random measure on R; X U with respect to a
stochastic base (2, F, P, (F;)) and £ is a Fop-measurable R%-valued random
variable.

In the present setup, we make the following assumptions (F): VT > 0,
there exist constants K; and K5 such that
(F1) (Continuity) Vt € [0,T), a(t, ) : R* — R% is continuous; V¢ € [0, T] and
z € RY, c(t, z,-) € L2(U, p; R%) and, for t fixed, the map z — ¢(t, z, -) from
R4 to L2(U, u; RY) is continuous.
(F2) (Coercivity) Vt € [0,T] and z € R¢,

2 < a(t,z),z >< Ki(1+ |z]?).

(F3) (Growth) Vt € [0,T] and z € R?,
la(t, 0)* < Ka(1+1a) and [ left, 2, u)Pu(du) < Ka(L+ [of?)
U
where < -,- > and | - | are the inner product and norm in R? respectively.

Remark 6.2.1 If we replace K1 and K, by K = max(K1, K3), the assump-
tions (F) are just re-statements of the assumptions (I) of Section 6.1 in the
present setup. We distinguish K1 and K, for technical reasons which will
become clear later on (See Remark 6.2.2 below).
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To solve the SDE (6.2.1), we make the following additional assumption
(6.2.2) which will be removed later: There exists a constant L such that for
any t € [0,T] and z,y € R4,

la(t, z) — a(t, y)|? + /U le(t, 2, u) — et y, u)[2u(du) < Ll — y|?.  (6.2.2)

The estimate (6.2.3) given below is of crucial importance for this chapter.

Lemma 6.2.1 Under assumptions (F) and (6.2.2), if E|€|* < oo, then there
ezxists a solution z of (6.2.1) such that

E sup |z*< K (6.2.3)
0<t<T

where K = K(Ky,T, E|€]?) is a finite constant.

Proof: Let z? = ¢ and

t t ~
zpt! :f-}-/o a(s, z?)ds-}-/o Lc(s, z7_,u)N(duds), n > 0.

Under the condition (6.2.2), it is easy to see that {z"} converges to a stochas-
tic process x in the following sense:

E sup |z} —z4|? — 0.
0<t<T

Further, it is clear that x is a solution of (6.2.1). We only need to prove the
estimate (6.2.3). Applying Ité’s formula to (6.2.1), we get

t t
et =17 +2 [ <onals,2) > ds+ [ [ lels, 20 w)Pu(du)ds
0 0 JU
t -
+ / / {[c(5, 2o, WP+ 2 < To_, (5, Tsyu) >} N (duds).  (6.2.4)
0 JU

Let 7, = inf{t < T : |z¢] > m} be a sequence of increasing stopping times.
By (6.2.4), we have

|zenrml* = €17
tATm
< 2K1/ (14 |z5|>)ds
0

tATm ~
+ / / {[e(8,@omy W)|? + 2 < @o_, (s, Toy w) >} N (duds).
0 U

Let
fm"t)=E sup |z,

r<tATm
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and .
Mt:/ / < @, (s, 25—, u) > N(duds). (6.2.5)
0 JU
Then
¢
() < E|§|2+2K1t+2K1/ fm(s)ds+2E sup M,
0 r<tATm
+E sup //]c(s,az,_,u)lzﬁ(duds). (6.2.6)
r<tATm JO JU
Note that

E sup //[c(s,m,_,u)|2ﬁ(duds)
0 JU

r<tATm

E sup {/Or/;r|c(s,a:,_,u)|2N(duds)

r<tATm

+LT/LI|c(s, zs_,u)IZu(du)ds}
= 2E/Ot/\‘rm/;j|c(s,w,,u)|2,u(du)ds

t
< 2Kt +2K:E / £ (s)ds. (6.2.7)
0

IA

On the other hand, M, defined in (6.2.5) is a martingale with quadratic
variation process

t
[M]; = / / < Zyoy (s, 25—, u) >? N(duds).
0 JU
It follows from the Burkholder-Davis-Gundy inequality that

2F sup M, < 8E[M]}/2

r<tATm

tATm 1/2
= 8FE {/ / < 4, (8, 5, u) >2 N(duds)}
0 U
tATm 1/2
8 { / / |a:,|2|c(s,a:s,u)|2N(duds)}
0 U
tATm 1/2
8E ( sup |z {/ / le(s, a:s,u)|2N(duds)}
r<tATm 0 U

tATm
lE sup |w,l2+32E/ /lc(s,zs,u)|2N(duds)
0 U

2 r<tATm

IN

IN

IN

L eme) + 32K,t + 32K, / * fm(s)ds. (6.2.8)
2 0

IN
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Hence, by (6.2.6)-(6.2.8), we have

() < 2 {E|§|2 + 36Kyt + 36K, /O t f"‘(s)ds} ,

and so
T
™) < 2(E|§|2+36K1T)f exp(36K1(T — s))ds
0
= K(K.,T,E|¢?) < .
Letting m — oo, we get our estimate. |

The following theorem yields the existence of a weak solution on [0,T] of
the SDE (6.2.1) without the condition (6.2.2).

Theorem 6.2.1 Under assumptions (F) and E|¢|*> < oo, the SDE (6.2.1)
has a weak solution A on D([0,T], R%) such that

E sup |z:|* < K(K1,T,E|¢]*) < o0 (6.2.9)
0<t<T

where z is a R%-valued process on a stochastic basis (2, F, P,(F:)) corre-
sponding to the weak solution .

Proof: Let J be the Friedrichs mollifier given by

) keexp{—(1-|z|>)7"} for |z| < 1
(@) = { 0 for |z| > 1,

where k is a constant such that [ J(z)dz = 1. Let

"(t,z) = [a(t,z —n~12)J(2)dz for |z| <n
TEHEE et na/|e)) for [z > n
and
n ] Jet,z—n"lz,0)J(z)dz for|z|<n
c (t,iD,’U/) - { C"(t,na:/|:c|,u) for le > n.

It is easy to verify that, for each n, (a”, c”, p) satisfies the assumptions
(F) and (6.2.2) with K;, K3, L replaced by 3K; + 4/K3, 3K, and L™
respectively, where L™ is a constant depends on n. Hence, by Lemma 6.2.1,

the SDE

¢ ¢ .
=€+ / a"(s,z7)ds +/ / (s, z%_,u)N(duds)
0 o Ju
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has a solution z™ such that

E sup |z < K (3K1 +4VK2,T,E|€|2) < 0.
0<t<T

This proves that the sequence {(a”,c™ )} satisfies the assumption (A1)
with

K = max(3K; + 4V/K3,3K>) and K = K(3K; + 4/K,, T, E|¢|?).

The assumption (A2) is easy to check. Hence, by Theorem 6.1.4, the SDE
(6.2.1) has a weak solution on [0,T]. (6.2.9) follows from (6.2.3) and
Lemma 6.1.4. B

Now, we come back to our original problem and project the SDE (6.0.1)
onto a sequence of finite dimensional subspaces. Let Ay be a probability
measure on ®_,, such that

E»|jv|)2,, < co. (6.2.10)
Let p = max(po, o) and 7 : _, — R? be a mapping given by
W(v)k = ’U[q%], k= 1121”'1d

and let A3 = )Xo o 7! be the induced measure on R%. We define a? :
R, xR - R%and ¢ : Ry xR x U — R by

d
ai(s, 2y = A ( > qus;f’) A
=1

and

d
(s, z,u)r =G (S,ij ;p,u) [#7].

j=1

Lemma 6.2.2 Under assumptions (I) and (6.2.10), the SDE

t t .
zd = mg+/ al(s, :cf)ds—{-/ /gd(s, zd_, w)N(duds)
0 o Ju
on R? with initial measure A3 has a weak solution A% such that

EP* sup ¥ <K (K, T, E*°|Iv||2-p) <o
0<t<T

where 2 is a R*-valued process on a stochastic basis (Q%, F4, P4, (F2)) cor-
responding to the weak solution \%.
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Proof: For each d, it is easy to see that assumptions (F) are satisfied by
(a?, g% p) with

K{=K and Kf=max(|l2lisl;?:1<k<d)K.  (62.11)

The assertion of the Lemma follows from Theorem 6.2.1. [ |

Remark 6.2.2 As K¢ in (6.2.11) depends on d while K; does not, we use
different notations for them in the assumptions (F) and obtain estimate
(6.2.9) depending on Ky only (cf. Remark 6.2.1).

For the weak solution z¢

, we define the corresponding ®_,-valued r.c.l.lL
process X4 by

d
Xt = S etndi”
k=1

Then
sup E sup ||Xle2_p <K (K, T, E||X0||2—p) .
d  0<t<T

Let v4 : & — &' be a mapping given by

7= v[dhle”

k=1

and let A8 = A\go(y%)~! be the induced measure on &'. Let A% : R, x &' — &
and G%: Ry x & x U — &' be two sequences of measurable mappings given
by

A%(s,v) = v2A(s,7%) and G¥(s,v,u) = 72G(s,7%, ).

Then X9 is a solution of the SDE
t t .
X¢=Xx¢+ f A¥(s, X3)ds + / / G4(s, XL, u)N(duds)
0 o JUu

on the stochastic basis (Q4, 74, P4, (F2)) (given in Lemma 6.2.2) with initial
measure 3.

Theorem 6.2.2 Under assumptions (I) and (6.2.10), the SDE (6.0.1) has
a ®_,, -valued weak solution X* on D([0,T], ®_p,) with initial distribution
Ao and

E sup || X:||2, < K (K, T, E*|v|?
up, 12, < K ( IoI2,)

where X is the ®_,, -valued process on a stochastic basis corresponding to
the weak solution A\*.
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Proof: By Theorem 6.1.4 and Corollary 6.1.1, we only need to check that
(A4, G4, u, \3) satisfies the assumptions (A1) and (A2). By the continuity of
A(t,) on ®_,, Yw € ®_p, Ve > 0, I5(w), Yo' € S(w, 8), we have ||A(t, w) —
A(t,w")||-q < €, where

S(w,8) = {v' € By : 0 - ']l < S(w)}.

For fixed vg € ®_p, let C = {v%vg : d € N}U{vo}. As C is a compact subset
of ®_, and {S(w,d(w)/2) : w € C} is an open covering of C, there exist
wy, -+, Wy € C such that

CcC U;:=15(’wk, 3(11)]0/2).

Let § = min{&(wy)/2 tk=1,---,n}. Forw € C and v’ € S(w,d), we have
k such that w € S(wg, 6(wk)/2) and hence

[|wk — w,”—p <lw - wk”—p + [Jw - w,”—p < g(wk):

so that
A(t, w) = A(t, w')ll—q
< A w) — At wi)ll—g + 1At we) — Aty w')ll—
< 2. (6.2.12)
Note that
v[gile;% = v[gflg;7, Vv ed,pg20. (6.2.13)

Therefore, for any v € S(vo, §)

2

d
> (A7) - At 7%0)) (61165

k=1
< A, 7%) - AP0l < 46

4%(t, v) — A%(t, )2, =

-9

where the last inequality follows from (6.2.12), y%v, € C and
Iy = vuollp < llo = voll-p < .

This proves that for ¢ € [0,T] and d € N, A%(¢,-) is a continuous map from
®_, to $_4 and the continuity is uniform in d. Note that for any t € [0, T]
and ¢ € @,

d
24%(t, 9)[6p¢] = 2 ) A, v%9)[471% " 1959

k=1
2A(t, v29) (0,74 < K(1+ [|v%¢l1%,)
K1+ (|19l%,)-

IN
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Further, for any t € [0,T] and v € ®_,, we have

4%, )2, = ZA(S pa Al

= Z A(s,v%9) (631452

k=1 -q
d
Z A(s, Y9812 < | A(s, 79112,

K(l +1811%,) < K(L+ 119112,

IA

where the second equality follows from (6.2.13).

We can derive the corresponding properties for {G%} in a similar fashion.
Therefore the assumption (A1)(1°) holds. The condition (A1)(2°) follows
from Lemma 6.2.2. The condition (A2) can be verified easily. Thus the
proof of the theorem is complete. |

Finally, we construct a weak solution on [0, co) for (6.0.1). First of all,
let us construct a sequence of measures A, on D™ = D([0,2T], ®_,, (n7)) by
induction. Taking A; = A* (given by the previous theorem) and assuming
that A\, on D™ has been constructed, we now construct A,y on D1,

For0<t<T,ve ® and ueU,let

A(t,v) = A(t+ nT,v) and G(t,v,%) = G(t+ nT,v,u). (6.2.14)

Then A and @ satisfy the assumptions (I) with po and K (p, g, T) replaced
by po((n + 1)T) and K(p, g, (n+ 1)T) respectively. With initial distribution
o= Ano ;T’ the SDE

t t o -
X, = Xo + / A(s, X,)ds + / / G(s, X, w) N (duds)
0 o JU

has a ®_,, ((n41)1)-valued weak solution 2% on [0,T]. As

—p1(
D' = D([0, T), @, ((n+1)T))

is a Polish space, the regular conditional probability measure

Moo () = BX(Z € |20 = z0)

exists. Let
7 : D(r) C D™ x Db pntl
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be given by

Z} as0<t<nT
1 2y _ ¢ <t<
7r(Z’Z)t'—{Zf_"T asnT <t<(n+1)T

where D(7) = {(Z}, Z2%) € D™ x D'nt1: Z1,. = Z2}.
Define a measure A ; on D™ x D1»*1 by

Nn(4x B) = [ 3, (B)(2)

for A C D™ and B C D1, It is easy to show that A% ,(D(7)) = 1 and
hence, A}, induces a measure Apy; = Apyq © =1 on D"F1,

The M,’s can be regarded as probability measures on D([0, ), ®') and
satisfy

An+1|BnT = )‘n
where B, is the natural o-algebra on D([0, o), ®') upto time nT'. Hence,
the following set function

A(B) = A(B) for B € Bur.

on the field U,B,,r is well-defined and o-additive. Therefore A can be ex-
tended to a probability measure on the o-field V,B,7 = B. Denoting this
extension also by A, we have

B,z = An.
Now we proceed to show that A is a weak solution of the SDE (6.0.1).

Lemma 6.2.3 X is a solution of the L-martingale problem.

Proof: We only need to show that, for any F € D (®'), 0 < s < t < 0o and
B € B,, we have

/B (M7 (2). - M*(2),) \dZ) = 0. (6.2.15)

We prove (6.2.15) by induction. If ¢ < T, (6.2.15) follows from Theo-
rem 6.1.2. Suppose (6.2.15) holds when ¢t < nT. We prove it still holds
when t < (n+ 1)T.

First, assume that nT < s < t < (n+ 1)T. Let £ and MF be defined
by (6.1.4) with A and G replaced by A and G of (6.2.14). As B € B,,
m~Y(BND™*!) € Bl xBZ_ r, it follows from standard arguments of measure
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theory that we may assume that #='(B N D"*!) = C x D with C € Bl;
and D € B%_, 1 in the following calculations:

/B (M7(2), - M¥(2),) \d2)
= [ s (MF (@)= M7 (2),) A (@2)
/,,-1(Bnnn+1) (M7 (Z2%)e-n - M7 (2%)s-n7) K3 _(d2%)An(dZ")
| 2mdZ) B (7 (22) e — 7 (2%),-0m) 10(2°)| 2 = Zir)
a5 (B35 (317 (2 ()

1D(Z2)|33—nT)|Z3 = ZrlzT)
= 0.

Finally, if s < nT <t < (n+1)T, then

ENMT(2)|Bs) = ENE*MT(Z)e|Bar|Bs)

= EMMF(Z)nr|B,) = MF(Z), Xas. N

Similar arguments yield the following Lemma.

Lemma 6.2.4 (1°) For any ¢ € ®, {My(t, Z)}s>0 given by Lemma 6.1.9 is
a A-square integrable purely-discontinuous martingale.
(2°) Let

I'= {AGB(Q"\{O}):E}‘ Z 14(AZ,) < o, \7’t>0}.

0<s<t
Then, for A € T', we have

S 14(AZ,) - /0 t /U 14(G(s, Zs, w))p(du)ds

0<s<t
is a A-martingale on [0, 00).
Theorem 6.2.3 Suppose that the assumptions (I) hold and V¢ € &
E¥plgll* = [ 1olg]Pho(e) < co.

Then (6.0.1) has a ®'-valued weak solution satisfying the following condition:
VT > 0, 3p; = p1(T) such that

E sup || X%, <K (K,T,E™|v|?%,).
2up Xy, < K (KT, E¥ol,)
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Proof: Let 12
V@)= ([ @) véee.

Then, it is easy to check the conditions of Lemma 1.3.1 and hence, we have
an index r such that, V¢ € &, V(¢) < 8]|¢||,. i.e.

[, idPaoa) < ligl2. (6.2.16)

By the definition of nuclear space, there exists an index rg > 7 such that
Yk #2212 < co. Hence, by (6.2.16), we have

L ol da(do) = 3 [ 1olgpIPa(do) < 36262 < oo
oy, o Jer =

The rest of the the proof follows from exactly the same arguments as in the
proof of Theorem 6.1.4. |

6.3 Existence and uniqueness of the strong solu-
tion

In this section, we shall impose an additional condition to ensure that the
SDE (6.0.1) has a unique strong solution. This will be achieved by estab-
lishing pathwise uniqueness and extending the Yamada-Watanabe argument
to this setup.

To implement the Yamada-Watanabe argument, we need to realize the
driving processes (the Poisson random measures in our case) in a common
space. This space is to be chosen such that the regular conditional proba-
bility measures exist for any probability measures on it. Unfortunately, this
property is not enjoyed by the space of all measures on Ry x U. Based
on these considerations, we shall establish an equivalence relation between
the SDE (6.0.1) and another kind of SDE driven by an £2-valued martin-
gale which will be called a Good process. As the Good processes can be
realized on the Polish space D([0,T],¢%), the Yamada-Watanabe argument
is applicable and we obtain the uniqueness of the solution for the new equa-
tion. Hence, by the equivalence, we get the uniqueness of the solution for
the SDE (6.0.1).

We first state some basic definitions.

Definition 6.3.1 Let (Q,F,P,(F:) be a stochastic basis and N(duds) a
compensated Poisson random measure on [0,T] X U. Suppose that Xo is a
®_,-valued random variable such that E||Xo||%, < co. Then by an &_,-
valued strong solution on Q to the SDE (6.0.1) we mean a process X;
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defined on Q such that

(a) X; is a ®_p,-valued Fy-measurable random variable;

(b) X € D([0,T], ®—,) a.s.;

(c) There ezists a sequence (a,,) of stopping times on Q increasing to infinity,
such that, V n

TAon
B[ [ 160 Xow)|P puldu)ds < . (6.3.)
and
TAon
E / 1A(s, X,) |12 ds < oo;
0
(d) The SDE (6.0.1) is satisfied for all t € [0,T] and almost all w € Q.

Definition 6.3.2 (pathwise uniqueness) We say that the ®_,-valued so-
lution for the SDE (6.0.1) has the pathwise uniqueness property if the fol-
lowing is true: Suppose that X and X' are two ®_p-valued solutions defined
on the same probability space (2, F,P) with respect to the same Poisson
random measure N and starting from the same initial point Xo € ®_,,, then
the paths of X and X' coincide for almost all w € Q.

Now, we impose the following monotonicity condition
(M): Vt € [0, T, v1,v2 € ®_p, we have that

2< A(t,vl) - A(t,vg),vl — V2 >4
+ [ 16 v1,) = G(t, w2, W ldw) < Ko = wal2
where q is introduced in assumptions (I).

Lemma 6.3.1 Under assumptions (I) and (M), SDE (6.0.1) satisfies the
pathwise uniqueness property.

Proof: Let X and X’ be two ®_,-valued solutions. Without loss of generality,

suppose that the same sequence {o,} of stopping times satisfies (c) of the
Definition 6.3.1 for X and X'. For ¢ € ®, we have

(Xe— X))[¢] = /Ot(A(S,X,) — A(s, X1))[#lds
+ /Ot fU(G(s,Xs_,u) — G(s, X!_, )[4} N (duds).

It follows from Ité’s formula that

Ee-K(tAan) [(X: — X)) [¢]]2
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tAon
= 2B [ (X, - XGI(AGs, Xi) — Als, X2)[lds
0
tAon
~B [ Ke R (X, - X)) ds
0
tAon
4B [ [ e F((Glo, Xuyu) - Gls, Xy w) 6] ldu)ds.
0
Letting ¢ = ¢35, k € N and adding, we have
Ee~Xthon)| X, — X2,
tAon
~ 2E / e Ko < X, = X!, A(s, X,) — A(s, X!) >_q ds
0
tAon
_E/ Ke™X*|X, - X||2 ds
0
tAon
+E f / K G(s, Xoy 1) — G(5, X1y w)||? u(du)ds
0 U
< 0. (6.3.2)

Hence, by the right continuity of X and X’ and (6.3.2), X = X’ a.s. N

Definition 6.3.3 (Uniqueness in law) We say that uniqueness in law
holds for (6.0.1) if, for any two stochastic bases (Q*, F*, P* (FF)), two Pois-
son random measures N* on R x U with the same characteristic measure p
and two ®_,-valued solutions X, X' of (6.0.1) with the same initial distribu-
tion on ®_,, (k =1,2), we have that X and X' induce the same probability
measure on D([0,T], ®_,).

The following assumption will be made throughout the rest of the book:
(U, &, 1) is a separable measure space.

Now, we introduce the Good processes which will play an essential role
in the implementation of the Yamada-Watanabe argument.

Definition 6.8.4 Let (Q,F, P, (F:)) be a stochastic basis. An £2-valued pro-
cess Hy on (2, F, P,(F)) is called a Good process with respect to a CONS

{fa} of L*(U, £, 1) if 3 a Poisson random measure N (duds) on Ry x U with
characteristic measure p such that

H, = g % /0 t fU folw) N (duds)en (6.3.3)

where e, = (0,--+,0,1,0,--) € £2.
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It is easy to see that the series in (6.3.3) converges and, with respect
to the same CONS {f,} of L%(U,¢&, ), all Good processes have the same
distribution on (D([0, T}, £2), B{D([0,T],£%)}) which will be denoted by Pg
and called the Good measure .

For any s € [0,T) and v € ®_,,, we define an unbounded linear operator
¥(s,v) from D(¢(s,v)) C £2 to ®_,, by

D(¢(s,v)) = {a € Zk| <a,ep>p | < oo}
k

and

¥(s,v)a = ;k <ayer >p /U G(s, v, u) fu(w)p(dw).

Lemma 6.3.2 Let X be an ®_p, -valued r.c.l.l. process such that (6.3.1)
holds. Then [i (s, Xs_)dH, is well-defined by

tAon O ptAon
LT X =Y [ b, X Jerd < Hyyen >, V2 1
Y k=1 0

(6.3.4)
Further, we have

/0 t /U G(s, X, u) N (duds) = /0 (s, X, )dH.. (6.3.5)

Proof: For simplicity of notation, we assume that o, = oo in (6.3.1) and
(6.3.4). Then

m t
Z/ 'ﬂb(s; Xs—)ekd < Hg,er >p
0

k=1

_ /0 ‘ /U G(s, X,_, u) N (duds)

E sup
0<t<T

2

—pP1

S [ [ ([ 66, Xem o) ito)utan))

k=1

Fu(w) N (duds) — /0 t /U G(s, X, u)[¢7'] N (duds)
42 E ]OT /U |ki ( /U G(s, X, v)[67'] fk(v),u(dv)> fi(w)
i= =1
~G(s, X,y u)[7]

i (/U G(s,Xs—,v)[¢§1]fk(v)p(dv))2 ds — 0

k=m+1

IN

(o]
ZE sup

2

IN

2,u(du)ds

00 T
= 4ZE]
=1 70
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for m — o0, since

k=i,::.|.1 (/U G(s’XS—,U)[qsgl]fk(U)#(dv)>2 0,

k§+1 < /U G(s, X -,v)[¢>‘;‘]f:c(v)ﬂ(alv))2 < ]U IG(s, Xo, v)[¢2]|2u(dv)
and

iE /0 t /U IG(s, Xs—, v)[#5"]|* 1(dv)ds
= F /0 t /U G (s, X5, v)||%p, w(dv)ds < oo. -

As a consequence of (6.3.5), the SDE (6.0.1) can be written in a different
form

t t
X, = Xo + / A(s, X,)ds + / ¥(s, X,_)dH,. (6.3.6)
0 0

Now, we demonstrate how to couple two solutions of (6.0.1) and discuss
some properties of the coupled process.

Suppose X’ and X" are two solutions of the SDE (6.0.1) on stochas-
tic bases (', F', P!, (F})) and (", F", P",(F{")) with initial random vari-
ables X} and X{' (having the same distribution Ag on ®_, ) and Pois-
son random measures N’ and N” (having the same characteristic mea-
sure p on U) respectively. Let H' and H” be defined in terms of (6.3.3)
with respect to the same CONS {f,} of L%(U,&,u) with N replaced by
N’ and N” respectively. Then (X', H', X}) and (X", H", X{/) are two so-
lutions of the SDE (6.3.6) on the stochastic bases (', F’,P’,(F;)) and
(Q", F", P",(F{')) respectively. Let A" and A" be the Borel probability mea-
sures on D([0,T],®_p,) x D([0,T], %) x &_,, induced by (X', H', X{) and
(X", H", X)) respectively. Define a mapping

m: D([0,T], ®—p,) X D([0,T],£%) X ®_p, — D([0, T}, ) x ®_p,
by m(w1,ws, z) = (w2,z). Then, N o™ =X on~! = Pg ® Ao.
Let A"¥2®(dw;) and A"*2®(dw,) be the regular conditional probability of

wy given wy and x with respect to A’ and A" respectively. This is possible
since D([0,T], ®_,,) is a Polish space. On the space

@ = D((0, 7], 8_,) x D((0,T}, &_p,) x D(0,T], &) x _p,,
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we define a Borel probability measure A by

M4) = / / ( / / 1A(w1,w2,w3,z)A""3'z(dw1))\”w3""’(dw2)>
Pg(dws)o(dz) (6.3.7)

for A € B(Q). Then, it is easy to show that (wq,ws,z) and (X', H', X})
have the same distribution and so do (w2, ws, z) and (X", H", X})).

Lemma 6.3.3 For any A € B,(D([0,T),®_,,)), we define two functions f,
and f2

filw,z) = A"2(A) and fo(w,z) = X"™*(A).

Then fi and fo are measurable with respect to the completion of the o-field
By(D([0,T}],£2)) x B(®—p,) under the probability measure Pg @ Ao.

Proof: We only prove the result for f;. For fixed ¢t > 0 and A € B:(D([0,T],
®_,,)), let \;"*(A) be defined as \'**(A) with X replaced by its restriction
to the sub-o-field

By(D([0, T}, &-5,)) x B(D([0,T), £%)) X Be(®—p,)-

Then (w, z) — A{*"*(A) is measurable with respect to the o-field B;(D([0, T},
£%)) x B(®_,,). Now, we only need to show that

NO*(A) = fi(w,e) for P ® Ao-as (w,2).

i.e. for any C € B(D([0,T),£?)) x B(®-p), we have to show that
/ N2 ( 4) Po(dw)Ao(dz) = (A x C). (6.3.8)
c

Consider a continuous mapping p : D([0,%],£2) x D([0,T — t],£?) —
D([0,T), £2) given by

1 .
12 ) ws ifs<t
p(w’w)’—{ws_t+wt1 if s > t.

From the definition of Pg, we have
Po{w € D([0,T], ) : w(t-) # w(t)} = 0

and hence, p has a continuous inverse p~!. So, we only need to prove (6.3.8)
for C of the form

C ={we D([0,T],£%) : p~'w € A; X A2} x D,



6.3. STRONG SOLUTION 205

where A; € B(D([0,],£%)), A2 € B(D([0,T — t],£2)) and D € B(®_p,). As
Good processes are of independent increments, Pgop = P;®P,, where P, and
P, are probability measures on D([0,¢],£?) and D([0, T — t], £2) respectively.
Furthermore, as A;*"*(4) is By(D([0,T],£?)) x B(®_p, )-measurable, we can
find a measurable function g in D([0,¢],£2?) x ®_,, such that

NP (4) = g(p™ (w)} )
where p~1(w)! € D([0, t], £%) is the first component of p~!(w) in the product
space D([0,t],4%) x D([0,T — t],£%). Hence

/C N ( 4) Po(dw) Ao(de)
- /A in g(w!, 2) Py (dw') Py(dw?) Ao(dz)
= / g(w', 2) Py (dw') Ao(dz) Py (As)
Ay xD

_ / NP2 (A) 1 (s 4, 10(2) P (dw) Ao(d2) Py( 4)

= N(Ax{(p~'w)' € 41} x D)P,(4,)

= P{X' € A, Hpg€ A, X; € D} P'{H'(t+) - H'(t) € 42}

= P{X'€ A, H|py€ A1, X, € D, H'(t+) - H'(t) € 43}

= P{X'e€A(H, X)eC}=XNAxC). i

Lemma 6.3.4 Let B; be the completion of
Bi(D([0, T}, @-p,)) x Be(D([0, T, ®—p,)) x Be(D([0,T],£%)) x B(®-p,).
Then w3 is a Good process on an estension (0, B, A, By) of (, B/, A, By).

Proof: By the definition of Pg, there exists a stochastic basis (2, F, P, (F¢))
and a Good process H on it such that Pg is the distribution of H. We prove
our lemma in four steps.
Step 1. w3 is an ¢£2-valued A-square-integrable martingale.

Let Ay, A € Bo(D([0,T],®—p,)), As € Bs(D([0,T],£2)), A4 € B(®_p,)
and a € £2. Then we have

EA{exP(i <a, w3(t) - w3(s) >12)1A1 XAz x A3 XAq}

= / exp(i < a, ws(t) — ws(s) >p)
A3 XA4
A3 ( A1) N"3:%( Ag) Pg(dws) Ao(dz)
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/AsxA4 exp(i < a, w3(t) — w3(s) >p) fi(ws, z)
fa(w3, z) Pg(dws)Ao(dz)

EXexp(i < a, w3(t) — wa(s) >p)A(A1 X Ay X Az X Ay)

where fy, f, are defined in Lemma 6.3.3. Hence, ws is of independent incre-
ments. Since
EXMws); = EFH, =0,
and
oo

t
EMN|(w3)ellz = EF || Hell% = Y = < oo,

n=1
w3 is an £2-valued A-square-integrable martingale.

Step 2. Va € £2, the quadratic variation of the square-integrable martingales
< ws,a >p is given by

2
a

< ws > (a,a) = tz n—g

We only need to prove that

2
Q.
Rt =< ('U)3)t, a >§2 —tz n—g
n

is a A-martingale. In fact,

E*(R: - R,|B))

B < (w3): — (w3)sy @ >% 42 < (w3): — (w3)s,a >p

2
an
< (ws)s,a >4 |B) - (t~9)D %
n
A 2 af,
= E* < (w3): — (ws)s,a>p —(t—9) Z 2
n

2
a,
EP < H,-H,,a>% —(t—s);;'%:o

Step 3. < ws, a > is purely-discontinuous.
It is easy to see that the mapping

w3y — Z‘A < (wg),,a >p |2
s<t

from D([0,T],£?) into R is measurable. Hence

E*ST|A < (w3)sa>p P =EP Y |A < Hya>p |
s<t

s<t
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_ Py Wom /Ot /U Fu(@) fin(w) N (duds)

nm=1 nm
= Y 2t=FE*< w3 > (a,a).
n=1 n

It then follows from the same argument as in the proof of Theorem 6.1.3
that < ws, a >p is purely-discontinuous.

Step 4. As w3 and H have the same distribution, the point process Aws(s)
has the same compensator as the point process AH, which is N am(dtdv) =
q(t, dv,w)dt while

q(t,E,w {u : i %fn(u)en G)E-}p, VE € B(¢?%).

n=1

It follows from the same arguments as in the proof of the Theorem 6.1.4 that
there exists a Poisson random measure M with characteristic measure p on
an extension of (Q, B/, A, B) such that

(w3)e = ni::l % /Ot /U fn(w) M(duds)e,.

Hence, w3 is a Good process on an extension of (2, B/, A, By). [ |

Lemma 6.3.5 Let P, and P, be two probability measures on a Polish space
X with metric p. If (P1 X P2){(z1,22) : @1 = 22} = 1, there exists a unique
z € X such that Py = P; = §(3).

Proof: As
1= [ Pude) [1mPoldy) = ¥ Pi{a)Pa({e)) < D P({eh) < 1,
: ) (6.3.9)
we have

(Pi({z}) - 1)P({z}) =0, VzeX.
If P,({z}) < 1,Vz € X, then P,({z}) =0, Vz € X and hence,

ZPI({QJ})PK{:I:}) =0+#1,

which contradicts (6.3.9) and hence, there exists z € X such that P, = 84z}
By (6.3.9) again, P;({z})P2({z}) = 1 and hence, P; = §,;. [ |
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Theorem 6.3.1 Under assumptions (I) and (M), uniqueness in law holds
and the SDE (6.0.1) has a unique strong solution.

Proof: Let X’ and X" be two solutions of the SDE (6.0.1). From the ar-
guments above, we see that (w1, ws, z) and (w2, w3, z) are two solutions of
(6.3.6) on the same stochastic basis (2, B, ), B;). Let M be the Poisson ran-
dom measure on this stochastic basis corresponding to the Good process ws.
Then (w1, M, z) and (wg, M, z) are solutions of (6.0.1) on the same stochas-
tic basis, where M is given in the proof of Lemma 6.3.4. By the pathwise
uniqueness proved in Lemma 6.3.1, we have that A(wz = w;) = 1. Coming
back to the original probability space, we have A(w; = w;) = 1. But, by
(6.3.7),

Aws = wi) = / / M @ N2 (1, = ;) Pg(dw) Ao(de),
so, for Pg ® Ap-a.s. (w,z), we have
N2 @ N (wy = wy) = 1. (6.3.10)
By Lemma 6.3.5 and (6.3.10), we have a mapping
F:D([0,T),¢% x ®_,, — D([0,T], ®_;,)

such that
Nwe — Yz _ 6F(w,z)' (6.3.11)

For any A € By(D([0,T], ®-p,)), by (6.3.11), Lemma 6.3.3 and
1pa (A)(w, :l:) = }‘Iw,a:(A)’

it follows that F~1(A) is in the completion of B:(D([0,T],£?)) x B(®_p,)
under Pg® Ao, and hence, F(w, z) is adapted. Then, for any Poisson random
measure N and initial ®_,, -valued random variable Xy, corresponding to a
Good process H with respect to a fixed CONS {f,,} of L*(U, &, p), F(H, Xo)
is a strong solution of the SDE (6.0.1).

The uniqueness of the strong solution follows directly from the pathwise

uniqueness of the SDE (6.0.1). The uniqueness in law follows from (6.3.11).
i

Finally, we consider the strong solution of (6.0.1) on [0, o).

Definition 6.3.5 Let (Q, F, P, (F:)) be a stochastic basis, N(duds) a com-
pensated Poisson random measure on Ry X U and X a ®'-valued random
variable. Then by a ®-valued strong solution on Q to the SDE (6.0.1) we
mean a process X; defined on Q such that
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(a) X; is ®'-valued, Fi-measurable;

(b) X € D([0, ), ®');

(c) There ezists a sequence (oy,) of stopping times on Q increasing to infinity
and independent of ¢ such that, Vn € N and V¢ € ®

Bl + B[ 1A X)l4ds
+ E /0 ” /U G (s, Xs, w)[¢]Pu(du)ds < oo.

(d) For eacht >0,
Xdg) = Xolgl+ [ Als, Xlalds
+/Ot/UG(s’X _,4)[#]N(duds), a.s.

Theorem 6.3.2 Under assumptions (I) and (M), if E|Xo[4]|? < co V¢ € &,
SDE (6.0.1) has a unique ®'-valued solution on [0, ).

Proof: 1° (existence) By the proof of Theorem 6.2.3, we have ry such that
Xo lies in @_,, and E||Xo|%, < oo. For every n € N, by Theorem 6.3.1,
there exists a ®_,, (,)-valued solution X™ for the SDE (6.0.1) in [0,n]. As
p1(n) < pi(n+1), X! and X™ are two ®_,, (,,1)-valued solutions for the
SDE (6.0.1) in [0,7] and hence, by Theorem 6.3.1, X? = X7*! for t < n.
Let & = X! forn — 1 <t < m, n € N, then it is easy to see that £ is a
®’-valued solution of the SDE (6.0.1) on [0, o).

2° (uniqueness) Let X be another ®'-valued solution of SDE (6.0.1). By (c)
of Definition 6.3.5 we have

E sup (X:[¢])? < .
0<t<nAon

It follows from the same arguments as in the proof of Theorem 6.2.3 that
there exists an index p, such that X, lies in ®_,, when t < n A 0,. By the
proof of 1°, we may assume without restricting the generality that & also
lies in ®_,, when ¢ < n A 0,,. By the same arguments as in the proof of
Lemma 6.3.1 we get our uniqueness. [ |








