
Chapter 5

Stochastic differential
equations in Hubert space

Throughout this chapter, H will be a separable Hubert space with inner
product < , > and norm || ||. L(H,H) will denote the class of all con-
tinuous linear operators on H and L/2(H} H) the class of all Hilbert-Schmidt
operators. For an operator A £ L2(H, H), the Hilbert-Schmidt norm will be
denoted by || ||2

Let (Ω, T, P) be a complete probability space with a given filtration [Tt)
assumed to satisfy the usual conditions. Let (Wt) be an (j^t)-cylindrical
Brownian motion (c.B.m) on H and let (Bt) be an (^-adapted iϊ-valued
Brownian with covariance Σ (cf. Section 3.2 for definition).

5.1 Diffusion equations in Hubert spaces

Suppose that A : H -+ H and G : H -> L(H, H) are two continuous
mappings. We consider the following SDE on H:

Xt = X0+ f A(Xs)ds + t G{Xs)dBs. (5.1.1)
Jo Jo

It is possible to establish a unique solution for (5.1.1) by making use
of weak convergence techniques and by following the method which will be
developed in Chapter 6, i.e., first we obtain a solution for the corresponding
martingale problem by approximation and then get a weak solution by the
representation theorems given in Chapter 3; finally we establish a unique
strong solution by the Yam ad a-Wat an abe argument. However, in this sec-
tion, we shall adopt the approach given by Leha and Ritter [37] to establish
a unique strong directly.
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150 CHAPTER 5. SDE IN HUBERT SPACE

Definition 5.1.1 {Xt} is called a strong solution of (5.1.1) with explo-
sion time T if

(i)
lim sup \\Xt|| = oo on the set {τ < oo}.

(ii) There exists a sequence {τn} of stopping times, increasing to r, such
that
(a)

ftΛτn

E / \\A(Xs)\\ds < oo.
Jo

E / \\G{Xs)\\l{H>H)ds < oo.

(c)

XtΛτn = Xo+ A(Xs)ds + / G(Xs)dBs

Jo Jo
where the stochastic integral is defined as It(f) (cf Section 3.3) with

f(s,ω) = G(Xs)Σhs<Tn € L{2){H,H).

As
ft ftΛTn

Ejo \\f(s,ω)\\2

{2)ds < \\Σ\\{1)EJQ | |G(*.)llW)<fa < oo,

h{f) is well-defined, where || H )̂ denotes the nuclear norm of nuclear op-
erators on H.

Theorem 5.1.1 (Leha-Ritter) Suppose that Xo has a finite second mo-
ment and A, G satisfy Lipschitz conditions on bounded sets, i.e., V?i, 3Ln

such that Vx,y G H, \\x\\ < n, \\y\\ < n, we have

\\A(x) - A(y)\\ + \\G(x) - G(y)\\L(H>H) < Ln\\x - y\\.

Then there is a unique strong solution to the SDE (5.1.1).

Proof: First assume the global Lipschitz conditions for A and G, i.e. Ln — L.
We construct a Picard sequence as follows:

Xt = -̂ Oj

Xt

m+1 = Xo+ [Ά(X?)d8+ [*G(X?)dB.. (5.1.2)
Jo Jo

By induction, it is easy to show that Vί > 0

E ί \\XΓ\\2ds < oo Vm > 0,
Jo
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and consequently, {Xt

m} is well-defined by (5.1.2).
Note that, by Theorem 3.3.2,

E sup
0<t<r

Therefore

m γm—li|2

0<ί<r
\\χτ-χ:

< 2E sup I / (G(X™) - GiX™-1)) dBs

0<t<r II Jo V '

+2E sup I / f A(X™) - A(X^-1)) ds
0<t<r \\Jθ V J

< 2L2(4||Σ|| ( 1 ) + r) Γ D^ds. (5.1.3)

Let ϋΓ(r) = 2£ 2(4| |Σ| | ( 1 ) + r). Then

(5.1.4)
ml

where

|| ||
+ IE sup / A(X0)<H < oo.

o<t<r lUo II
O^ < 2E sup / G(X0)dB

Vr > 0, let

Ωr = iω : Σ sup ||Xt

m - X t

m-χ | | < oo } .

As

; sup \\xr-xr1]] < ΣJE SUP
=l °< t < r m=l V 0<*<

m = l m!
< σ c '

P(Ω r) = 1 and hence, P(Ω') = 1 where Ω' = U™=1Ωr. It is clear that
Vω e Ω', 3X(ω) G C([0, oo), H) s.t. VT > 0

sup \\X?(ω) - Xt(ω)\\ -- 0.
0<t<T

(5.1.5)
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By (5.1.4), it is easy to show that, Vr > 0

and

Kλ(r) = sup E sup \\XΓ\\ < oo (5.1.6)
m>0 0<ί<r

lim E sup ||Xt

m - X t | |
2 -> 0. (5.1.7)

m-+°° 0<t<r

By Fatou's lemma, we then have

E sup \\Xt\\2 < K^r). (5.1.8)
0<t<r

Now we show that {Xt} satisfies the conditions of Definition 5.1.1 with
r Ξ oo. (i) is trivially true. For (ii), (a) and (b) follows from (5.1.8) and the
global Lipschitz conditions on A and G. (c) follows from (5.1.7) and (5.1.2).
Hence X is a strong solution of (5.1.1).

Suppose that X is another solution and let

Dr = E sup \\X. - Xs\\2.
0<t<r

As in (5.1.3) we have

D r<2L 2(4| |Σ| | ( 1 ) + r ) Γ Dsds
Jo

and hence D = 0. This proves the uniqueness of the solution.

Finally, we return to the general case. Define

J G(x) \ί\\x\\<n

W f t ) otherwise

An can be defined similarly. Then An, Gn satisfy the global Lipschitz condi-
tions and hence by the first part of the proof there is a unique strong solution
ξn for (5.1.1) with A, G replaced by Λn, Gn respectively. Let τn be the first
exit time of ξn from {x e H : \\x\\ < n}. Then {τn} is a non-decreasing
sequence of stopping times and

? ξ ? V ί < τ n .

Let r = supn r n and
Xt = ζ» V ί < r n .

Then

limsup||X t | | > lim | |X r J | = oo.
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This proves (i) of Definition 5.1.1. The condition (ii) follows directly from
the construction of {Xt} Hence X is a solution of (5.1.1) upto time r. I

It follows from the proof of the above theorem that τ = oo a.s. if A and
G satisfy the global Lipschitz conditions. The following theorem gives the
same result under weaker conditions.

Theorem 5.1.2 (Leha-Ritter) If, in addition to the conditions of Theo-
rem 5.LI, A and G satisfy the following: There exists a positive constant K
such that for any x £ H,

and

then {Xt} has infinite explosion time, i.e., τ = oo a.s.

Proof: We use the same notation as in the proof of Theorem 5.1.1. It follows
from Itό's formula that

f ptΛτn „ | | 2

+2 jί < C, A(C) >ds + J ||G(ff)Sϊ|| ds

where G(ξ")* denotes the adjoint operator of G(f"). Therefore

£ | |£?Λ T J 2 < E\\X0\\> + 2K ί\l + E\\gΛTn\\>)ds
JO

+\\m{i)K ί\l + E\\CAτJ
2)ds.

JO

By GronwalΓs inequality, we have

E\\$ΛTJ2 < (1 + E\\X0f)e\Mki)Kt = g(t) < oo, V ί > 0.

Hence

P ( τ <t)< P ( τ n <t)< P ( | | ί t

n Λ r n l l > n ) < n

i.e. P(τ < t) = 0 Vί > 0 and hence, r = oo a.s. I
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5.2 Stochastic evolution equations
in Hubert space

We are going to consider the following SDE

dXt = -LXtdt + G(t, Xt)dWt + A(t, Xt)dt (5.2.1)

where XQ is independent of (Wt). Here the operator L is assumed to satisfy
the following conditions:

Tt = e"tL is a contraction semigroup on H, (5.2.2)

L" 1 is a bounded self-adjoint operator with discrete spectrum. (5.2.3)

Let {φk} be the eigenfunctions of L, which constitutes a CONS in H and let

{λfc} be the corresponding eigenvalues. We assume also that A : [0, Γ] x H -»

H and G : [0,Γ] X if —• L(iί, if) are continuous functions satisfying

<A(t, Λ), ^fc> I < α f c (l + ||Λ||2)i (5.2.4)

\\G*(t,h)φk\\<bk(l + \\h\\2)ϊ (5.2.5)

I (A(t, Λi) - i4(t, Λ2), Φk) I < ofc||Λi - h2\\ (5.2.6)

||(G*(ί, Λi) - G*(t, h2))φk\\ < bk\\hr - M | (5-2.7)

for all fe > 1, t G [0, T], h, h\,h2 G ff, where G* is the adjoint of the operator

G and {ak}, {bk} satisfy

oo

4K1 = °2Λ < °° ( 5 2 8 )

lλ^ = C2,2<oo. (5.2.9)

Under these conditions the stochastic integral jQG(s,Xs)dWs may not

be defined. However, for any predictable process (Xt),

o fc=1

f l + ||ί(|f)ώ (5.2.10)
Jo

where

(5 2 n )
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Since JjJ foiujdu < Y^Li ̂ λ^"1 = C ^ it follows that the stochastic integral
referred to above exists if

/ | |X 5 | | 2ds < oo a.s. (5.2.12)
Jo

Similarly

Γ ή "I2 z ί °°

[jf \\Tt-sA{s,Xs)\\ds\ < TjQ Σβ-2ί'->λ»o2(l+||jr.| |2)ώ

= Γ / A ί t - β K l + I M 2 ) ^ (5.2.13)

where
oo

^ 2 λ ^ (5.2.14)

and again we have that / 0 fA(u)du < TC^i Thus for every ω such that
(5.2.12) holds, we also have that the integral

/ Tt-sA(s,Xs)ds (5.2.15)
Jo

is well defined.
We will prove the existence and uniqueness of the above equation (5.2.1).

The details are taken from Bhatt, Kallianpur, Karandikar and Xiong [1].

Definition 5.2 1 A predictable process (Xt) is said to be a mild solution
or evolution solution to (5.2.1) if (5.2.12) holds and for every t

Xt = TtX0+ f Tt-sG{s,Xs)dWs+ [ Tt-sA(s,Xs)ds a.s. (5.2.16)
Jo Jo

Note that the predictability of (Xt) implies that Xo is independent of
(Wt) It is easy to see that if (Xt) is a solution and (Xt) is a predictable
modification of (-X*), i.e. P(Xt = X't) = 1 for all t, then (X't) is also a
solution to (5.2.1).

It is convenient to define a new probability measure P on J7,

P(C) = Jcexp{-\\X0\\}dP / J exp{-\\X0\\}dP. (5.2.17)

Clearly, P and P are mutually absolutely continuous and the Radon-Niko-

dym derivative ^ is TQ measurable. Hence (Wt) is again a c.B.m on

(Ω, T, P). If Mt = /0* FsdWs on (Ω, T, P) and M = /0* FsdWs on (Ω, TΛ P)

where /0

T | | F 5 | | ^ s < oo a.s. ( P or P ) , then

P(Mt = M for all t) = P(Mt = M for all t) = 1.
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Thus (Xt) is a solution to (5.2.1) on (Ω, J7, P) if and only if (X t) is a solution
to (5.2.1) on (Ω..F, P). Further, we have for all p < oo,

EP\\X0\\P < oo.

Here is a version of Gronwall's lemma which will be used in proving
existence and uniqueness results for the solution.

Lemma 5.2.1 i) Let f g and δ be nonnegative functions on [0,Γ], Let

oί G [0, oo) such that JQ e~α t/(ί)dί < | . Suppose that either g is bounded or

g is integrable and δ is bounded. If for all t <T,

g(t) <c+ Γ f{s){g(t -s) + δ(t - s)}ds, (5.2.18)
Jo

then there exists a nonnegative Borel measure μ on [0, T] such that μ[0, t] <

eat and

g(t) < c(l + eat) + [ δ(t - s)μ(ds). (5.2.19)
Jo

ii) Let fj g be positive functions on {0,1, , n}. Let a £ [0, oo) such that

Σ?=i e-βV(0 < 5- If for all 0 < i < n

-j), (5.2.20)
3=1

then
g{i)<c(l + eai). (5.2.21)

Proof: Iterating the inequality (5.2.18) we get

g(t) < c+ [tf(sι)δ(t-81)d8l+ (5.2.22)
Jo

J /(* l) \c + J Sl f(s2){g(t - 5! - S2) + δ(t - S l -

= c+ ί {c + δ(t-s1)}f{s1)ds1
Jo

/ /
Jo Jo

fc
 pt rt

Σ / {c + δ(t - s)}μj(ds) - cμfc([0, t]) + / g(t - s)μk{ds)

where

rt pt

/ /
o Jo
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As

Jo Jo

μ(c) = ΣjLi H(C)> C G β([°iτ]) i s a well-defined nonnegative Borel mea-
sure on [0,T] such that μ[0,£] < e α t . Letting k —• oo on the right hand side
of (5.2.22), we have

g{t) < c(l + eα<) + / ί(t - s)μ(ds) + liminf / g(t - s)μk(ds). (5.2.23)

If 5 is bounded, then liminffc_,oo S$g{t - s)μk(ds) = 0 and hence (5.2.19)
holds. If g is integrable and δ is bounded, then

/ liminf/ g(t — s)μk(ds)dt < liminf/ / g(t — s)μk(ds)dt
Jθ k—κx> J o fc-*oo J o «/0

/ flr(t)Λliminfμfc([0>Γ]) = 0>
O Λ-* oo

i.e. liminffc-*oo JQ g(t — s)μk(ds) = 0 for a.e. t £ [0,T] and hence, for a.e.

ίe[o,τ]

By (5.2.18), Vie [0,T]

g(t)<c+ ζ f(s)ds(c + ||ίlloo) (l + eaT)

i.e. g is bounded and hence (5.2.19) holds. (5.2.21) can be proved similarly.
I

We will now obtain an estimate on the second moment of a solution.

Theorem 5.2.1 If (Xt) is a solution to (5.2.1) satisfying ϋ7||Xo||2 < °°;
then

sup E\\Xt\\2 < C2>3[1 + E\\Xo\\2] (5.2.24)
t<τ

where (72,3 is a constant depending only on the constants (72,1, ^2,2-

Proof: Let (Xt) be a solution to (5.2.1) satisfying (5.2.12). Then it follows
that

{Xt,φh) = e-x*(X

+ /%-**(«-) (A{s,X.),φk)d8 (5.2.25)
Jo
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and hence that

d (Xt, φk) = (G*(t, Xt)φk, dWt) + (A(t, Xt) - λfcXt, φk) dt. (5.2.26)

Fix n and define a stopping time τ n by

τ n = inf it > 0 : / | |X S | | 2 ^ >n\ AT (5.2.27)

and let

Note that τn -* T since (Xt) is assumed to satisfy (5.2.12). It is easy to see
that

& = fo+ ΓTneXkS(G*(s,Xs)φk}dWs)Jo

+ / ex«°(A(s,Xs),φk)ds
Jo

and hence from (5.2.4) and (5.2.5) we have

e2X»(A(stX.),φk)2ds

From the inequality £[ | |X t | |
2 l t < T n ] < Σk e~2XktE\tt\2 w e S e t

< 3 ̂ E\\X0f + J^

< 3 [^||Xo||2 + TC2Λ + C2)2 + jf*/o(t

where fo{u) = / G ( ^ ) + / Λ ( ^ ) is an integrable function (see (5.2.11), (5.2.14)).
Since /0 i?[ | |X s | |

2l s < r n]ds < n by the choice of τn, δ = 0 and there exists a
such that

we can use Lemma 5.2.li) to conclude that
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where the constant C does not depend on n. Now the result follows from
Fatou's lemma by letting n —• oo. I

The next result proves the existence and uniqueness of the solution to
(5.2.1).

Theorem 5.2.2 Suppose that L, A, G satisfy (5.2.2)-(5.2.9). Let Xo be an

To-measurable H-υalued random variable and let (Wt) be an (ίFt)-cylindrical

Brownian motion. Then

(i) There exists a solution (Xt) of (5.2.1) satisfying (5.2.12) with Xo = Xo.

(ii) If {Xt} and {Ut} are solutions to (5.2.1) satisfying (5.2.12) such that

Xo = Uo, then

P(Xt = Ut) = l for all t. (5.2.29)

Proof: (i) Let P be defined by (5.2.17). It suffices to construct a solution

on (Ω,^7, P). For n > 1, let t? = £T, 0 < i < n. Let X% = Xo and define

{Xt

n, tj1 < t < t?+1} i > 0 inductively as follows. For t? < t < t?+1, let

X? =

+ ( Tt-uA(u,X?n)du. (5.2.30)

As in (5.2.10), (5.2.13), Vί? < t < ί̂ +1, we have

E\\X?\f < 3 j
^ I I 2 ) ( 5 . 2 . 3 1 )

Let Yt

n = X$ for V> < t < t?+ 1. Then

X? = TtXo + Γ Tt_uG(u, Y£)dWu + f Tt-uAiu, Y?)du. (5.2.32)
Jo Jo

Proceeding as in (5.2.10), (5.2.13), it follows that

E\\X?\\2 < 3 [£||Xo||2 + TC2ti + C2i2 + jί* fo(t - s)E\\Y?\\2d^ (5.2.33)

where f0 = fA + fa- Let $n(») = J&||X^||2f 0 < i < n. By (5.2.31) and

induction in i, it is easy to show that gn(ϊ) is a finite valued function on

i G {0,1, ,n}. It follows from (5.2.33) that

9n(i) <
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_ i-j) (5.2.34)

where

/n(0 = 3

Let α be given by (5.2.28). Then

k
2λ f c T

0 0

f̂c f Pfc

<

" 2

and hence, by (5.2.34) and Lemma 5.2.1(ii)

E\\X%\\2 = 5n(i) < 3(£||Xo||2 + TC2Λ + C 2 | 2)(l + e ^ ).

It then follows from (5.2.31) again that

sup sup E\\X?\\2 <C'[1 + E\\XO\\2] = C". (5.2.35)
> 0 < ί < TUsing (5.2.32) for n, m and using the Lipschitz conditions on A, G we get

(the calculations are similar to those in (5.2.10), (5.2.13))

E\\X?-X?\\2 < 2E {J* \\Tt-u(G(u,YΪ) - G(u,Y

+Γ jf* \\Tt.u{A(u,Y:) - A(u,

Let gn,m(t) = E\\X? - XΓII2 and δn>m(t) = E\\X? - Yt

n\\2 + E\\X? - Yt

m\\2-
Then <7n,m> δnjrn are uniformly bounded (by (5.2.35)) and

9n,m(t)

< 2 f fo(t - u)3(E\\Y? - X:\\2 + \\X: - J>C||2 + \\X? - Y?\\2)du
Jo

ft
< / 6fo{t-

Jo
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Similar to (5.2.31), it follows from (5.2.30) and (5.2.35) that, for if < t < ίf+1

E\\X?-Yt

n\\2 = E\\X?-X?n\\2 (5.2.36)
2

It follows from (5.2.32) that

and then

E(X?,φk)
2 < 3E{X0,φk)

2

+3

Hence, by the dominated convergence theorem, it follows from (5.2.36) that
$n,m{t) —> 0. By Lemma 5.2.l(i) and the dominated convergence theorem
again,

QnAt) < ί δn,m(t)μ(dt) - 0.
Jo

Therefore

supE\\X? - X?\\2 -+ 0, sup^| |y t

n - y t

m | | 2 -> O. (5.2.37)
t<T t<T

Note that since Yn is a piecewise constant, left-continuous, adapted process
it is predictable. In view of (5.2.37) we can choose a subsequence {rik} such
that Zk

s ΞΞ Ypk satisfies

2 <2~k.
s<T

Then it follows that Σk \\Zs ~ ^ ί + 1 | l < °° a s f o Γ a 1 1 s T h u s Zs converges
a.s. for each s. Define

_ \ limfc-+oo Zg(ω) if it exists in H
-\ 0 otherwise.
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Then Xs is a predictable process. Further, it follows from (5.2.37) that

sup E\\Ys

n - Xs\\2 -> 0, sup£ | |X s

n - X 5 | | 2 -> 0.
s<T s<T

From this, it can be verified that X is a solution to (5.2.1) (on (Ω, J*, P))
with XQ = XQ and that (5.2.12) holds. This completes the proof of (i).

For (ii), again, let P be given by (5.2.17). Then {Xt} and {Ut} are
solutions to (5.2.1) on (Ω,.F,P) and in view of Theorem 5.2.1, JQ E\\XS -
Us\\2ds < oo. Using the Lipschitz conditions on A, G, we deduce that

E\\Xt - Ut\\2 < 2 ί f fo(t - s)E\\Xs - Us\\2ds\ .

An application of Lemma 5.2.1, with c = 0 and 5 = 0, yields

E\\Xt-Ut\\2 = 0

for all t. Thus P(Xt = Ut) = 1 and hence (5.2.29) follows. I

We are now in a position to obtain an estimate on the growth of the pth

moment of the solution.

Theorem 5.2.3 Let {Xt} be a solution to (5.2.1) satisfying (5.2.12). Then
for p > 2, there exists a constant Cp depending only on the constant Cp in
Theorem 3.3.2 and on C2tι, C22 such that if E\\XQ\\P < 00, then

sup E\\X.\\* < C'p[l + E\\Xoψ\. (5.2.38)
s<T V

Proof: Let X™ be the approximation constructed in the proof of the previous
theorem. Using Theorem 3.3.2, it follows from (5.2.30) that for t? < t < ί? + 1 ,

E\\Xt\
P-1

* 2Y (5.2.39)

| |x t

n

? l l 2 ) f ]
Let hn(i) = E\\X?n\\p, 0 < i < n. By (5.2.39) and by induction in i, we see

that hn( ) is a finite valued function. By (5.2.32), proceeding as in (5.2.39),

we have

E\\X?\\P < 3*"1
 \E\\XO\\* + CPE (jί fa(t - β ) ( l + ||YΓII2)ώ

] . (5.2.40)
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Using Holder's inequality for the ds integrals, we get

E\\X?\\P < 3p- 1[£| |Xo| |p (5.2.41)

2+CP (jf* fG{t - s)ds^j2 E (jf * fσ(t -

2 ( f fA(t - *)(i + ||y.ΊI2)»

It then follows from similar arguments as in (5.2.33)-(5.2.35) that there exists

a constant C'p depending only on p and on £72,1, ̂ 2,2 such that

sup sup E\\X?\\P < C'p[l + E\\Xo\\p]. (5.2.42)
>l0<t<T

As noted in the previous result, a subsequence of X™ converges to X s, where

X is a solution to (5.2.1). Hence, using Fatou's lemma, it follows that the

required moment estimate holds for X. The result follows from this as X,

X have the same finite dimensional distributions by the uniqueness part of

the previous theorem. I

We now look at regularity of paths of the solution to (5.2.1).

In order to prove sample continuity of the solution, we impose a stronger

condition than (5.2.9):

= <72|4 < 00 (5.2.43)

for some 0, 0 < θ < 1.

Theorem 5 2.4 Let (Xt) be a solution to (5.2.1). Then (Xt) admits a

continuous modification, which is of course, a solution to (5.2.1).

Proof: Let P be defined by (5.2.17). It suffices to prove that X has a

continuous modification on (Ω,^7, P). Let us write

where Yt = J*Tt-uG(u,Xu)dWu and Zt = J*Tt-uA(u,Xu)du. Clearly,

TtXo(ω) is continuous for all ω. For 0 < s < t < T,

\\Zt-Zs\\2

[\τt-u-Ts_u)A(u,Xu)du+ ί Tt-uA{u,Xu)du
Jo Js
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:_u - Ts-u)A(u, Xu)\\du\ + 2 [ /* \\Tt-uA(u, Xu)\\du]

< 2 \\χu\\2)

I -.2
2

+2

< 2 / T (1+| |X U | | 2 )^ a(s,t) (5.2.44)

by Holder's inequality where

ι.du

It is easy to verify that a(s, t) < β(t - s) where

Clearly (5.2.8) implies β(δ) -+ 0 as δ -> 0. Using (5.2.12), it follows that

lim sup \\Zt - Zs\\2 = 0 a.s.

Thus {Zt} is continuous a.s.
It remains to show that {Yt} admits a continuous modification. We shall

achieve this via the Kolmogorov criterion. Choose p such that (1 — θ)p > 2,
where θ is as in (5.2.43). Recall that by the choice of P, έ | |X 0 | | p < oo and
hence by Theorem 5.2.3, supβ<τI?||-X'β||

p < oo. As before, E stands for the
integral with respect to P. For s <t < T, writing

Yt-Ys= Γ{Tt-u-Ts-u)G(u,Xu)dWu+ [ Tt-uG(u,Xu)dWu
JO Js

and using Theorem 3.3.2, we get

E\\Yt-Ys\\p

||(Γt_tt - Ts.u)G*(u, Xu)\\ldu
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= 2p-1CpE Σ
£

u (5.2.46)

Let us write

and

= Σ

Now

E

< E 2 '

by Holder's inequality and (5.2.38). Similarly, estimating the second term
in (5.2.46), we get

Evaluating the integrals, one obtains

E\\Yt-Ys\\p <

(5.2.47)

Λ*

Now using the obvious inequality l - e a 5 < ί r Λ l < ί c < 5 f o r ί c > 0 , 0 < J < l ,

for δ = ^ = ^ and δ = 1 — θ respectively, we get

E\\Yt-Ys\\p
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Recalling the assumption (5.2.43) and noting that by our choice of p, | ( 1 -
0) > 1, we conclude that

Ys\\p<C2i5\t-s\1+δ (5.2.48)

with 5 = | ( 1 - θ) - 1, where 6*2,5 depends only on p, C2,4 Thus {Y*} has a
continuous modification. I

Now the existence and uniqueness result, Theorem 5.2.2, can be recast
as follows.

Theorem 5.2.5 There exists a continuous solution X to the SDE (5.2.1).
Further, if X! is any other solution to (5.2.1) with continuous paths, then

P(Xt = X't for allt, 0<t<T) = 1.

Our next step is to prove uniqueness in law of solutions to (5.2.1).

Theorem 5.2.6 Let {Xt} be a solution to (5.2.1) [on (Ω, T,P)] and let
{X't) be a solution to (5.2.1) on (Ω', J7', P') with respect to some P'-c.B.m.
on H. Suppose that X, X1 have continuous paths and suppose P o XQ1 =
P'oXo"1. Then

PoX-1 = P'oX-\ (5.2.49)

Proof: Let {X?} be the approximation constructed in the previous theorem
and let {V^} be the approximation defined analogously on (Ωr, T\ P1) (with
X'o in place of Xo and {W't} in place of {Wt} in (5.2.30)). It is easy to see
that the finite dimensional distributions of {X*1} and {V^1} are the same.
Now E\\X? - Xt\\2 -> 0 implies that P(| |X t

n - Xt\\ > δ) -> 0 for all δ > 0.
Similarly, Pf(\\Vp — Xt\\ > δ) —• 0. Thus the finite dimensional distributions
of {Xt} and {X't} are the same. Since X, X1 have continuous paths, this
yields (5.2.49). I

We will now consider the martingale problem corresponding to (5.2.1).
For / e C^(Rn), n > 1. l e t Unf : H -* R be defined by

(Unf)(h) = f{(h, fa), , (h, φn)). (5.2.50)
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For / € C^(Rn), we will write ft = {d/dxi)f and ftά = (d/dxj)ft. Let

V = {Unf : / G C0

2(Rn), n > 1}. (5.2.51)

Define lιt on X> by

L*(ϋn/)(Λ) = lΣl(G*(t,h)φi,G*(t,h)φj)(Unfij)(h)

+ Σ {A(t, h) - λih, φi) (Unfi)(h). (5.2.52)

If {Xt} is a solution to (5.2.1), then we have seen that (5.2.26) holds and
hence it follows that for all g G V,

g(Xt) - g(Xo) - [(Ls9)(Xs)ds (5.2.53)
Jo

is also a martingale. In other words, if {Xt} is a solution to (5.2.1) then
{Xt} is a solution to the {L^-martingale problem. The converse is also true
is proved next.

Theorem 5.2.7 Let (Xt) be a predictable process satisfying (5.2.12) such
that (5.2.52) is a martingale for all g eV. Then on an extension (Ω, JFy P,
Tt) of the stochastic basis (Ω, T, P, Tt) there exists a H-cylindrical Brownian
motion (Wt) such that (a) (Xt) is (Tt)-predictable and (b) (Xt) is a solution
to (5.2.1).

Proof: Using (5.2.52) for g = Unf, f G C^(Rn), we can first conclude that
(< Xtjφi >, 1 < i < n) has a r.c.1.1. modification and then further it has a
continuous modification, (this follows using arguments in Theorem IV 3.6
in [9] and exercise 4.6.3 in [53].) Let us denote the continuous version of
< Xt} φi > by Y\ Then we also deduce that

Mt = Y* - Y$ - f λiYs

ιds - f < A(s, X,), φi > ds
Jo Jo

is a continuous local martingale and that

{M\MΛ = f* {G¥(8tXt)φi1G
m(8,Xs)φj)da.

x ' * Jo

As a consequence, recalling the definition (5.2.27) of τ n , and using (5.2.9)
we have

E sup |M*f < AE ( M * \ Mk) < b2

k{l + n). (5.2.54)
t<τn

 X ' τn
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Let ΛΓt

fe = λ~ 1 / 2 M t

f c . Then using (5.2.9) and (5.2.54) we get

E sup Σ
2

0 m, r —> oo.

Hence iVt = ΣSfeL i ^tΦk 1S a n iί-valued continuous local martingale. Hence

\ : r . j )

Jo

where f,(ω) = L-^2G(s,Xs). Note that

/T | |Λ(α
JO

α;)||lds<oo

in view of the assumption (5.2.9). It follows from Theorem 3.3.5 that on
an extension (Ω, T, JP, JΓt) of (Ω, T', P, J i ) , there exists an iϊ-c.B.m Wt such
that

Nt= ffsdWs.Jo

Then Nt - (JV t l ^) = /0* < X^1/2G*(s1Xs)φkidWs > and hence

?= f (G*{s,Xs)φk,dWs).
Jo

From here, it follows that {Xt} satisfies (5.2.26) and hence {Xt} is a solution
to (5.2.1). I

In the light of Theorem 5.2.5, some of the results concerning the equa-
tion (5.2.1) proved earlier can be recast for the {L^-martingale problem as
follows.

Theorem 5.2.8 (a) Let (Xt) be a predictable process satisfying (5.2.12) and
suppose that (Xt) is a solution to the {Lt}-martingale problem. Then (Xt)
admits a continuous modification.
(b) For all μ e V(H), there exists a continuous process (Xt) such that
(5.2.53) is a martingale for every g £ V and such that the law of XQ is
μ. Further, the law of the process X is uniquely determined.
(c) For 0 < 5 < T, x € H, there is a unique measure PSjX on C([0,T],H)
such that (writing the co-ordinate process on C([0,T],iJ) as ηt),
(i) P9tX(η(u) = x, 0 < u < s) = 1.
(ii) g(ηt) - f*(Lug)(ηu)du, t> s is a Ps ^-martingale.
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(d) Further, (j]t) is a time inhomogeneous Markov process on the probabil-
ity space (Ω',JF',P5>X) (where Ω' is C([O,T],iϊ) and Γ is the Borel σ-field
on Ωf) for each (s,x) G [0,Γ] x H. The (common) transition probability
function P(r, y, t, C) is given by

forr<t<T,yeH, C Borel in H.

Proof: (a), (b) follow from Theorem 5.2.2, 5.2.4, 5.2.5 and 5.2.7. (c) is the
same as (b)-with a change of origin from 0 to 5 in the time variable. For (d),
let us note that if for each n, Cn is a countable dense subset of <7o(Rn) (in
the norm, | | / | | 0 = | |/ | | + Σi \\fi\\ + Σij \\fij\\, II II, being sup norm) then

Vo = {Unf :feCn}

is a countable set and for every g = Unf € V we can get g^ G Vo such that
9k —• 9 and Ltgk —> L t5. Just take g^ = Unfk where fk G Cn approximate
f in || 11 o norm. Hence the Markov property of (ηt) under {PSix} and the
expression for the transition function follow from the uniqueness of solution
to the martingale problem. (See Theorem 6.2.2 in Stroock and Varadhan
[53]) I






