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Abstract

Ethical considerations in the conduct of clinical trials have
led to the proposal of adaptive allocation schemes. Because of
the deterministic nature of their treatment assignment rules,
however, adaptive designs are susceptible to experimenter bias,
and are insensitive to time trends in the data. For these and
other reasons it is desirable to introduce some randomization
into the adaptive allocation. In this paper, a class of randomized
adaptive designs is introduced, and some renewal-theoretic tools
needed for the analysis of such designs are developed.

1. Introduction. In clinical trials, it is desirable to include some
measure of the ethical cost of assigning a patient to an inferior treat-
ment, and then to find a design which minimizes the total cost of the
trial. For example, it may be desired to minimize the expected number
of patients on the inferior treatment, or to minimize some function of
this and the total sample size. Such considerations have led to the pro-
posal of adaptive designs, i.e., designs for which treatment assignments
may depend on the responses of previous patients in the trial.

Since adaptive designs have deterministic treatment assignment rules,
they are susceptible to experimenter bias, and are insensitive to time
trends in the data. (In Section 2, these problems will be illustrated
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in the context of a particular adaptive design.) For this reason, it is
desirable to investigate randomized adaptive designs, which introduce
some randomization into the treatment assignment rules. It is natural
to ask what effect randomization has on the properties of the adaptive
design; in particular, does the randomized adaptive design have the
desirable ethical properties of the adaptive design? These are difficult
questions to answer; properties such as the expected number on the
inferior treatment and expected sample size require a renewal theory
to be developed. In this paper, a class of randomized adaptive designs
is introduced, and renewal theory is discussed for such designs.

REMARK 1. Let {Zn : n > 1} be a stochastic process, and let
ta = inf{n : Zn > a}. Then Zta — a is the overshoot of the process over
α. For the purposes of this paper, a renewal theorem is a result which
asserts that the distribution of the overshoot converges to a limiting
distribution as α —• oo, and which identifies this limiting distribution.

REMARK 2. The role of renewal theory in approximating the char-
acteristics of sequential procedures has a long history. For examples,
see Woodroofe (1982).

REMARK 3. Since this paper is expository, the discussion of re-
newal theory will be somewhat heuristic, and technical details will be
relegated to the references.

2. An adaptive design. Let (Xf, X± ), (X£, Xξ),... be indepen-
dent with Xf ~ λf(θA, 1) and Xf ~ λί(θB, 1) for i > 1. It is desired
to test whether A is superior to B, i.e., whether θ := ΘA — ΘB is greater
than 0. [Here XA and Xf represent the potential responses of the ith

patient to treatments A and B, respectively]
For each i > 1, let 5< equal 1 or 0 depending on whether the ith

patient is assigned to treatment A or treatment B. Then rrik = <5i +
. . . +<5fc and n^ = k — rrik are the numbers of the first k patients assigned
to A and B respectively. For k > 1 and a,b £ (0, oo), define

o>ί) = inf{fc > 1 : Z k > a σr Zk < - b } .
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Then a sequential probability ratio test of θ > 0 takes T = TΛ)b obser-
vations and rejects θ > 0 if and only if Z? < —b.

Now suppose that it costs one unit to administer either treatment,
and that there is an additional ethical cost of g(θ) for assigning a patient
to the inferior treatment. It is a simple minimization problem to show-
that if θ were known, allocation in the proportions p(θ) to A and 1— p(θ)
to B minimizes the total cost of the study, where p(θ) = 1/(2 + Jgiβ))
if θ < 0 and p(θ) = 1 - p(-θ) if θ > 0. This suggests the following
adaptive design: Allocate the (k + l)st patient to A if rrik/k < pφk)\
otherwise allocate the patient to B.

REMARK 4. Since anyone with access to the current data can
predict, with certainty, the treatment assignment of the next patient,
the potential is great for experimenter bias (via screening the patients,
for example). To see the problem with possible time trends in the
data, consider a study which uses balanced allocation in the beginning
(for the first 50 patients, say) in order to obtain a good estimate of 0,
and then uses the adaptive scheme until the conclusion of the study.
Suppose that the difference between the two treatments changes during
this second part of the study. If p{θ) is 2/3 at the beginning of the
study, and then begins decreasing, the study may miss this change,
because the design will be allocating all of the patients to A to drive
the proportion on A up to 2/3. In short, there is potential for long
periods during which no data is gathered on one of the two treatments.

REMARK 5. This allocation scheme is similar in spirit to that given
in Robbins and Siegmund (1974); there the goal was to minimize the
expected number on the inferior treatment.

3. Randomized adaptive designs. One way to introduce ran-
domization into the allocation scheme of Section 2 is as follows. Let
Γ/i,Γ/2ι- . be independent and identically distributed Uniform (0,1)
random variables which are independent of the responses ^
i > 1}. Then define δk by

i-iUssm if -
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In words, if the proportion allocated to A is less than p(θk), allocate
to A with probability (1 + p(θk))/2 [which is greater than 1/2]; if the
proportion allocated to A is greater than p(θk), allocate to A with prob-
ability p{θk)/2 [which is less than 1/2]; and if the proportion allocated
to A is equal to p(θk), randomize.

With this scheme, the potential for bias is greatly reduced, since
it is not possible to predict with certainty the treatment assignment
of the next patient. In addition, it avoids the problem of runs on
one treatment described in Remark 4 above, since at each stage there
is positive probability that the next patient will be assigned to each
treatment.

This randomization and the adaptive nature of the original alloca-
tion scheme introduce a complex dependence structure into the test
statistic process {Zk}, which complicates the analysis of experiments
which use randomized adaptive allocation schemes. The rest of the
paper explores the question of developing a renewal theory under such
dependence, which is an important step in analyzing such experiments.

REMARK 6. The randomization outlined above is closely related
to the biased-coin allocation scheme proposed by Efron (1971), which
was intended as a compromise between the competing goals of balance
and randomization. Efron's scheme may be described as follows. Let
1/2 < η < 1 be a constant. Let E/i, U2,... be as above. Define

= I{Uk>η} if ^>±

The special case η = 3/4 corresponds to the above allocation when
p = 1/2 is known. So randomized adaptive allocation may be thought
of as a generalization of Efron's scheme, where the target proportion
p(θ) is unknown and is estimated at each stage. In the next two sections
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it will be seen that this difference is what makes randomized adaptive
allocation schemes so difficult to analyze.

REMARK 7. Of course, any adaptive allocation scheme may be
randomized in the above fashion. Even outside the context of clinical
trials, where experimenter bias may not be a concern, there are com-
pelling reasons to include randomization in the allocation scheme. The
problem with time trends referred to above is one reason; Efron (1971)
gives a good account of some other virtues of randomization.

In addition, there are various ways to implement the randomization.
In a recent series of papers, Eisele (1990, 1992) has introduced a ran-
domized adaptive allocation design based on the Wei (1978) biased-coin
design (rather than the Efron coin), and has applied it to the Behrens-
Fisher problem. Further details may be found in the references.

4. Renewal theory for the Efron coin. This section develops a
renewal theory for the special case of the Efron coin allocation scheme.
In addition to being of interest in its own right, it will help to unravel the
complicated dependence structure in the general randomized adaptive
allocation scheme. The basic idea is to decompose the test statistic into
Zn = Sn + £n, where {Sn} is a process for which a renewal theorem is
known, and the "perturbation terms" {ξn} are negligible in the limit.

It is useful to recast the allocation scheme slightly. Let Yk be the
difference in the numbers allocated to A and B at time A:, that is,
Yk = mk — nk. Notice that {Yk} is a Markov chain. Define the function

Φ(y) b y
η if y < 0;

φ(y) = { 1/2 if 2/ = 0;
1-η if y > 0.

(Here 1/2 < η < 1.) Then δk in the Efron scheme is given by

δk=I{Uk<φ(Yk-1)}.

Now rewrite the test statistic.

Ak = — — — >, OjΛj
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It remains to show that {Sk} and {£*} have the properties described

above.

5. Digression: Markov random walk; slowly changing se-
quences. If Yo,Yi,... is a Markov chain with stationary probability
distribution TΓ, and Sn = X\ + ... + Xn, where {Xn} has the property
that

V (Xn I {Yi : i > 0}, {Xj :j^n}) = F (Yn^, Yn),

then {Sn} is called a Markov random walk Renewal theory for such
processes is well-known; in particular, Kesten (1974) proves a renewal
theorem for Markov random walks under quite general conditions on
{Yn} and {Xn}.

A bit of work is required to write down the limiting distribution
obtained in Kesten's Theorem. Let Py and Ey denote probability and
expectation given that YQ = y. Define μ = f Ey(Xι)π(dy). Also,
let {{Y^X'n) : —00 < n < oo} be the two-sided stationary process
associated with {(Yn,Xn) : n > 0}. (For details on its definition and
construction, see Kesten (1974).) Define

Έ7=iX'i ifn>0;
S'n = I 0 if n = 0;

I '
and define the measure V by ψ(E) = P ί s u p ^ o S ; < 0, YQ G £ } . Let
τα = inf{n : Sn > a}; then STa — α is the overshoot of {Sn} over the
boundary a. Kesten's Theorem gives conditions under which

lim Py {STa -a>r} = - U{dz) Γ ( λ - r)Pz {Sτo £ dλ} .
a-*oo " μ J Jr
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[The conditions of the Theorem will not be repeated here; it suffices to
state that all of the Markov random walks encountered below satisfy
these conditions.]

A sequence {ξn} is said to be slowly changing if the following two
conditions hold:

(SCI)

Py < — max \ξk\ > e > —• 0 as n —• oo, for each e > 0 and y;

(SC2)

{max \ξn+k - ξn\ > el = OVy and e > 0.

Renewal theory also has been investigated for sequences whose terms
can be written as the sum of a Markov random walk and a slowly chang-
ing perturbation. Define ta = inf{n : Zn > a}. Then Zta — a is the
overshoot of {Zn} over the boundary α. The following is proved in Melfi
(1992).

THEOREM 1. // Zn = Sn + fn, where {Sn} is a Markov random
walk satisfying the conditions of Kesten (1974); if {ξn} is slowly chang-
ing; and if ξn is σ(Y0,..., Yn, Xι,..., Xn)- measurable for each n, then
Zta — a has the same limiting distribution as STa — a, as a —» oo.

Returning to the problem at hand, it only remains to show that {Zn}
satisfies the conditions of the theorem. With Sn and ξn defined by the
above decomposition, it is easy to see that {Sn} is a Markov random
walk (the underlying Markov chain is Y^ = m^ — n^). The conditions
of Kesten's renewal theorem are easily verified for this process. Also,
using results on the rate of convergence of n^jk to 1/2, the process {£n}
can be shown to be slowly changing. Details are in Melfi (1992).

REMARK 8. Lai and Siegmund (1977) proved a result similar to
Theorem 1 above in the case where {Sn} is an ordinary random walk.
This result has found extensive application in sequential analysis. For
details, see Woodroofe (1982) and Siegmund (1985).

6. Renewal theory for randomized adaptive designs. The
randomized adaptive allocation scheme introduced in Section 3 may be
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described as follows. Let Wk = rrik — kp(θk) measure the difference
between the number allocated to A at time k and the number that
should be allocated to A if θ = θk. Define the function φ by

φ(w,p) =

ψ, ifw<0;

1
2>

if w = 0;

f, ifw>0.

Then

From this description, one problem in analyzing such a design is im-
mediately apparent. In contrast to the Efron coin, the design sequence
(here called {Wn}) is not a Markov chain.

To attempt to circumvent this problem, reason as follows. The
reason that the design sequence is non-Markovian is that it involves the
estimate p{βk)) which depends on the whole history of the experiment.
Since p(θk) is converging to the true optimal proportion p(θ) as k gets
large, however, the process {Wk} should "behave" like a Markov chain
for large k. This may be made precise via a Taylor expansion of p(θk)

Call the Markov chain obtained in the above manner {Yk}> The next
step is to decompose the test statistic Zk as in the previous section. Un-
fortunately, a more serious problem arises here: The perturbation term
obtained in this decomposition does not satisfy the slowly changing
conditions. (Again the culprit is the fact that the optimal allocation
proportion must be estimated. This introduces additional variability
into the process, which makes the perturbation terms too large.)

The way out of this problem leads to a significant reformulation
of Theorem 1. Instead of requiring closeness of Zn to a Markov ran-
dom walk in the sense that the difference between the two be slowly
changing, the new theorem will just require that the (conditional) dis-
tributions of the two processes become close. The details follow.

Some additional definitions and notation are needed in order to
make the notion of distributional closeness precise. The Prokhorov
metric will be used to measure distributional closeness. For probability
measures P and Q defined on the Borel sets Λ of a metric space (X, d),
the Prokhorov metric p is defined by
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p{P,Q) = inf {e > 0 : P(A) < Q(Ae)+e MA G A} ,

where Ae = {z G A' : d(z,A) < e}. As long as (X,d) is separable,

convergence in the Prokhorov metric is equivalent to weak convergence,
so it is a natural measure of distributional closeness. For this and other
properties, see Dudley (1989).

Let Tn = σ(W0,..., Wn, Zλ)..., Zn). Recall that ta = inf{n : Zn >
a} is the first passage time of the process {Zn} over α. The post-ία

delayed process and the prior σ-algebra are defined by

= n}G^n for all n >

Denote the m-step distribution of a Markov random walk by Q*m and
the m-step conditional distribution of the post-ία delayed process by

Qα,m(α;, β ) = P {(Zα>1,..., Zβfffl) G

The following condition replaces the requirement that Zn differ from
5 n by a slowly changing sequence.

CONDITION I. There exists a Markov random walk {Sn} satisfying
the conditions of Kesten's Renewal Theorem for which

P [Qa,m,Qm(WtaΊ')] ^ 0 in probability as a —• oo, for every m > 1.

Basically, the condition says that, in the limit, the m-step conditional
distribution of the process {Zn} must be close to the m-step conditional
distribution of a Markov random walk, started at the same place (Wta).
Notice that the closeness required is weak: First, it is only distributional
closeness; second, the convergence is only in probability. The weakness
of this condition requires the addition of the following two conditions:
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CONDITION II. {Zta - a : a > 0} is tight

CONDITION III. {Wta : a > 0} is tight

THEOREM 2. Assume Conditions I-III. Then Zta — a has the same
limiting distribution as STa — a, as a —> oo.

REMARK 9. The convergence of the overshoot of the Markov ran-
dom walk and the requirement that Zn differ from Sn by a slowly chang-
ing perturbation term in Theorem 1 imply that Condition II holds.
Under the weaker Condition I, the tightness of the overshoot of {Zn}
must be assumed. The reason that Condition III is needed has to do
with the proof of the Theorem. In the proof of Theorem 1, it is nec-
essary to condition on TN for fixed (nonrandom) times N, and then
use the tightness of the Markov chain {Yn} and a result on uniform
convergence on compacts in Kesten's Theorem. In Theorem 2, it is
necessary to condition on J7^, and so the tightness of {Wn} sampled at
the random times ta is needed. A proof of Theorem 2, and more on the
relation of the conditions of Theorem 2 to those of Theorem 1, may be
found in Melfi (1994).

6. Further research. As mentioned in the introduction, the
purpose of developing a renewal theory for randomized adaptive designs
is to obtain information about the properties of studies which use these
designs. There is more work to be done before such questions can be
answered for general randomized adaptive designs. Below are a few of
the more challenging questions that remain.

A basic problem is that Condition III of Theorem 2, which requires
that {Wta : a > 0} be tight, is difficult to verify. The difficulty is due
to two factors. First, the process {Wn} itself has a complicated depen-
dence structure. Second, tightness is needed for the process sampled at
the random times ία. Two approaches to this problem are being con-
sidered. On is to try to weaken Condition III by modifying the proof
of Theorem 2. The other is to utilize the fact that {Wn} behaves like
a Markov chain in the limit to verify Condition III.

The limiting distribution of the overshoot in Theorems 1 and 2 is
related to the measure φ and to the distribution of Sτo. For the Efron
biased-coin allocation scheme treated in Section 4, these quantities can
be related to the distributions of random walks, and thereby can be
simplified sufficiently to become computationally tractable [the details
of this simplification are given in Melfi (1992)]. In the general case, this
is not possible, and some other method must be discovered.

45



In the case where {Sn} is an ordinary random walk, (i.e., the sum of
independent random variables with common distribution F) , this sort
of simplification has been carried out. The main tool used is Spitzer's
Identity, which relates the distribution of Sro to the distribution F of
the summands [see Woodroofe (1982) for details]. It remains to be
seen whether some analogue of Spitzer's Identity holds in the Markov
random walk setting.
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