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Abstract

Consider / populations and suppose that the goal is esti-
mation of some function of parameters from these populations.
Furthermore, a fixed total number of observations can be taken,
and the problem is to decide how to allocate this total among
the / populations. Some general discussion of this problem is
given, then the problem is specialized to dichotomous popula-
tions and estimating the product of success probabilities. A
Bayesian approach is taken using a family of scaled squared
error loss functions for estimation. The best nonrandom alloca-
tion and the myopic allocation are derived, and references for
the optimal allocation are given. The myopic allocation suggests
a simple adaptive rule that is appropriate for all losses in the
scaled family, and the limiting properties of this adaptive rule
are noted.

l Introduction. Consider / populations, and suppose that the
goal is estimation of some function of parameters from these / popula-
tions. A fixed number of observations can be taken, and the problem
is to decide how many observations to take from each population or
how to allocate the total number of observations available. Since the
goal is estimation, the allocation decision is typically made to minimize
the variance or Bayes risk of a selected estimator. An early example
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of such a problem along with its solution (in the survey sampling area)
is the allocation of observations among strata to minimize the variance
of the stratified sample mean. The optimal allocation assigns numbers
proportional to the subpopulation standard deviations and is called
Neyman allocation [see Cochran (1977)]. Of course, the problem with
implementing Neyman allocation and many optimal allocation schemes
is that they depend on unknown population parameters. Thus, the need
for adaptive or sequential allocation is obvious.

Allocation with estimation goals as described above has different
properties from allocation for testing, or best treatment assignment
goals. In these later cases, the limiting proportion assigned to the best
treatment is desired to be 1.0, with other treatments receiving 0.0 in the
limit. However, an 'adaptive' Neyman allocation for estimation should
produce limiting allocation proportions equal to the population stan-
dard deviations, and any allocation scheme giving a limiting proportion
of 1.0 or 0.0 would be sub-optimal.

Often estimated functions of population parameters are the differ-
ence in two means and linear combinations of means. In both cases,
if allocation is done to minimize the variance of the same function of
sample means, then Neyman allocation (allocation proportional to pop-
ulation standard deviation) is again optimal. An adaptive approach to
estimating the difference is considered by Kelley (1977). Bayesian se-
quential methods for estimating linear combinations are considered by
Louis (1975) and Page Shapiro (1982), among others.

Another function of population means that has broad engineering
applications is the product of means. Allocation for estimating a prod-
uct has been studied by Berry (1977), Page Shapiro (1985), Page (1987)
and Noble (1992), among others. If allocation is done to minimize
the first order approximation of the variance of the product of sample
means, then the 'optimal' allocation is proportional to population co-
efficients of variation. As with Neyman allocation, this coefficient of
variation allocation typically depends on unknown population param-
eters, and adaptive procedures are needed. Two stage procedures have
been studied by Noble (1992), and a Bayesian sequential approach is
considered by Page Shapiro (1985).

In this paper, a Bayesian approach to estimation of the product of

success probabilities is considered using a family of scaled squared error

loss functions. The product of success probabilities can be interpreted

Γ as the probability that a series system functions, and this is a major

application of estimation of products. For this problem, the best non-
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random allocation is found, myopic allocation rules are derived, and
limiting properties of myopic and optimal rules are given. The limiting
form of the myopic rule suggests an easily used adaptive rule, and this
rule's performance is noted.

2. Bayesian preliminaries. For i = 1, . . . , / , suppose that
given pi, Xn, . . . , Xim are independent identically distributed Bernoulli
random variables. Also, assume that given the p^'s, Λy, and Xrk are
independent when i φ r (from different populations). The goal is es-
timation of θ = Ylpi under a member of the family of scaled squared
error loss functions:

(1)

n

where qι = 1 — Pi. This family includes the usual squared error loss

at ti = S{ = 0, and also includes ratio loss, L (θ,θ) = (θ/θ — 1 j , at
ί. = - 2 , Si = 0.

Results will be obtained for squared error loss, then generalized to
any member of the family (1). Results for ratio loss will be specially
noted.

Assume independent natural conjugate beta prior distributions for
the success probabilities: pi are distributed beta (α i o,6 i o). Dropping
the subscripts, the density function for p is given by

0 < p < l , α > 0 , 6 > 0 .
Γ(o)Γ(6)

Aposteriori, the p^s have independent beta {aimi)bimi) distributions,
where aiπii = aio + Σφti X%j, hrm = ho + ™>i ~ Σ ^ i X iy Furthermore,
assume that aio + £» > 0, and bio + Si > 0, so that there are no problems
with integrability. The aposteriori independence is inherited from the
apriori independence when the Xi's are conditionally independent. This
simplifies loss computations. The case of dependent priors has not been
studied, but promises to be an interesting problem.

Loss functions of the form (1) combine easily with the beta prior
distributions, making generalization from squared error to the family
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(1) very easy. If work is done using scaled squared error loss and prior
distributions above, the same results can be obtained using squared
error loss and modified parameters, α;o + ΐ;, bio + S;, in the prior dis-
tributions. Thus, while squared error and ratio loss initially look very
different, results under each only differ by the effect of a factor of p^2

in the zth prior distribution. In general, properties of estimators and
allocation rules under different losses in the family (1) will differ 'as
much as' the parameters in the beta prior distributions influence the
results. The asymptotic results are the same for all losses in (1), given
integrability.

There are loss functions of interest which do not have form (1). One

example is standardized loss: (θ — θ) / {θ (1 — θ)}. The techniques
used in this paper do not work for this loss.

The Bayes estimator of θ is not sensitive to the allocation, and
letting Em (•) denote expectation given observations up to stage m, the
Bayes estimator under squared error loss is given by θ = Πi=iPί> where
pi = Em (p^ = aim/ (aiπι + bim). For loss functions in the family (1),

. . aim

Pi —
Em (p?q?) a™ + h™ + *• + Si

For ratio loss, pi = (aim — 2) / (aim — 2 + bim). Note that the results for
loss in family (1) are obtained from the squared error results by simply
changing aim to aim +1{ and bim to bim + s{.

Finally, for use in the next section, an expression for the posterior
expected loss and Bayes risk using the Bayes estimator are derived for
squared error loss. The posterior expected loss, given information up
through stage m = Σmi and using the Bayes estimator of θ, is

(2)

V (m) = Π Em U) - Π (Em (Pi)f
ί=l v ' i=\

It is convenient to express this posterior expected loss in the form

(3)

L*(m) = .Π£m(ί\2)-.Π
E

m —I- π
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This identity can be confirmed by direct computation. In the case
where the m* are not random, the Bayes risk is equal to E (L* (m)),
the expectation of (3) over the data, and is given by

(4)

E(L'fyn))=
bi

)

J

This follows from expression (3), the independence across populations
and the nonrandomness of the sample sizes. It is important to note that
(4) holds for nonrandom allocation of m = Σrrii observations, and is
not appropriate for sequential or adaptive procedures.

3. Allocation rules. In this section, the optimal nonrandom
allocation rule is derived in 3.1, the myopic sequential allocation rule is
derived in 3.2 and references for the optimal sequential allocation rule
are given in 3.3. Derivation and results are first done for squared error,
then the obvious generalization to other loss functions of form (1) is
noted.

In all cases, a fixed total number of observations denoted by k is
to be allocated. The vector m = (mi, . . . , rrij) gives the number al-
located to populations 1,2, . . . , / , respectively, at stage m < k, and is
constrained by Σf= 1 rrii = m,m <k.

3.1 The optimal nonrandom allocation. Nonrandom allocation rules
are simply rules that give the number of observations to take from each
population before any data is obtained. The rules are not sequential
and are not data dependent. Outside the Bayesian framework, optimal
nonrandom allocation rules typically depend on unknown parameters,
and thus are often used to suggest an adaptive version of the 'optimal'
allocation. Within the Bayesian framework, the optimal nonrandom
allocation rule is derived by finding the allocation that minimizes the
Bayes risk (over all nonrandom allocations). This is a straightforward
minimization problem, and the answer (optimal allocation) depends on
the prior distribution and involves prior expectations of success proba-
bilities and their squares.
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Recall that a total of k observations will be allocated, and let ki be
the number allocated to population i, i = 1, . . . , J and where k = ]Γ ki.
Now express (4), the Bayes risk, at the A th (final) stage: E (L* (k)).
Treating the fc 's as continuous variables and minimizing E (L* (k)) un-
der the constraint that £f= 1 ki = k yields the following allocation:

(5)

ki + aio + bio is proportional to | J5 (p

Evaluating these expectations for squared error loss yields the allocation

(6)

ki + aio + bio proportional to {bio/ (aio + l ) p .

From (6), the optimal nonrandom allocation under the general scaled
squared error loss is

ki + aio + U + bio + Si proportional to {{bio + Si) / (aio + U + l ) p .

The optimal nonrandom allocation for ratio loss is ki + a,iO — 2 + biO

proportional to {(bio/ (aio - 2 + bio))}1 -
Note that the best nonrandom allocation is totally dependent on

the choice of prior parameters. The ki notation will always refer to the
nonrandom allocation of k, the total number of available observations.

3.2 Myopic allocation rules. The myopic or one-step-ahead alloca-
tion rules are purely sequential in that at each stage (beginning with
stage 1), a decision is made about where to take the next observation,
and that decision will be to take the action (observe from the popu-
lation) that minimizes the posterior expected loss for the next stage
given present information.

The tractable form of the posterior expected loss (3) allows the
actual computation of myopic rules for this case. The derivation goes
as follows. Recall that m represents an "intermediate" stage and that
a total number of k observations are to be allocated. Let e; be an
/-dimensional vector with 1 in the ith component, and 0 in all other
components. For example, e2 = (0,1,0, . . . , 0). Consider L* (m + e»)
as the posterior expected loss using the Bayes estimator when the next
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observation (at stage m + 1) is taken from population i. Then the
expectation of squared error loss given information up to stage m is

(7)

Em (IS (m + a)) = V (m) - Π [Em (pi)]2 Bm (i,

where the score functions Bm ( , •) are defined by

(8)

i + aio + bio) (mi + aio + bio + 1)

(ai

The myopic procedure takes an observation from population i at
stage m + 1 if Em (L* (m + ê )) < Em (L* (m + e,)) for all j not equal
to ij with ties broken arbitrarily. That is, observe from the population
where the loss using this additional observation is expected to be lowest
at the next stage given present information. Using the expression in
(7), the myopic allocation will take an observation from the population
with the highest score function Bm (j,rrij).

Note that if an observation is taken from population i at stage m,
then only its score function, Bm+ι (i,rrii) is affected; the other score
functions are the same for the next stage, Bm+ι (j,rrij) = Bm (j,rrij).
Furthermore, the numerators of these score functions converge almost
surely as the number of stages tends to infinity. These properties give
the limiting behavior (as the number of stages tends to infinity) of
myopic allocation as described in Section 4.

For loss (1) the myopic allocation maximizes score function

(bim + Si) I (aim + U)

bio + rrii + ti + Si)2'

whereas ratio loss maximizes score function
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3.3. Optimal allocation rules. Since the total number of observa-
tions to be allocated is fixed at k, and Bayesian procedures have a
Markov property, the technique of dynamic programming or backward
induction can be used to derive the optimal allocation rule. The re-
cursive equations needed to define the optimal allocation will not be
presented here, but the general set-up can be found in Page Shapiro
(1985), and specific equations for / = 2 can be found in Hardwick
and Stout (1992). In the past, even computer implementation of such
solutions has been difficult to impossible. However, that situation is
changing with improved computers, and Hardwick and Stout (1992) are
presently implementing these dynamic programming solutions for the
case of square error loss. Still, even with implementation, the deriva-
tion of properties of rules obtained in this way is difficult. However,
when the optimal rule is known and its Bayes risk can be computed
for small to moderate sample sizes, then its risk can be compared with
risks of simpler adaptive rules, and the moderate sample size perfor-
mance of such rules can then be evaluated. Hence, exact computation
of the optimal Bayes risk is very important, and there is a wealth of
problems needing this computation.

4. Limiting behavior and comparisons.
4.. 1. Limiting behavior. Myopic allocation is defined in terms of score

functions Bm {i^mi)) and the numerator of these score functions tends

almost surely to g»/pi, which implies that the limiting score functions

tend almost surely to the square root of the odds of failure, (qi/pi) .

The limiting form of the Bayes risk can also be derived for myopic

allocation:

(9)

lim kE (L* (k)) = θ2

Furthermore, the limiting form of the Bayes risk for the optimal allo-
cation can be shown to satisfy (9), so that the myopic rule and other
rules with this same limit (9) are asymptotically optimal.
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The results suggest a natural adaptive rule: allocate to get the num-
ber from each population proportional, in the limit, to the square root
of the odds failure. The odds ratio would be estimated at each stage,
and allocation carried out using the estimates. It can be shown that
such allocations have the same limiting risk as the optimal allocation,
and are thus, asymptotically optimal. For details in a general setting,
see Page Shapiro (1985).

4..2. Comparisons. The easiest rule to implement is the nonran-
dom allocation rule described in Section 3.1. However, this rule is
totally prior dependent and nonadaptive, and thus, the most sensitive
to the prior distributions. The optimal rule requires dynamic program-
ming, and is just beginning to seem tractable for a small number of
populations. The most attractive of the three rules on the basis of im-
plementation is the myopic rule, or its suggested adaptive form which
allocates proportional to updated estimates of the square root of the
odds of failure.

The myopic rule and its adaptive version are asymptotically opti-
mal, but the question of 'how optimal' they are for small and moderate
sample sizes remains. Of course, any answer will depend on the prior
parameters to some extend, and thus will also depend on the loss chose
from the family (1). Recent work of Hardwick and Stout (1992) for
squared error loss, and / = 2, suggests that the procedures are indeed
very good. For sample sizes as low as 20, they have found Bayes risks
for optimal and myopic are within 1% of each other. This is very en-
couraging because the myopic rule (and its adaptive version) is easy to
define and to use, and its properties are easy to derive.
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