
Chapter 2

Probability measures on
topological spaces

As the duals of nuclear spaces are not metric spaces, to study Φ'-valued ran-
dom variables or Φ'-valued stochastic processes we need to consider proba-
bility measures on general topological spaces. In Section 1 of this chapter,
we first briefly recall some basic concepts about topological spaces. Then
we establish some basic properties of Borel probability measures on general
topological spaces. In Section 2 we study the weak convergence of Borel
probability measures. In Section 3, we restrict ourselves to topological vec-
tor spaces and consider the Bochner functionals corresponding to cylinder
measures. Finally in the last two sections we study two special topologi-
cal spaces: C([0,T],Φ/) and £>([0,T],Φ') and probability measures. These
two spaces will be our primary concern in the study of Φ'-valued stochastic
processes with continuous sample paths and right-continuous sample paths
respectively.

This chapter consists of basic material about probability measures on
general topological vector spaces which we shall need in later chapters. For
more detailed treatments we refer the reader to the books of Bilingsley [2],
Ethier and Kurtz [9], GeFfand and Vilenkin [12], Parthasarathy [43] and Xia
[59]. Most of the material in Sections 4 and 5 is taken from Mitoma [41].

2.1 Probability measures
on topological spaces

In this section we briefly present some basic concepts about topological
spaces and consider probability measures on topological spaces. We shall
study some special properties of the probability measures when the topol-
ogy of the space has extra structure.
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46 CHAPTER 2. PROBABILITY MEASURES

Now we define some special topological spaces.

Definition 2.1.1 A topological space X is Hausdorff ifMx φ y G X, there
exist disjoint open sets G\,GΪ such that x G G\,y G C?2
X is normal if

i) Vcε G X, {x} is closed.

ii) For any disjoint closed sets F\,F2 there exist disjoint open sets G\,G2

such that Fi C G», i = 1,2.

X is completely regular if i) holds and
in) For any closed set F and ceo G Fc there exists f G Cb(X) such that
0 < f(x) < 1 Vz G X, f(x0) = 0 and f\F = 1, where Cb(X) is the collection
of all bounded continuous functions on X.

As we shall see later in this chapter that the topologies of C([0,T],Φ/)
and of D([0,T], Φ7) are given by families of pseudometrics, the following
theorem will be useful in the study of Φ'-valued processes.

Theorem 2.1.1 Suppose that the topology of X is given by a family of pseu-
dometrics {dv : v G Γ}, i.e., its neighborhoods are given by (1.1.3) with
pVj(x - xo) replaced by dVj(x, x0), where dv is a pseudometric if it satisfies
the conditions of a metric (see Theorem 1.1.3 (c)) except that dυ(xι,X2) can
be 0 for X\ φ X2 If the following separating condition holds:

V cci Φ X2 3v G Γ such that dv(xι)X2) > 0, (2.1.1)

then X is a completely regular space.

Proof: Let XQ G X. For any x\ φ XQ, let υ G Γ such that a = dv(xι, XQ) > 0.
Then the neighborhood {x G X : dv(x,xι) < a/2} C {zo}c. This verifies
the condition i) of Definition 2.1.1.

Let F be a closed set and x0 G Fc. As Fc is open, there exists a neigh-
borhood

U = {xeX :dVj(x,x0) < €jj = l , ,w}

of xo such that U C Fc. Let e = min{ej : j = 1, , n} and

d(aϊ,y) = max{dl,i(ίc,y) : j = 1, ,n}, Vx,y G X.

Then
{xeX :d(x,x0) <e}cU CFC.

Let

f{x) = min{l, d(x, xo)/e}.

It is easy to see that / satisfies the condition (iii) of Definition 2.1.1. I
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Corollary 2.1.1 i) Any metric space is completely regular,
ii) Φ' is completely regular.

Now we study Borel measures on topological spaces. Let X be a topo-
logical space and B(X) (resp. Bo(X)) be the σ-field (resp. field) generated
by all open sets. A countably additive, positive, finite (resp. probability)
measure μ on B(X) is called a Borel measure (resp. Borel probability
measure). We denote the collection of all finite positive Borel measures
(resp. Borel probability measures) on X by M(X) (resp. V(X)).

Definition 2.1.2 μ G M(X) is Radon if for any A G B{X)

μ(A) = snp{μ(K) : K is compact and F C A}.

We present in next four theorems the relationship between Borel mea-
sures and bounded linear functionals on Cb(X).

Theorem 2.1.2 Let X be a Hausdorff topological space. Then Cb(X) is a
Banach space with norm

\\f\\=sup{\f(x)\:xeX}.

Proof: It is easy to see that Cb(X) is a TVS and || || is a norm. Let
{/n} C Cb(X) be a Cauchy sequence, i.e., for any e > 0 there exists N such
that

|/n(z) - /m(z)| < € for any n, m > N and x G X. (2.1.2)

Then for any x G X, {/n(^)} is a Cauchy sequence in R and there exists
f{x) G R such that fn(x) -> f{x). By (2.1.2) we have

\fn{x) - f(x)\ < e for any n > N and x e X. (2.1.3)

As /JV is continuous, for any xQ G X there exists a neighborhood U€ of
xo G X such that x G Ue implies

€. (2.1.4)

Hence for any x G Ue we have

\f(x)-f(xo)\
< \f(χ) - Mχ)\ + IΛr(χ) - Λr(*o)| + \fκ(χo) - /(*o)|
< 36.

i.e. / G C(X). The boundedness of / and fn~+f follows from (2.1.3)
directly. I

The proof of the following theorem is routine and we leave it to the
reader.
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Theorem 2.1.3 Let X be a Hausdorff topological space. Then for any μ €
M(X) there exists a unique £ £ Cb(X)' such that
i) £[f] >Oiff£ Ch{X) and f(x) > 0 Vz £ X.

in)

f\Ά = ί f(Φ(dx), V/ G Cb(X). (2.1.5)
J X

Remark 2.1.1 Given ί G Cb(X)', the relation (2.1.5) does not, in general,
determine μ uniquely. The next theorem gives a sufficient condition for the
uniqueness of μ given ί.

Theorem 2.1.4 Let X be a completely regular topological space. If μ and v
are two Radon probability measures such that

ί f{x)μ(dx) = / f(x)u(dx), V/ <Ξ Cb(X), (2.1.6)
J X J X

then μ = v.

Proof: For any compact set K C X and x £ K, let fx G Cb(X) be given by
Definition 2.1.1. Define a net

ΛΞΞ {a= {&i, ,ίεn} : n G N, x3• £ K} 1 < j < n}

whose order is given by set containing. For any a = {xι, , xn} G Λ , let

f a ( x ) = m a x { l - f X j ( x ) :l<j<n}.

Then {/α} C Cb{X) is a nondecreasing net, 0 < fa < 1, fa\κ = 0, fa -* lκc

and

/ Ux)μ(dx) < μ(Kc). (2.1.7)/
J X

On the other hand, for any compact K C Kc and e > 0, we have

K C

and hence, there exist n G N and aj,j = 1,2, , n such that

Kc\J]=1{x:faj{x)>l-e}.

Let α e G Λ be such that a€ > otj} j = 1, 2, , n. Then for any a > α€, we
have

f fa(x)μ(dx) > (l-e)μ(x:f(X(x)>l-€)
J X

> {l-e)μ(\J^1{x:fai(x)>l-e})

> (l-e)μ(K). (2.1.8)
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As K and e are arbitrary, it follows from the Radonness of μ that (2.1.7)
and (2.1.8) imply

μ(Kc) = Urn / fa(x)μ(dx). (2.1.9)

It is obvious that (2.1.9) holds with μ replaced by v. Hence μ(Kc) — i/(Kc)}

i.e., μ{K) = v(K) for any compact subset K of X. By the Radonness again
we have μ = v. I

To prove the converse of Theorem 2.1.3 we need some extra structures
on the topological space X and the following two lemmas.

Lemma 2.1.1 (i) If X is a metric space, then X is normal

(ii) If X is a compact Hausdorff space, then X is normal.

Proof: (i) For any disjoint closed sets F i , F 2 , let

Gi = {x : d{x, Fi) < φ , F3_i)} i = 1,2.

Then (TI,C?2 satisfy the condition (ii) of Definition 2.1.1. The condition i)

of Definition 2.1.1 follows from Theorem 2.1.1.

(ii) Let F b e a closed set and x £ F. For any y £ F there exist two disjoint

open set Gχ]y} i = 1, 2 such that x G Gχ}y and y G Gχ}y. As F is compact,
there exist yi, , yn

 s u c h tha t F C Gx where

Let

Then G\ and G\ are disjoint open sets and x G G\, F C G\.

Let Fχ,F2 be disjoint closed sets. Let Gx,i = 1,2 be given above with

z G Fi and F = F2. As Fi is compact, there exist £i, ,ccm such that

Fi C Gi where

Let

Then G\ and G2 are disjoint open sets and Fi C Gi, F2 C G2. I

Lemma 2.1.2 If X is a normal topological space, then for any disjoint

closed sets F1,F2, there exists f G Cb{X) such that 0 < f(x) < 1 Vz G X

and f\pλ = 0, f\p2 = 1. In particular, X is completely regular.
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Proof: Let Gχj2 and G1/2 be disjoint open sets containing Fι and F2 respec-
tively. Then we have

Fi C G1/2 C Gχ/2 C G\j2, F2 C G1/2

where G1/2 is the closure of Gχi2. Then ί\ and G^,2 are disjoint closed sets,

and F2 and G^ ,2 are disjoint closed sets. There exist open sets G1/4 and
G3/4 such that

Ή C G1/4 C Gχ/4 C G1/2 C G x / 2 C G3/4 C G 3 / 4 C F | .

By induction, there exists a family of open sets

{Gr : r G (0,1), r is dyadic rational}

such that (i) r < s implies G r C Gs and (ii) i*\ C G r , F 2 Π G r = φ. Let
/(a?) = sup{r : x fi Gr} with the convention that the supremum of the
empty set is 0. We only need to verify the continuity of /.

Let a — f(x). If a £ (0,1), then x G G α + e Π G%_η for any small e, η
such that α + e and α - 77 are dyadic rationale. If y e Ga+e Π G^_η then

I/OO-/(y)l <€ + *?•
If a — 0, then aι G G^ for any small dyadic rational 77. If y G G^ then

\f(x) — f{y)\ < ?̂. The case of α = 1 can be verified similarly. I

It is easy to see that continuous function in a compact topological space
is bounded. We shall denote Gj>(X) by C(X) in the following theorem.

Theorem 2.1.5 Let X be a compact Hausdorff topological space. If i G
C(Xy such that £[f] > 0 for any non-negative continuous function f on X,
then there exists a unique μ G Λ4(X) such that μ(X) — ί\\\ and (2.1.5)
holds.

Proof: The uniqueness follows from Theorem 2.1.4. To prove the existence
we define the following set function

μ(F) = inf{i[f] : / G C{X) and / > 1F} for closed F C X

and
μ(A) = sup{μ(F) : F C A closed} for any A C X.

It is easy to see that μ is nondecreasing and μ(0) = 0. Without loss of
generality we assume that p||c(Ji:)' = 1. Now we divide the proof into five
steps:
1° For disjoint closed sets Fι and F2 we have

μ(F1 U F2) = μ(F1) + μ(F2). (2.1.10)
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For any e > 0, there exist fc G C(X) such that ft > lFi and μ(Fi) > £[fi] - c,
i = 1,2. Then f\ + f2 > 1F1UF2

 a n d hence

μ(Fi U F2) < 4/χ + f2] = ί[h] + l[f2] < μ{F!) + μ{F2) + 2e. (2.1.11)

On the other hand, let / G C(X) such that / > lj^uίb a n d KFi u ^2) >
ί[f] — e. It follows from Lemma 2.1.1 and Lemma 2.1.2 that there exists
/o € C{X) such that 0 < f0 < 1, /ol^ = 0 and /0|jτ2 = 1. Then /„/ > 1JP2>

(1 - fo)f > liΓj and hence

(2.1.12)

(2.1.10) then follows from (2.1.11) and (2.1.12).
2° Let

(2.1.13)

Then Q is a field and μ\g is finitely additive.
It is obvious that Q is closed under complementation. Let Bι,B2 G G

and AC X. Then

U B2)) + μ(A(B1 U B2)
c)

U 5 2)B!) + μ{A{Bx U J32)5ί) + μ(A(Bi U B2)
c)

+ μ{AB\B2) + μ{AB\Bc

2)

i.e. B\ I) B2 £ G and hence ^ is a field. Further, if B\ and ̂ 2 a r ^ disjoint,
then

μ(B1 U B2) = μ((B1 U B2)5i) + μ((Bi U B2)B\) =

3° βo(-y) C ̂ .
It follows from 2° that we only need to show that Q contains all closed

sets. Let F be closed and A C X. Then for any e > 0 there exist two disjoint
closed sets FUF2 such that Fλ C AF, F2 C AFC and

μ(AF) < μ(Fi) + e and μ{AFc) < μ(F2) + e.

Therefore

+ μ(F2) + 2e

< μ(A) + 2e. (2.1.14)
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On the other hand, let F 3 C A be a closed set such that μ(A) < μ(.F3) + e.
Let /1 G C{X) be such that

/1 > IFF, and μ(FF3) > £[f{\ - e.

Let / 2 G C(X) be such that

Then for a; G F3, we have either z G {/1 < l-e}Π.F3 or x 6 {/1 > l - e } n F 3

and hence, either /2(x) > 1 or fι(x) > 1 - e. Therefore

Hence

= ( 1 - e)-i

< (1 - e ) " 1 ^ ^ F 3 ) + e) + /x({/i < 1 - e} Π F3) + 2e

< (1 - e)" 1 (μ(FA) + e) + μ((FF3)
cF3) + 2e

1 2e. (2.1.15)

Letting e ̂  0, it follows from (2.1.14), (2.1.15) that

μ(AF)+μ(AFc) =

4° μ is countably additive on BQ(X).

Let {βj} C Bo(X) be a sequence of disjoint sets such that UjBj G BQ{X).

Then

and letting n —> oo

;) > X>(£;) (2-1-16)

It follows from the definition of μ, the finite additivity of μ and μ(X) = 1
that there exists a sequence of open sets Gj containing Bj such that μ{Bj) >
piβi) ~ €2~J, j G N, and a closed (and hence compact) set F C UjBj
such that μ(F) > μ(UjBj) - e. As F C UjGj, there exists n such that
F C U?=1Gj. Hence

jBj) < μ{F) + e

?=i{Gi \ Ufcίft
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< Σ
3=1

< Σ M*;) (2.1.17)

The countable additivity of μ on #0(X) follows from (2.1.16) and (2.1.17).
5° It follows from a theorem in standard measure theory that μ can be
uniquely extended into a countably additive set function on B(X). We still
denote the extension by μ. We only need show

£[f] = ί f(x)μ(dx)
J X

for / <E C(X) such that 0 < / < 1.
For any e > 0, there exist bj 6 (0,1), j = 1,

Bχ, • •, Bn such that

/ > Σ M
3=1

and / f(x)μ(dx) < Σ
J X 3=1

(2.1.18)

, n, and disjoint Borel sets

+

Let Fj C Bj be closed such that μ(Bj) < μ(Fj) + n~1e1j = 1, , n.
Next we prove by induction that there exist fj £ C(X) such that 0 <

/j ^ 1) ΛI-Fi = 1) /jl-Ft = 0 for any 1 < i φ j < n and the sets {x : fj(x) >
0},j = 1, 2, ,n, are disjoint.

The assertion is trivially true for n = 1. Suppose it is true for n. As the
closed sets Fn+χ and U^=1Fj are disjoint, there exist two disjoint open sets
G and G such that Fn+1 C G and U"=1Fj C G. It follows from Lemma 2.1.2
that there exist /n+i,ff G C(-X") s u c h that a) 0 < / n +i, ̂  < 1; b) /n+i|Fn +i =
1, /n +i|σc = 0; c) fif|Fj. = 1 for all 1 < j < n, g\Qc = 0. For 1 < j < n,
replacing /j obtained from the induction assumption by fjg we see that our
claim holds.

Therefore

L
3=1

3=1

2e.
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i.e.

/ f(x)μ(dx) < £[f] (2.1.19)

for / e C(X) such that 0 < / < 1. Replacing / by 1-/, we see that (2.1.19)
becomes an equality, i.e. (2.1.18) holds. I

The following result is well known.

Theorem 2.1.6 Let X be a Polish space and μ £ V(X). Then μ is Radon.

Proof: Let

G=\Be B(X) : μ(B) = sup μ(F) = ψ μ(F) 1 .
[ FcB,F closed BcG,Gopen J

If B eG, then clearly Bc eG lϊ BneG} there exist closed Fn and open Gn

such that F n C Bn C G n and μ(Gn \ Fn) < e2~n, n = 1,2, . Let n 0 such
that

Let G = U™=1Gn and F = U^i^n Then F C U °̂=1jBn C G and

oo

μ(G \F)<Σ μ(Gn \Fn)+μ (U~= 1Fn \ F) < e.
n=l

Hence ^ is a σ-field. For F closed, let G n = {z : d(x, F) < n" 1 } . Then Gn

decreases to F and hence F £ Q. Therefore Q = B(X).
Since X is separable, there exists a countable set {xn} which is dense in

X. Let
Fnk = {x : d(x, xn) < A;"1}, n, k £ N.

Then X - U-= 1Fn f c. As

1 = lim
N-+oo

there exists iV̂  such that

Let

It is easy to see that K is compact. Further,

oo

< £ Tk = e.
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For any B G B(X), there exists a closed set F C B such that μ(B) < μ{F)+e.
Hence F Π K C B is compact and

< μ(F Γ\K) + μ(F Π Kc) + e < μ(F Π K) + 2e.

This proves the Radonness of μ. I

2 2 Weak convergence of probability measures.

In this section, we introduce the weak convergence topology in the space of

Borel probability measures on topological spaces. Then we give a sufficient

condition for a sequence of probability measures to be weakly compact. At

the end of this section, we state and prove a useful representation result due

to Skorohod for weakly convergent sequence of probability measures on a

Polish space.

Definition 2.2.1 Let X be a topological space.

i) A sequence {μn} C V(X) converges weakly to μ G V(X) i/V/ G Cb(X)

lim / f{x)μn(dx) = / f(x)μ(dx).
n-*°° Jx Jx

ϋ) {μ-n} is tight if Me > 0 there exists a compact subset Ke of X such that

μn(Ke) > 1 - 6, Vn > 1.

L e m m a 2.2.1 (Banach-Alaoglu) Let X be a Banach space with dual X'.
The weak*-topology in X1 is defined as the weakest topology such that for
each x G X, the map / G l ' - > f[x] G R is continuous. Then the unit ball
of X1 is compact.

Proof: It follows from Tychonoff's theorem that K = Ylx^χ[—\\x\\} \\x\\] is

a compact subset of R x = l\xeXΈL. Let π : / G X1 -> {f[χ]}χex G R *

and B = πS, where S is the unit ball of X1. Then B is closed in Rx. In

fact, let {{/αMlxex} be a net in B such that fa[x] —> /(z), Vcc G X. Then

\f(x)\ < \\x\\ and, for any a?, y G X} α, b G R we have

f{ax + by) = lim fa[ax + by] = Um(α/α[a;] + bfa[y]) = af{x) + bf{y)}

and hence {f(x)}xex G B.
Further it is easy to see that π is an isomorphism between S and B. As

B C K is compact, we see that 5 is compact. I
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Theorem 2.2.1 Let X be a Hausdorff topological space. If {μn} C V(X) is

tight, then {μn} is relatively compact in the weak topology.

Proof: Let {Km} be an increasing sequence of compact sets of X such that

μn(Km) > 1 - 2" m , Vπ > 1. For each m, let vntm(B) = μn{B) for any

B G B(Km). Then {^n,m}n>i is a sequence of positive measures on AΓm.

By Theorem 2.1.3, {^n,m}n>i can be regarded as a sequence in the unit

ball of C(if m ). It follows from Lemma 2.2.1, the diagonal argument and

Theorem 2.1.5 that there exists a sequence {n^} such that Vra > 1, there is

a positive Borel measure ρ m on Km satisfying: pm(Km) < 1, Pm'^K^) =

pm Vm' > m, and V/ G C(Km),

/ f(x)vnkirn(dx) -> / f(x)pm(dx), as k -> oo. (2.2.1)
J Km J K-m

Note that for any B e B(X) we have

Pm+i(B Π Km+1) > pm+i(B Π Km) = pm(B Π if m ),

and hence Pm(B Π ifm) increases, say to μ(B). It is easy to see that μ

is nondecreasing and μ(0) = 0. It follows from the monotone convergence

theorem that for any disjoint {Bj} C B{X),

μ(\JjBj) = Jim^PrniUjBj Π Km) = J i π ^ ^ P m ( ^ Π

Further

1 > μ(X) = lim Pm(Km) = lim lim vnk>m{Km)
m—> oo m—> oo k—^oo

> lim lim (1 - 2~m) = 1.
m—) oo k—^oo

Therefore μ G V{X). Finally for any / G Cb(X) we have / | K m G
and hence

lim sup /
X

f(x)μnk(dx)- f f(x)μ(dx)
J X

/ f(x)μnk(dx)- ί f(x)μ(dx))
'Km JKm

^ ||/||2

Letting m —> oo we see that {μnk} converges to μ weakly.



2.2. WEAK CONVERGENCE OF PROBABILITY MEASURES. 57

Next we consider weak convergence in Polish spaces. The following the-
orem, due to Prohorov, is the converse of Theorem 2.2.1 for probability-
measures on Polish spaces. We need the following lemma.

Lemma 2.2.2 The following four conditions are equivalent:
i) μ n -* μ weakly.
ii) limsupn_>oo μn{F) < μ(F) for any closed set F.
Hi) liminfn^oo μn(G) > μ{G) for any open set G.
iυ) liπin-̂ oo μn{B) — μ(B) for any B G B{X) such that μ(dB) = 0, where
dB is the boundary of the set B.

Proof: i) =>> ii) Let fm(x) = {md(x,F)} Λ 1 for any m G N, x G X. Then
fm ^ Cb{X) and fm increases to l^c Hence

limsupμn(F) < limsup /(I - fm{x))μn(dx) = /(I - fm(x))μ(dx).

Therefore

limsupμn(F)< lim /(I - frn(x))μ(dx) = μ{F).
n-^oo m-^oo J

It is easy to prove the equivalence of ii) and iii) by taking complements.
That ii)Sziii) implies iv) follows from the inequality

limmf μn(B) > limmf μn{B°) > μ(B°) = μ(B)

n(B) > limsup/xn(JB)

where B° and B are respectively the interior and closure of the set B.
Finally we show that iυ) => i). Let / G Cb(X) be fixed. Note that for

any a < 6,

d{x G X : α < /(s) < 6} C {z G X : /(z) = a or /(a) = 6},

and the set

is countable. For any e > 0, let ri < —1|/|| < r 2 < < rm_i < | |/| | < ̂ m
such that rj ^ D, Vj = 1,2, , m, and rj+i - rj < e, Vj = 1,2, , m - 1.
Then

m-l

f(x)μ(dx) >

m-l
i V—^ / \r ^ /•/ \
Ii TYΊ Λ Ύ* 11 I 1> C 3v ηn . ^ t | / j ι I
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m - l

m - l

+ n ίίSo Σ ri+iMn(^ G X : rj < f(x) < rj+1)

> - € + limsup / f(x)μn(dx).

n—>-oo J X

Therefore

/ f(x)μ(dx) > limsup / f(x)μn(dx). (2.2.2)

Replacing / by | |/ | | — / we have

/ f(x)μ(dx) < lin^inf / f(x)μn(dx).

(i) follows from the last two inequalities. I

Theorem 2.2.2 (Prohorov) ) Let X be a Polish space and let {μn} be a
sequence of relatively compact Borel probability measures on X. Then {μn}
is tight.

Proof: Since X is separable, there exist open spheres 5 i m , 52 m ) of radius
1/ra such that X = UjSjm. First we show that for any m > 1 and η > 0,
there exists k{m) such that

μn (uJiT^m) > 1 - 17, Vπ > 1. (2.2.3)

If (2.2.3) is not true, there exist ra0 > 1 and ry0 > 0, Vfc > 1, Ξn*. > 1 such
that

μnk (uk

j=1Sjmo) < l-7/o, Vfc>l.

As {μn} is relatively compact, we assume that n^ increasing to infinity and
μnk =^ μ in V{X). By Lemma 2.2.2, for any J > 1 we have

< lhninf μnk (yk

j=1Sjmo) < 1 - τ/0.

Letting J -> oo, then

1 = μ(X) < 1 - r/o,

and hence, (2.2.3) holds.
For any e > 0, taking 77 = 2"m€ in (2.2.3), we define

Λ e = I l m =l U j = 1 Ojm.
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Then Ke is compact and for any n > 1

μn(Kt) <
ra=l ra=l

Therefore {μn} is tight. I

Next we present the relationship between converges in distribution and
converges almost surely of random variables. It is easy to see that if (Ω, J7, P)
is a probability space and ξn, ξ are measurable maps from (Ω, F) to (X, B(X))
(i.e., X-valued random variables) such that ξn -*• ξ a.s., then μn -+ μ weakly,
where μn = P ^ ) " 1 and μ = Pξ'1 are probability measures on X. The
following theorem is the converse of the above statement.

Theorem 2.2.3 (Skorohod) Let X be a Polish space and {μn} C V(X)
converges to μ G V(X) weakly. Then there exists a probability space (Ω, JΓ

1 P)
and measurable maps ξn and ξ from (Ω,^7) to (X,B(X)) such that μn =

"1, μ = Pζ'1 and ξn -> ξ almost surely.

Proof: Let Ω = [0,1), T = β([0,1)) and P be the Lebesgue measure. For
any x G X and r > 0, let B(x,r) = {y G X : d(y,x) < r}. We divide the
proof into five steps.
1° Construct a family of partitions of X.

Let {xk} be a countable dense subset of X. For any C G B(X) and r > 0,
let

C[ = C n % r ) and Cr

k+1 = (CΠ B(xk+ur))\Uk

j=zlC
r

3, k > 0.

Then {Cjf }j>i is a partition of C while each of them has a diameter not
larger than 2r.

As for any v G V(X), the set {r G R : v(dB(xk) r)) > 0 for some A G N}
is countable, we can choose a sequence {rm} decreasing to 0 such that

= μn(U%=1\J%sldB(xk,rm)) = Q, Vn > 1. (2.2.4)

For any m € N and (»i, ,im) S Nm we define A^...^ inductively:

Ak^X? and Ail..<mk = (Ail..<m)r
k
m+1, k > 1.

It follows from Lemma 2.2.2 and (2.2.4) that

iJ (2.2.5)
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for any m G N and (ii, , i m ) G N m .
2° Construct a family of partitions of [0,1) related to a probability measure
y (y — μ or μn) on X. Let

J f e = l

If J? . = [α,/3) with /? - a = K ^ i - J , t h e n

« + Σ K ). <* + J > I-

By (2.2.5) and induction, it is easy to see that, for any m G N and (ΐi, , im)
G N m , the left (resp. right) end point of /£n..;m tends to the left (resp. right)
end point of -Γ£...jm, as n —>• oo.

3° Construct random variables f, fi, &» from [0,1) to X.
We choose yiλ...im G -4ir..im if it is non-empty and define

and

•Zm,n(ω) = !/t i—t m ) V?7l > 1, iϋ <

For u; G Ω, ra, & > 1, we have α; G ̂ ...»m k C -^...»m f°Γ some (ii, , ̂ m+fc) G

N m + A : such that A»1...»m+ίί / 0. Then, as y»1...»m+fc,yi1...»m G A^...^, we have

d(^m + f c(u;),Zm(u;)) = ^ y ή . ^ . ^ y ή . . . ^ ) < 2r m - , 0, (2.2.6)

P-a.s. Therefore Zm converges, say to £, a.s. as m —> oo. Similarly we
can prove that for each n, Z n j T n converges to a random variable £ n a.s. as
m —y 00.

Let β G β(X) such that μ(dB) = P(ω : ξ e dB) = 0. For each m € N,
we denote by J m the collection of all (ii, , im) € N m such that Aij...im φ 0,

y i l . . . i m G 5 Then

P(ω : ξ(ω) G B) = lim P(ω : Zm{ω) G B)

= lim P(\jj I? •)= lim

< lim μ(x 6 X : d(x, B) < 2rm)
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It follows from the same argument as in the proof of (2.2.2) that for any
/ € Cb(X)

I f(x)μ(dx) > I f(x)(PCl)(dx), (2.2.7)
X J X

and then by the same argument as in the proof of Lemma 2.2.2 we see that
the above inequality becomes an equality. By Corollary 2.1.1 and Theo-
rem 2.1.6, X is a completely regular space and μ, Pf" 1 are two Radon
measures on X. Hence, by Theorem 2.1.4, μ = Pξ"1. Similar arguments
yield μn = P(ξn)-K
5° ξn —• ξ a.s. as n —» oo.

Let Ω o be the collection of all end points of If- for m G N and
(ii, , i m ) G N m . As Ωo is countable, P ( Ω 0 ) = 0. Let ω £ Ω o be fixed.
Then for any m G N there exists ( i i , , i m ) G N m such t h a t ω in the
interior of I?mmti . It follows from 2° t h a t there exists n m such t h a t n > n m

implies ω in the interior of 1?™..^ a nd hence Zm j n(α;) = Zm(ω). Therefore
for n > rim

d(ξn{ω)yξ{ω)) < d(ξn(ω),Zmin(ω)) + d{Zm(ω),ξ(ω)) < Arm

where the last inequality follows by taking k —• oo in (2.2.6). This shows
that ξn(ω) -+ ξ(ω) a.s. I

2 3 Probability measures
on linear topological vector spaces:
The theorems of Minlos and Sazonov

In this section we study Borel probability measures on duals of linear topo-
logical vector spaces and their characteristic functions which will provide us
with a powerful tool for dealing with some practical problems. Let X be a
Hausdorff TVS with dual space X'.

Definition 2.3.1 A C X' is called a cylinder set associated with
(#i, , xn) if #1, , xn G X and there exists Bn G B(Hn) such that

A = {feX': (/[*!], • , f[xn]) G Bn}. (2.3.1)

We denote it by A £ CXli...iXn. Let C be the collection of all cylinder sets.

It is easy to see that CXlt...iXn C B(X') is a σ-field and C C B{Xf) is a
field. Then σ[C) C B(X'). On the other hand, if X is separable, then for
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any bounded subset B of X (see Definition 1.1.7) there exists a countable
dense subset Bo C B and hence the seminorm qs of X1 can be written as

qβ(f)= sup \f[x]\
χeB0

which is σ(C)-measurable. Therefore σ(C) = #(X')

Definition 2.3.2 yl set function μ defined on C is called a cylinder prob-
ability measure on X1 if for any xli , xn G X, μ\cXlr..tXn is a probability
measure.

From this definition, it is easy to see that any cylinder probability mea-
sure on X' is finitely additive on C.

For any cylinder probability measure μ on X1, we can define its Bochner
functional as follows:

If μ is countably additive, then μ is called the characteristic function of
μ.

From the finite dimensional results, it is easy to see that a cylinder prob-

ability measure μ is uniquely determined by its Bochner functional.

Theorem 2.3.1 F : X —> C is the Bochner functional of a cylinder proba-

bility measure μ iff

i) F(0) = 1.
ii) F is sequentially continuous at 0 G X -
Hi) F is positive definite, i.e. Mn G N, Xj 6 X, otj complex, j = 1,2, , n
we have

n

Σ F(XJ - xk)otjάk > 0.

Proof: The necessity of the conditions follows from the same arguments as

those for the characteristic functions of finite dimensional random variables.

Now let F : X —> C satisfy the conditions i)-iii). For any &i, , xn G X,

let FXli..ΊXn : R n -> C be given by

Then FXli...tXn is a continuous positive definite function in R n with FXli...tXn

(0) = 1. Hence there exists a probability measure ^χ1}...,χn on R n such that
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If A G C can be represented as

A = {feX':(f[χi], -J[χn])eBn}

we prove that

^i,» ,χn(5n) = ^ l . . , V f Λ ( 5 m ) . (2.3.2)

Without loss of generality we assume that t/i, , ym are linearly independent

and there exist djk, 1 < j < n, 1 < k < m such that

, j = 1, , n.

Let π be a linear map from R m to R n given by u = πv such that

). Then

n

 e x P ( * Σ *itti J ^i , ,vm ( ^ )

n m
e x p rΣ*i Σ

( m n \ In

= F ΣΣi*i»*

a n d ( 2 . 3 . 2 ) f o l l o w s i m m e d i a t e l y . F o r e a c h A G C g i v e n b y ( 2 . 3 . 1 ) w e d e f i n e

= uXu...iXn(Bn).

Then μ is a well-defined cylinder probability measure on Xf. It is easy to
see that F — μ. I

Now we consider the countable additivity of cylinder probability mea-

sures on Xf .

Lemma 2.3.1 Let μ be a cylinder probability measure on Xf. μ is countably

additive on C iff for any sequence of cylinder sets {Ak} with union X'} we

have

Σμ(Ak) > 1. (2.3.3)
k
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Proof: The necessity of the condition is obvious. To prove the sufficiency,
we note that if C = UkCk is a decomposition of a cylinder set C into non-
intersecting cylinder sets CΊ,C2, , then X1 can be represented as the dis-
joint union of X1 - C, Ci, ̂ 2, and hence

i.e.
(2.3.4)

It follows from the finite additivity of μ we see that (2.3.4) becomes an
equality. This proves the countable additivity of μ. I

Lemma 2.3.2 Let μ be a cylinder probability measure on X1. If for any
e > 0 there exists a compact subset Ke of X1 such that μ(C) > 1 — e for any
open C G C containing K€, then μ is countably additive on C .

Proof: Let {Ak} be a sequence of cylinder sets with union X'. It follows
from Theorem 2.1.6 that there exists a sequence of open cylinder sets {Ck}
such that Ak C Ck and μ(Ck) < μ{Ak) + e2"k, k > 1. As {Ck} is an open
covering of Ke, there exists AJQ such that {Ck}i<k<ko covers Ke. Therefore

fco fc0

l-*<μ (uiLiCfc) < £ μ{Ck) < Σ μ(Ak) + €,
k=i k=ι

i.e. (2.3.3) holds and hence, μ is countably additive. I

Lemma 2.3.3 Let μ be a cylinder probability measure on X' such that there
exists an inner product < , > μ on X, a constant e such that

\μ{x) - 1| < < x, x >μ +e, Mx G X.

Then for any xι, , xn e X and M > 0 we have

M 2 ) ^ ^ l ϊ ( έ
Proof: It follows from the Chebyshev inequality that
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Of special importance for us is the case when X is a separable Hubert
space and the case when X is the countably Hilbertian nuclear space Φ.
First we consider the case of X = Φ.

Theorem 2.3.2 (Minlos's theorem) A complex-valued function F on Φ
is the characteristic function of a μ £ V(Φ') iff i) F{ϋ) = 1, ii) F is positive
definite, in) F is continuous at 0 in Φ.

Proof: As Φ is a metric space the sequential continuity is equivalent to the
continuity. Hence the necessity of the conditions follows from Theorem 2.3.1.
To prove the sufficiency, let μ be the cylinder probability measure on Φ' given
by F. We only need to prove that μ is countably additive. By the continuity
of F at 0 and a similar argument as in the proof of Lemma 1.3.1, for any
e > 0, there exist p > 0, δ > 0 such that

\F(φ) - 1| < e, Vφ € Φ s.t. \\φ\\p < δ.

As in the finite dimensional case, it can be shown that |-F(< )̂| < F(0) for
any positive definite function F. Hence
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Let q > p be such that the canonical injection L from Φg.to Φ p is Hilbert-
Schmidt. Let M be a constant such that

Define

' : sup \f[φ]\<M).

Then Ke is compact in Φ'. For any A e C contained in (if e ) c , let A be given
by (2.3.1). By Schmidt orthonormalization of {xj}ι<j<m we assume that
{xj}κj<n is an ONS in Φ q . Then

Bnc{ueRn: \u\ > M}.

Otherwise, let u G Bn with \u\ < M. Define / G Φ' by

w

η \ . X , X η ^ Q ) vX

Then / G A and

{ n

^ Uj < φ, Xj >q: φ e Φ, H l̂lg < 1 \ < M,

i.e., / G ife. This contradicts the fact that A is contained in (Ke)c. Hence

AC

It follows from Lemma 2.3.3 that

Hence μ{C) > 1 — 4c for any C £ C containing if€ and the countable addi-
tivity of μ follows from Lemma 2.3.2. I

Next we assume that X is a separable Hubert space and identify X1 with
X by the Riesz representation theorem. In next theorem we consider the
tightness for a sequence of probability measures on X.

Theorem 2.3.3 Let {ej} be a CONS of X. {μn} C V{X) is tight iff

(a) For any N >1,

lim s u p μ n < x £ X : max \ < x.e; > \ > A> = 0
A->oo n I l<i<Nl ' J
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(b) For any δ > 0

lim supμn{£ G X : r^(x) > δ} = 0
iV—κx> n

Proof: "=Φ>" For any e > 0, let Ke be a compact subset of X such that
μn(Ke) > 1 — e for all n > 1. For any N there exists A such that

if€ C I x G X : max I < x, e* > I < A i

and hence (a) holds.
As rjv(cc) is uniformly continuous in x e Ke uniform for N > 1 and

rw(x) —>• 0 as JV —> oo for any a G l . (b) follows easily.
"«Φ=" Let ΛΓ0 = NQ(€, δ) and Ao = A0(e, δ) be such that

supμ n {z £ X : r^ 0(x) > δ} < e
n

and

sup μn \ x e X : max | < z, ê  > | > Ao > < e.
n I l<i<No J

Let x1, x2, , x<s) e X be such that

< zJ', βi > = 0, VI < j < s(δ) and i > No

and for all x G X with maxκ»<jv0 | < z, ê  > | < Ao, we have

JVo-i
min V^ < x - xi, β{ >2< δ2.

Therefore

supμn{\jff1S(xj,2δ)}>l-2e

where 5(aj, δ) is the sphere of radius δ around x. Replacing e and 5 by 2~me
and m " 1 respectively, we define

Then ife is relatively compact in X and for any n > 1, we have

oo oo

< Σ (l - Mn {ujLT )5(^ ) 2m"1)}) < J ] 21—e = 2e.
m=l m=l
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i.e. {μn} is tight. I

The following corollary gives a convenient sufficient condition for the
tightness of a sequence of probability measures on separable Hubert space.
The proof follows easily from Theorem 2.3.3.

Corollary 2.3.1 Let {ej} be a CONS of X and {μn} C V(X). If

sup / r\{x)μn{dx) < oo
n J

and

lim sup / r2

N{x)μn(dx) = 0,

then {μn} is tight.

To study characteristic functions on X we introduce the 5-topology.

Definition 2.3.3 U is said to be an S-neighborhood of 0 G X if there
exists a positive definite self-adjoint nuclear operator S on X such that

U = {xeX :<Sx,x >< 1}.

Theorem 2.3.4 (Sazonov) A complex-valued function F on X is the char-
acteristic function of a μ £ V(X) iff F satisfies the conditions (i), (Hi) of
Theorem 2.3.1 and F is continuous in S-topology.

Proof: "=>-" Let if be a compact subset of X such that μ(Kc) < e. Let
S be the positive definite self-adjoint nuclear operator on X given by the
following quadratic form

< Sx, x >= 6"1 / < x, y > 2 μ(dy).
J K.

Then

\μ{y + h)- β(y)\ < ei<x h> - l μ(dx)

= Sx - cos <x,h >)μ(dx) < sin
< x,h>

μ(dx)

K
, h > 2 μ(dx) + 46 = \Je < Sh, h > +4e <

for h such that < Sh, h >< 1. Hence F is S-continuous.
" V Let {βj} be a CONS of X. For any n > 1, let Jn : R n -^ X be given
by Jnu = Σ"=i Ujej}Vu £ Rn . Define Fn(u) = F{Jnu),u € Rn. It is easy
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to see that Fn is a characteristic function on Rn. Let μn be the probability
measure on R n corresponding to Fn. Let μn = βnO^Jn)'1. Then μn G V(X)
and μn = Fn. Now we prove that {μn} is tight.

Note that, for any N > 1,

lim sup μn < x G X : max I < x, e{ > I < A >
1-»ΌO n L l < z < i ^ J

/2n < u G R n : max \ui\ < A >= lim max μ

= 1. (2.3.5)

On the other hand, for any e > 0, let S€ be a positive definite self-adjoint
nuclear operator on X such that < Sey,y >< 1 implies \F(y) — 1| < e.
Therefore

| F ( y ) - l | < 2 < 5 β y f y > + € f Vy G X.

Hence

v = i

< 2 + e, Vy € X. (2.3.6)

It is clear that for n < N,

μn{x e X : rN(x) > δ} = 0. (2.3.7)

We assume that n > N. It follows from (2.3.6) and Lemma 2.3.3 that

ί
μn{a; G X : rN(x) > δ} = μn I x G X : ^ < a;, βj > 2 >

By (2.3.7) and (2.3.8), we then have

lim sup sup μn{a? G X : r*iv(ίr) > 5} <
N-+00 n - 1

e.

(2.3.8)

(2.3.9)

It follows from (2.3.5), (2.3.9), Theorem 2.3.3 and e is arbitrary that {μn}
is tight.
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Let μ be a cluster point of {μn}? i e. there exists a subsequence {μnk}
converges to μ . It is easy to see that for any x G X

ίnk

μ(x) = lim μnk(x) = lira F ^ < x,eό > eΛ = F(x).

This proves the assertion of Sazonov's theorem. I

Finally we give an example of a Bochner functional which is not a char-
acteristic function.

Example 2.3.1 Let H be an infinite dimensional Hilbert space with norm
|| | |. For any x e H, let F(x) = e2p(- | | | ί c | | 2 ) .

It is clear that F(0) = 1 and F is sequentially continuous at 0 G X. Let
{ξj} be a sequence of i.i.d. random variables with common standard normal
distribution and let {βj} be a CONS of H. For each x G i ϊ , let

3=1

Then, \/n G N, Xj G X, OLJ complex, j = 1, 2, , π we have

n
7 M \Xj — tCfajQίήOiJς

E
n

g«φ(^i))«i

n

= 53
2

> 0.

It follows from Theorem 2.3.1 that F is a Bochner functional on H. Now we
show that F is not continuous in 5-topology. Otherwise x G H —> \\x\\ G R
is continuous in 5-topology and hence, for any e > 0, there exists positive
definite self-adjoint Hilbert-Schmidt operator Qe on H such that ||Q€^|| < 1
implies ||#|| < e. Therefore

\\x\\ < €\\Qex\\ Vx G H.

Hence {Qe)~
X is a bounded linear functional on H and, by Theorem 1.2.3,

the identity map idπ = {Qe)~λQe on H is Hilbert-Schmidt. This contradicts
the fact that H is of infinite dimension. Hence, by Sazonov's theorem F is
not a characteristic function.
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2.4 C([O,T],Φ') and £>([O,T],Φ')

Let X be a topological vector space whose topology is given by a family of
seminorms {|| | |v : υ G Γ}. In this section we fix T > 0 and let C([0,T],X)
(resp. Z?([0, Γ], X) be the collection of all continuous (resp. right continuous
with left limit) maps from [0,Γ] to X.

There is a large class of stochastic processes arising from practical prob-
lems whose sample paths are either continuous or right continuous with left
limits. To study the convergence property for these processes, we need to in-
vestigate the structures of the spaces C([0, T], X) and D([0} T], X) in which
the sample paths of these processes can be regarded as points. In most ap-
plications, X can be chosen as Rn, a Hubert space, a Banach space or the
dual of a countable Hilbertian nuclear space. We shall state the results for
both spaces but leave the proof for the continuous space case to the reader.

Let Λ be the set of strictly increasing continuous maps λ from [0,T] onto
itself such that

7 ( λ ) = sup log
λ(s) - λ(ί)

s-t
< 00.

0<s<t<T

For any v G Γ, let

dv(fi9)= m^ S UP {||/(0 ~ 5f(λ(ί))||v + τ(λ)}, V/, g G

It is easy to see that for any υ G Γ, dυ is a pseudometric on £)([0, T],X).
We define the topology of D([0,T],X) by this family {dv : υ G Γ} of pseu-
dometrics.

Theorem 2.4.1 Lei {/n} C £>([0,T],X) and / G D([0,T],X). Then for
any v G I\ iΛe following statements are equivalent:
a) dv(fn, f)->0, asn^ oo.
6j There exists {λn} C Λ 5ucΛ iΛaί

0<t<T

c) There exists {λn} C Λ such that

SUP ||/«(t)-/(λn(t))ll«+ SUp |λn(t)-t |-*O.
0<ί<T 0<ί<T

Proof: By the definition of dv(fn, /) , there exists {λn} C Λ such that

dv(fnJ)< sup \\ \
0<t<T
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Therefore a) and b) are equivalent. "6) =>• c)" follows from the inequality-

sup |λn(ί) -t\<T max { e ^ > - 1,1 - e~^XnΛ . (2.4.1)

Finally, we prove "c) =»- 6)". Let {λn} be given by c). Then for m > 1, there

exists Nm such that

SUP | | /n( t )-/(λn( t ) ) | | V + SUp |λn(t) - t| < m" 1 , Vπ > Nm.
0<t<T 0<t<T

Let r 0 = 0 and for k > 1

r, = inf {t G (71-1,21 : | |/(t) - f{Tk^)\\v > m" 1 } (2.4.2)

with the convention that the infimum over the empty set is equal to T. As

/ G D([0,T],X) it is easy to see that there exists &o such that r^0 = T.

Denote ( λ n ) " 1 ^ by ηk,n and define μn,m 6 Λ to be piecewise linear on [0,T]

such that μn,m( f̂c,n) = τ~k for all k < fco Note that for k < k0,

lim |τ?fc>n - τk\ = lim \ηk,n - K(Vk,n)\ = 0,
n—> oo n—>oo

and hence

7(μn,m) = maxί log 7 ? f e + 1 ' n " ^ ^ : 0 < k < k0) -+ 0

as n —> oo. Therefore there exists iy"m such that

•y(μn,m)<m-1, Vn>iVm. (2.4.3)

Further for n > Nm

SUp | |/n(t) - f(μn,m(t))\\υ
0<t<T

< SUp | |/n(t)-/(λn(t))ll«+ SUP ||/(λn(ί)) " f(μn,m(t))\\v
0<t<T 0<t<T

< m-χ+ max sup | |/(λn(t)) -

χ max sup (| |/(λn(0) -

< m " 1 + 2 max sup | | / ( t ) - / ( r f c ) | | v < 3 m " 1 . (2.4.4)
0<fc<fc

Let n m = max(iVm, iVm). Without loss of generality, we assume t h a t the
sequence {nm} strictly increases. Let λ n = μn<m for m such t h a t nm <n<
n m + i . Then λ n G Λ and, by (2.4.3) and (2.4.4) we have

sup | |/n(t) - /(λ n (t)) | | v + 7(λn) < 4m
0<ί<T

- 1
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where m —> oo such that n m < n < n m + i . I

Corollary 2.4.1 // fn -+ f in D([0,T],X), then
i) for any continuity point t G [0, Γ] off, fn(t) -» f(t) in X;
ii) for any v G Γ

sup \\fn(t)\\v-+ sup | |/(ί)) | | v inR.
0<t<T 0<t<T

Proof: i) follows from c) of Theorem 2.4.1 directly. For ii), let {λn} be given
by c) of Theorem 2.4.1. Note that

sup \\fn(t)\\v- sup | |/(t) | | t
0<t<T 0<ί<T

sup | |/ n (t) | |v- sup | |/(λn(ί)) | |υ
0<t<T 0<ί<T

< SUp ||/n(t)
0<ί<T

For any v G Γ, let

||/||(»)= sup 11/(4)11,,, V/6C([0,T],I).
0<t<T

It is easy to see that for any υ G Γ, || ||(v) is a seminorm on C([0, Γ], X).
We define the topology of C([0,T],-X") by this family of seminorms.

Theorem 2.4.2 i) C([0,T],X) is a sequentially complete topological vector
space. Further, if X is a (separable) Banach space, then so is C([0,T],X).
ii) D([0, T],X) is sequentially complete. Further, if X is a (separable) Banach
space, then D([0,T],X) is a complete (separable) metric space.

Proof: We only prove the results for D([0, T],X). Let {/n} C £>([0, T\,X) be
a Cauchy sequence. Then Vv G Γ, there exists a strictly increasing sequence
{rik} such that

dv{fnJm) < 2"*-\ Vn,m > nk. (2.4.5)

Let gk = fnk. Then there exists {λ^} C Λ such that

sup ||flfc+i(t) - gk{Wt))\\v + Ί(λk) < 2"fc. (2.4.6)
0<t<T

By (2.4.1) and (2.4.6) we can easily prove that (o denoting composition)

μk(t) = lim (λjfc o λfc+i o o λjfe+n)(i)
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exists uniformly for t G [0,T] and

oo

τ(Mfc) < 5^7(λj) < 2 1" f c. (2.4.7)

By (2.4.6) again, we have

sup \\gk+i(μk+i(t)) - gk(μk(t))\\v
0<t<T

= sup \\9k+1(μk+1(t)) - gk(λk(μk+1(t)))\\v <2~k. (2.4.8)
0<ί<T

Therefore the limit, denoted by #(£), of 9k{μk(t)) exists uniformly for t G

[0,Γ] as A; —• oo and hence g is right continuous with left limit. It follows

from (2.4.7) and (2.4.8) that gk -> g in D([0,T],X). Hence by (2.4.5),

/ n -> 5 in D([0,T],X), i.e., D([0,T],X) is sequentially complete.

If X is a Banach space, then it follows from Theorem 1.1.3 that D([0, T],

X) is a complete metric space. Now suppose that X is separable and let T o

and Xo be countable dense subset of [0, Γ] and X respectively. Let A be the

collection of all functions of the form

where ίo = 0,£n = Γ, {ίjt}i<A:<n C T o is an increasing sequence and
{zk}i<k<n C Xo. Then A is countable. For any / G D([0,T],X), m > 1,
we define 0 = r 0 < τΎ < < τko = T by (2.4.2). Taking t 0 = 0, tko = Γ,
ίj G TQ, 1 < j < A Q, such that 0 < Tj — tj < m " 1 min(ri — r^_i : 1 < i < ko)
and Xj G -X"o, 1 < j < fco? such that | | / ( T J _ I ) - XJ\\ < m " 1 . Let

fm(t) = Xk, te [tfc_i,ίjfe), fc = 1,2, •• ,fc0

and define λ m G Λ to be piecewise linear such that Xm(tj) = Tj, 0 < j < ko.
It is easy to see that / m G A,

7(λm) < log - ^ - r and sup | |/m(t) - /(λm(ί)) | | < 2m"1,
m - 1 o<t<T

i.e. A is dense in D([0,T],X). I

The next two theorems give criteria for the compactness of the subsets

of D([0, TJ, X) and C([0, T], X). First we suppose that X is a Banach space.

To characterize the compact sets of C([0,T],X), we define the following

moduli: Mδ > 0 and / G C([0,T],X)

wf(δ X) = βup{||/(t) - /(s)|| : 5,t e [0,T] and |t - *| < 5}
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To characterize the compact sets of D([0,T],X), we define the following

moduli: V<5 > 0 and / 6 D([0,T],X)

w'f'f(δ;X) = i n f m K βup{||/(t) - /(β)| | : s,t

where the infimum is taken over the finite partitions 0 = to < t\ < <

tn = T,U- ti-ι > ί, i = 1, 2, , π.

Lemma 2.4.1 Let K be a compact subset of X and δ > 0. Define A(K, δ)

to be the collection of f G D([0,T],X) which is of the form f(t) = Xj for

t e [tj-ι, tj), j = 1, , m, where tj - ίj_χ > δ, Xj G K, t0 = 0 and ίm = T.

Then A(K, δ) is relatively compact.

Proof: Let {/n} be a sequence in A(K,δ). As m(/n) < Γ/ί, Vn > 1,
taking a subsequence if necessary, we assume that m(/n) = m for all n > 1.
By a diagonal argument there exists a subsequence {fnk} such that Vj =
1, 2, , m, tj(/nfc) -> *i and ^ ( / n J -^ ^ G K. Since tj(/nfc) - *i-i(/nfc) >
5, we have ίj — ίj_i > ί, Vj = 1, 2, , m. Define / as in the statement of the
lemma and define λnjfc G A to be piecewise linear such that λnfc(tj(/nfc)) =
tjj = 0, l, ,ra. Then

T ( λ n J + sup ||/nfc(t)
0<t<T

< max log

+ imax ιsup{||/nfc(t) - /(λn f c(ί))| | : «,-_!(/„,) < t < t, (/nfc)}

-^ 0, as k —> oo.

i.e. A(K, δ) is relatively compact.

Theorem 2.4.3 Let X be a Banach space. Then

i) A C C([0,T],X) is relatively compact iff

a) There exists a relatively compact subset B of X such that f(t) G B for

anyt£[0,T], f e A,

b) sup{w/((S; X) : / G A} as δ -• 0+.

π^ A C D([0,T],X) zs relatively compact iff

a) There exists a relatively compact subset B of X such that f(t) G B for

anyte [0,Γ], f e A,
b) sup{τί^(ί; X) : / G A} as δ -> 0+.

Proof: ii) "<Φ=" For any m G N, let 5m > 0 be such that
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Let K — B and Am = A(K,δm). Then by Lemma 2.4.1, Am is relatively
compact in D([0,T],X). For any / 6 A, there exists a partition 0 = ίo <
t1< -<tn = T such that U -U-i > Sm and \\f(t) - f(s)\\ < 2m,-1, Vs, t €
[U-i,U),i = 1,2, ,n. Define/(*) = /(ί;_i)forί € [*i_i,*<),i = 1,2, ,n.
Then for any f ζ. A we have / £ -A

- 1<*(/,/)< sup | | / ( i ) - / ( ί ) | | < 2 m
0<ί<T

Therefore A C n~= 1{/ G £>([0, Γ], X) : d(/, Am) < 2m"1} which is compact
and hence, A is relatively compact.
"=>w a) Let

ΰ = {a ;Gl :a ; = /(ί) ora; = /(ί-) for some t € [0, Γ] and / G A}.

For any sequence {xn} in JB, we have xn = fn(tn) or xn = fn(tn-) for some
£n G [0,T] and /n G A. We may assume xn = /n(ίn) Otherwise we only
need to replace xn by yn = fn(sn) for some sn < ίn to be sufficiently close
to tn. By the compactness of [0, T] and A, without loss of generality we may
assume that there exist t G [0,Γ], / G D([0,T],X) such that tn -> t and
/n —> /. By Theorem 2.4.1, there exists {λn} C Λ such that

P \\fn(s)-f(Xn(s))\\+ SUP |λn(5) - s\ -> 0.
0<s<T 0<s<T

Note that since

\\Xn-f(t)\\Λ\\xn-f(t-)\\

< SUp ||/n(β)-/(λn(*))ll
0<s<T

+||/(λn(ίn)) - /(t)| | Λ | |/(λn(ίn)) - / ( ί - ) | | - 0, (2.4.9)

{xn} has either f(t) or /(ί-) as a cluster point. Therefore B is relatively
compact in X.
b) If b) is not satisfied, there exist βo > 0, fn G A, δn —• 0 such that
t(Λ (5n;X) > €o Without loss of generality, we assume that fn converges to
some / in D([0,T],X). Let τk be defined by (2.4.2) with m" 1 replaced by
€0/4. Then 0 = r0 < τ\ < < rfc0 = T is a partition of [0,T]. For any n
sufficiently large such that δn < min{τfc - Tk-\ : k = 1,2, , &o} we have

60 < w/ n (5 n ;*)< max sup{| |/n(έ)-/n(s)| | :s,ί G [τχ.-i

Therefore there exist an integer k} a subsequence {/nj } of {/n} and two
convergent sequences {tnj}, {snj} C [τjt-i,rjt) such that
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It follows from (2.4.9) that there exist s}t G [Tfc_i,Tfc],;£ = f(s-) or /(s),
y = f(t~) or /(ί) such that x,y φ f(τk) and H / n , ^ ) - / ^ K ) | | -+ | | s -y | | .
Hence \\x - y\\ > 3€0/4. On the other hand, by the definition of r*., we have
\\χ — y\\ < 6o/2. This contradiction verifies that b) holds. I

Corollary 2.4.2 Let X, Y be two Banach spaces and let g : X —> Y be a
continuous map vanishing in a neighborhood of 0 G X. Then the map G
from D([0,T],X) to JD([O,T],y) given by

) (2.4.10)
s<t

is continuous, where Δ/(s) = f(s) — f(s-).

Proof: Let fn converge to / in D([0,T],X). As the set {r > 0 : Ξί G [0,T]
s.t. | |Δ/( t ) | | = r} is countable and g vanishes in a neighborhood of 0, g
vanishes in {x G X : \\x\\ < r} for some r > 0 and the set {t G [0,Γ] :
| |Δ/( t ) | | = r} is empty. For any /ι G J5([0,T],X), it is easy to see that the
set {t G [0,Γ] : ||ΔΛ(t)|| > r} contains only finitely many elements and we
denote it by

Jh = {^(h) < t\h) < < t

As a consequence, Gf in (2.4.10) is a well-defined element in D([0,T], Y).
Let {λn} C Λ be such that

sup | | / n (t) - /(λn(t)) | | + sup |λn(t) - ί| ^ 0. (2.4.11)
0<t<T 0<i<T

First we prove that there exists δ > 0 such that

- t^ifn) > δ, Vn > 1 and 1 < j < m ( / n ) . (2.4.12)

If (2.4.12) does not hold, then for some n^, 2 < jk < ^{fπk) such that
ίJ fc(/nfc) —ί J f c~1(/n f c) < A;"1 for A; > 1. Then for any partition in the definition
of w'r ( A J " 1 , ^ ) , there exists j (equals to jk or jk — 1) such that ί J(/n f c) is
in the interior of one of the partition subintervals and hence

w'fnk(k-\X)>\\Afnk(ti(fnk))\\>r.

By Theorem 2.4.3, the above inequality contradicts the fact that {/n}n>i is
relatively compact. Therefore (2.4.12) holds.

For 1 < j < m(/), as

<2 sup \\fn{X-^t))-f(t)\\-,0 (2.4.13)
0<ί<T
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we see that there exists nj such that λ~1(ί J(/)) 6 J/n, Vn > rtj. As a
consequence of (2.4.12) and (2.4.13), there exists N such that m(/n) > m(/),
Vn> N.

Proceeding similarly we have that for any 1 < j < rn(f)

liminf | |Δ/(λ n (ί '(/ n ))) | | = liminf | |Δ/ n ( ί J (/ n )) | | > r. (2.4.14)

If we have a subsequence Πk such that λn f c(ίJ(/n f c)) decreases (or increases)
to £, it is easy to see that Af(λnk(P(fnk))) —• 0 which contradicts (2.4.14).
Therefore there exist rtj and t such that λn(ί J f(/n)) = t for all n > rij. By
(2.4.14) again we see that t E «//. Therefore the collection of all cluster
points of the set {mJ(/n) : 1 < j < m(/), n > 1} is contained in Jf.

Based on the facts obtained above, it is easy to see that for sufficiently
large n, m(/n) = m(/) and

tJ(fn) - t\f) and Δ/n(f"(/n)) -> Δ/(f"(/)) f 1 < j < m(/). (2.4.15)

The conclusion of the corollary follows immediately from (2.4.15). I

Next, we consider the case of X = Φ', the dual of a CHNS. To charac-
terize the compact sets of C([0, T], Φ'), we define the following moduli:
(a) For any / € C([0, T], Φ')> φ e Φ, δ > 0, let W / ( ί , ^) = wfi.)[φ](δ;, R).
(b) For any / € C([0, T], Φ_p), ί > 0, let ^ ( ί . p ) = wf(δ; Φ_p).
(c) For any / £ C([0, T], R), δ > 0, let W / ( ί ) = «;/(*; R).

To characterize the compact sets of D([0, T], Φ^, we define the following
moduli:
(a) For any / € D([0, T], Φ'), φ € Φ, δ > 0, let ti ̂ ί , «̂») = rv'f{.)[φ](δ; R).

(b) For any / € D([0,T],Φ.p), δ > 0, let w'f(δ,p) = w'/ί Φ-p).
(c) For any / G D([0, Γ], R), ί > 0, let w'f(δ) = w'f(δ; R).

The next two results, due to Mitoma [41], will be used extensively in the
rest of this book.

Theorem 2.4.4 (Mitoma) The following statements are equivalent:
a) A is relatively compact in D([0,T],Φ') (resp. C([O,TJ,Φ')).
b) For any φ G Φ, {/(•)[<£] : / € A} is relatively compact in D([0,Tj,Έi)
(resp. C([0,T],ΈL)).
c) There exists p e N such that A is relatively compact in D([0, T], Φ_p)
(resp. C([0,T],Φ_p)Λ

Proof: For φ £ Φ, it is easy to see that the map Wφ : Z?([0,T],Φ') —»
D([0,T],R) is continuous. Also the canonical injection from D([0,T],Φ_p)
to £)([0,T],Φ/) is continuous. Therefore (c) =^ (α) =̂> (6) follows immedi-
ately. Now we show that (b) => (c).
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Applying Theorem 2.4.3 to the relatively compact set {f(-)[φ] : f G A}
with X = R, we have

V(φ) = sup sup \f(t)[φ]\ < oo, Mφ € Φ.
feAo<t<τ

It is easy to verify that V satisfies the conditions of Lemma 1.3.1 and hence,

there exist θ > 0 and r > 0 such that

V{φ) < θ\\φ\\r, Vφ e Φ.

By the nuclearity of Φ, there exist q > p > r such that the canonical injec-
tions Φq -> Φ p -^ Φ r are Hilbert-Schmidt. Let {φ, {<ή} C Φ be CONS' of
Φ p and Φq respectively. Define

and B=

3 \ 3

Then B C Φ_ p and B is compact in Φ_ q . Note that

< Σ S U P S U P
j feAo<t<τ

i.e., f{t) 6 B, Vt G [0,Γ], / G A, and hence A satisfies the first condition of

Theorem 2.4.3 ii).

On the other hand, for j > 1, note that

lim sup tyy(ί, φqλ = 0

and
sup

feA ' ' "' /eAo<t<τ

is summable. Hence, by the dominated convergence theorem,

lim suptι;^(5, q)2 < lim y^suptt;^(^, ψ?)2

= V lim Buptϋ /

f(ί,^) = O. (2.4.16)

Therefore A C D([0, Γ], Φ_g) and by Theorem 2.4.3, A is relatively compact
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2.5 Probability measures on £>([0, T], Φ')

In this section, we study the weak compactness for sequences of Borel prob-
ability measures on C([0,T],Φ') and D([0,T], Φ') We need the following
lemma.

Lemma 2.5.1 Let {μn} C P(D([0,T],Φ')) be such that for any φ G Φ,
{μn^φ1} is tight in V(C([0,T]} R)). Then for any e > 0 there exist p G N,
M > 0 such that

μJ/GU([0,T],Φ'): sup ||/(ί)||-P < M) > 1 - 6, Vn > 1. (2.5.1)
I *G[0,T] J

Proof: Let * = D([0,T],ΦO and

It is easy to verify that V satisfies the conditions (1), (2) and the first half
of (3) in Lemma 1.3.1. To apply that lemma we only need to show that
V{m~1φ) —> 0 as ra —> oo for any φ G Φ. It follows from the tightness of

1} and Theorem 2.4.3 that V77 > 0, there exists 771(77) such that

μn \f G £>([0,Γ],ΦO : sup \f(t)[φ]\ <

Hence for any m > m(η) we have

> 1 - 7?, Vn > 1.

= sup

suP t

n > i
Ί s u p

Therefore V^m"-1 *̂) - ^ O a s m ^ o o . It follows from Lemma 1.3.1 that V is
continuous in Φ. Hence for any η > 0 there exist r G N, 5 > 0 such that

V(^) < 77, V^>GΦ such that ||<£||r < δ.

Then for ||<£||r < δ we have

1 - ê WM μn(#) < sup ,fημn if : sup |/(ί)M| <
>l I t

/ susup / sup
n > l
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+ sup 2μn
n>l

: sup \f(t)[φ]\
t

V{φ)<

Therefore for any φ € Φ, we have

/sup / sup
n > l JAT t

1 - e μn(df) < 2\\Φ\\

Let p > r be such that the canonical injection from Φp to Φr is Hilbert-
Schmidt. It follows from similar arguments as in the proof of Lemma 2.3.3
that Vn > 1

> —^—- lim / / su

lim / sup

sup

JΈL

1-exp x/(t)

1 - exp I i

:—- lim / sup
— 1 d->oo Jx t

l - e x p -

-exp(- S U p | | / ( t ) | | 2 _ p /2M 2 ) )

> μn\feD([O,T],Φ'): sup | |/(t)| |-P > Λfl.

For any e > 0, taking M and η such that

μn(df)

€ =
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we see that (2.5.1) holds. I

Theorem 2.5.1 (Mitoma) Let {μn} be a sequence in V(D([0)T]JΦ
/))

(resp. V(C([0,Ίf\,Φ'))) such that, for any φ G Φ, {μn^φ1}, as a sequence
of Borel probability measures on D([0,T],R) (resp. C([0,T], ΈL)), is tight.
Then {μn} is tight in L>([0,T],Φ/) (resp. C([0,T], Φ')J.

Proof: Let €, p and M be the same as those in Lemma 2.5.1. Let q > p
be such that the canonical injection from Φ g to Φ p is Hilbert-Schmidt. Let
{φqj} be a CONS of Φ g . Define

C e = ( / G D ( [ 0 , Γ ] , Φ O : sup | | ( ) p
[ 0<ί<T J

and

Be = {xe Φ-q : \\x\\-p < M}.

It is easy to see that Ce G #(I>([0,T],Φ')) and B€ is a compact subset of
Φ-q. Further, by the same arguments as in the proof of Theorem 2.4.4 we
haveC eCjD([O,T],Φ_,).

For j > 1, it follows from the tightness of {μnπ7q} that for any e > 0
φj

there exists a compact subset Kj of JD([0, T], R) such that

Letting

K* = σn (n?=1π^κή c D([o,τ],Φ.q)

we have
lim sup w'Λ8,φqλ < lim sup w' (δ) = 0

and

It follows from similar argument as in (2.4.16) that

lim sup w'Jδ,q) = 0
s^° feκ<

and hence Ke is relatively compact in D([0,T],Φ-q). Further,



2.5. PROBABILITY MEASURES ON D([0, T], Φ') 83

As the canonical map from £)([0,Γ], Φ-g) to J D ( [ 0 , T ] , Φ ' ) is continuous, we
see that Ke is relatively compact in D([0,T],Φ/) and hence {μn} is tight. I

T h e o r e m 2.5.2 Let {μn} be a sequence of Borel probability measures on
£>([0,T],Φ') (resp. C([0,T],Φ')Λ Let q > p be such that the canonical
injection from Φ_ p to Φ_ g is Hilbert-Schmidt. Suppose that

a) Mφ G Φ, {μnKφ 1}> a s °> sequence of Borel probability measures on D([0, Γ],
R) (resp. on D([0,Γ],R)^ is tight.
b) For any e > 0 there exists a constant M such that Vn > 1

M/GD([0,T],Φ'): sup ||/(t)| |_p < M1 > 1 - e.
{ o<t<τ J

Then {μn}, regarded as a sequence of Borel probability measures on Z)([0,T],
Φ_ g) (resp. C([0,T],Φ_ ς);, is tight.

Proof: Let Ke be given as in the proof of the last theorem. Then Ke is
relatively compact in -D([0, Γ], Φ- g) while q does not depend on e under our
present assumption b). We only need to show that {μn} can be regarded as
a sequence of Borel probability measures on JD([0,T],Φ_g). It follows from
the same argument as in the proof of (2.4.16) that the identity map from Ke

(with the restricted topology of D([0, T], Φ7)) to DflO, Γ], Φ_q) is continuous.
For each B G B(D([0,T], Φ_q)) we have B Π Ke G £(£>([0,T], Φ')). Define
βn(B) as the limit of μn(B Π Ke) as e -» 0. Then μn G V(D([0,T],Φ-q))
and μn(B) = μn{B) for any B G β(D([0,T], Φ^) Πβ(B([0,T], Φ_ g)). There-
fore {μn} can be regarded as a sequence of Borel probability measures on

z?([o,r],Φ_g). I






