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This study is exploratory in nature with a goal of extending the applica-
tion of stochastic modeling to health economics research. The aim of this
study is to investigate whether the prediction of utilization and attendant
costs through the development of a stochastic model, specifically a first-
order Markov chain, can be adapted to specific diseases and/or events. The
original study considered three diseases. They included both chronic and
acute diseases. The choices were diabetes, hypertension and myocardial
infarction. For the purposes of this article the application is illustrated by
looking at the group with hypertension. The group of n = 1019 was ran-
domly split into two groups. They were then categorized into age groups
{over 66/under 66} and gender {male/female}. The first group was used
to generate the transition probabilities and second was used to validate the
results. Chi-square analysis was performed and there were no significant
differences between the groups. The costs were computed and presented.

1. Introduction. Predicting cost in the health care environment is a challeng-
ing dilemma for medical professionals. The importance of a viable cost model in-
corporating outcomes measurement and payment schemes is of interest [16, 10, 17].
Healthcare administrators want to assure that the delivery of services is appropriate
as identified by federal government guidelines, rules and regulations [22]. A criti-
cal starting point is to provide the framework necessary to provide a cost model
that considers the general factors of healthcare encounters, patient diagnosis, treat-
ment and the related costs that can be used to describe this complex problem.
The very stochastic nature of disease treatment can lead to substantial variation
in experience between and among classes of enrollees, their diseases, and treatment
utilization patterns [20]. The most common approach to analyzing "cost of disease"
is the "traditional method" of summing the number of events occurring in the sys-
tem over a period of time and calculating the mean and a standard deviation of
cost [9]. There is a need for more sophisticated models to predict cost in the health
care environment. A wide variety of conceptual and statistical models exist, both
deterministic and stochastic, to measure utilization in health research [9]. The deter-
ministic models axe "traditional model" (summing of events), and decision analysis
(decision tree). The limitation of the "traditional model" is its inability to account
for the skewness of cost data. Decision trees can be effective models in economic and
policy analyses, because they can provide information to patients and practitioners
about risk and cost. The difficulties with this model arise when timing becomes a
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concern. This problem becomes apparent when the time interval is several years or
there are repeated events in a shorter time interval. Unfortunately, the longer the
time period for events to occur can lead to more noise or numerous branches in the
decision tree and that makes it unmanageable or practical. The limitations for the
deterministic models are an inability to account for the non-symmetric aspect of
cost data and the lack of consideration of the utilization patterns of the population
[18].

2. Specific Aims. This study used real and frequently used criteria for cost:
allowable reimbursement for the services. The particular criteria are based on Heath
Care Financing Agency (HFCA) reimbursements [21]. There are several obvious
practical advantages of using a Maxkov process. The first advantage of the Markov
Model is its ability to be used as a flexible general model that can be applied
in different settings by using the utilization pattern and allowing the cost change
geographically. The Markov process has the ability to measure the randomness of
the utilization pattern of any given population [3]. Another potential gain of this
technique is its ability to model the utilization process into "compartments" that
capture the actual medical care delivery process. Developing a cost model based on
combining a Markov process and the corresponding fixed costs associated with this
utilization has ample justification. This study treats actual cost as deterministic.
This assumption is valid as cost reimbursement schedules have little or no significant
variation. In fact with health caxe constraints in place, the health-care providers
have a relatively narrow band for compensation and adjust their costs accordingly
[21].

3. Background and Motivation. The Markov process has been used exten-
sively in the modeling of epidemics- progression, risk of spread [3]. The epidemics
modeled by the Markov process in literature range from the influenza [2], tubercu-
losis [5] to HIV [1, 23]. The application of Markov processes to today's challenging
health-care problems is widespread [3, 6, 11, 7]. All of the above studies used a
Markov chain as the underlying mechanism to model the pathways for subjects to
predict utilization or possible pathways through the healthcare system.

The Maxkov process has been used to predict utilization in various healthcare
plans and healthcare systems. Kapadia et al. [12] studied 305 patients at a 90-
bed comprehensive rehabilitation hospital in a major metropolitan area over a six-
month period, January - July, 1982. The authors used hospital service charges and
diagnosis to measure the utilization patterns of the patients, Belaud [4] studied
ambulatory care in Montreal, Canada. The sample consisted of 2149 patients. The
author used the physician claims from clinic visits, hospitalization and emergency
room visits. The author used a Markov chain to predict utilization to show the
differences between population demographics - age and gender in the model and
the corresponding changes in the traditional model of counting visits to physicians.
Beland dichotomized the patients into those aged less than or equal to 64 years and
those aged greater than or equal to 65 years. Beland broke the time period into
4-month periods. Beland found differences in utilization patterns based upon sex
and age. The population was limited to people using ambulatory caxe. The resident
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Table 1. The resident states for the Markov process

231

State 0
State 1
State 2
State 3
State 4
State 5
State 6
State 7
State 8

No use of services
PCP visits

Visiting a specialist
Hospital visits

Emergency Room visits
Outpatient Procedure

Outpatient Treatment and Radiology
Pathology

Termination from plan

mo
m i

TYΪ2

7714

ra5

me
mi

TΠs

states of the Markov process that Beland used formed a subset of the states that we
use. The results of the above literature review indicate that the Markov process is
appropriate to estimate the utilization of a population of patients or enrollees. The
Markov process can illustrate the difference in the treatment utilization patterns
due to predictor variables such as gender and age. None of the previously listed
studies examine the question that this study attempts, but the application of a
generalized Markov process seems appropriate to predict utilization for patients
with chronic or acute diseases [15]. This study uses a comprehensive utilization
pattern (nine resident transition states). The use of the Markov process provides
an unbiased estimator of the treatment utilization pattern of the population that
is being investigated.

4. Methods. The Markov process, which incorporates the stochastic element,
is being employed as the first component of this model to predict utilization for this
healthcare problem. The transition or change in utilization from state i to state j
is influenced by the prior state. The notation is

Pij=Pτ[Xn+1=j\Xn = i],

where P^ is the probability of going from state i to state j in one step or one
increment in the time unit. Due to the restraints of the utilization plan, there is no
need to consider all the previous transitions. This is due to the restraints placed on
the enrollees in a managed care plan. All the transitions from the resident states
require preset exit criteria and only the previous state influences the opportunity
for transition to an alternate state. This means that being in a resident utilization
state two transitions earlier is irrelevant to the state you are in presently. All the
information that is needed is the previous transition state. This is using the memory
less or Markovian property [8]. The resident states of transition based on utilization
for the Markov process will be defined as follows:

The states defined in Table 1 lead to a nine-state Markov chain with an absorbing
barrier (State 8) and the resulting one-step transition probability matrix is

(1) Psx8 = (Pij), where i = 0,1,2,3,..., 8 and j = 0,1,2,3,..., 8.
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We specify the time interval unit for the probability transition matrix for utilization
to be one day, a 24-hour period, since too much information would be lost using a
larger time unit such as a week, a month or longer.

Consider the finite number of possible transitions for individuals in the model.
Denote by the element

(2) Poo - Pr[Xn = 0|Xn_! = 0], for any n.

the probability that an individual starting in mo stayed in mo after one time period.
Similarly, the probabilities for staying in the same state after one transition are the
transition probabilities:

PθO> ^11? ^22,^33? ^44, ^55? ^66, ^77 > Pδδ

Let

(3) f?i

be the probability that, starting from state i, the first return to state i occurs
at the nth transition [13]. There are 81 possible transitions for an individual in
this model. State m$ (termination from the plan) is an absorbing barrier or state,
defined by Ross [19] as a state that once entered cannot be exited. This means that
the probabilities of transition from ms to states mo through mγ are zero and the
probability of starting in state eight and staying in state eight is one. Hence in the
probability transition matrix (1),

P$o = Pβi — Pδ2 — Ps3 — Pβ4 = Pδ5 — Pδ6 — -̂ 87 = 0 & Pδδ = l

The matrix can be partitioned into 4 subsets. The set of transition probabilities,
{P8δ}, has the following two properties: (1) it has a period of one and (2) since
/gg = 1, it is positive recurrent. Combining the previous two properties (1 & 2)
leads to the conclusion that {Psβ} is an ergodic set. This set will be represented by
the submatrix, E i x i and defined as follows: E i x i = {Pβδ} The next submatrix of
the partitioned matrix to be considered is the vector of zeroes,

0iχ8 = {/%<!* = 0,1,2,3,4,5,6,7}.

Once in the absorbing state the individual cannot leave the state; hence all the cell
entries are zero. The third partitioned submatrix to be defined will be the transient
states,

The submatrix M includes all the transient states of the Markov chain. The prob-
ability of the first return, equation (3), for these states (m0, mi, m2, 7713, 7714, 7715,
m6, and 7717) is less than one. The final submatrix to consider is the transition from
a transient state to the absorbing state. This will be defined as

L8χi = { J ^ | i = 0,l, 2,3,4,5,6,7}.

An alternative form of the probability transition matrix can now be illustrated with
dimensions of partitioned matrices: E i x i , OiXδ, Lδχi> Mδxβ It should be noted
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that the matrix E i x i is equivalent to the identity matrix, I i x i . Replacing E i x i

with Ii x i in the matrix results in the following

(4) P

5. Mean Time in a Resident State. Determining the mean time or number
cycles an individual occupies in a resident state requires some knowledge of linear
algebra and the development of the fundamental matrix for Markov chain with
an absorbing state. Kemeny and Snell [14] developed methodology for finding the
mean time in each resident state before transition into the absorbing state. They
proposed the following. Let B™Xn be a square matrix raised to the power m. If
Bm ->• 0 as m -* oo, then (I — B) has an inverse, and

oo

) - 1 -(5) (I - B)-1 - I + B + B2 + Bό + = 2J B\
i=0

For any Markov chain with an ergodic set, let the matrix M correspond to the set
of transient states, as in (4). Then (I — M) has an inverse, and

oo

(6) (I - M)- 1 = I + M + M2 + M3 + =
i=0

Substituting the matrix M from (4) into equation (5) proves (6). Let

(7) N = (I - M ) - 1

be the fundamental matrix for a Markov chain with an ergodic state [14]. The
next consideration is the number of times for an individual that a transient state
is occupied. Define ηij to be the function assigning the total number of times that
the process is in state πij after starting from state mi (restricting the choices to
transient states, {rrij\j = 0,1,2,3,4,5,6,7}). This quantity will be will be expressed
as the sum of indicator variables μ\y After starting in state m/, let

/βx k _ (1 if the process is in state rrij after k steps
U μij~\θ Otherwise.

Determining the expectation of the number of cycles an individual stays in a resident
transition state, conditional on having just entered the system, follows [14]. The
mean number of days spent in rrij after starting in state m\ is N 8 x 8 = ϋ7[% ], as
can be seen from the following argument. It should be observed that ηij = ΣS£L0 /̂ ίj
Hence E[ηtj] = i ^ E ^ o A ^ s x s N o t e ^ a t t n e A*?j i s t n e ^J element of Mk. Here
η is the matrix whose /,,;' element is ηij. Then

k=0 k=0

Denote the expected numbers of days in eight transient states by T ;, taken from

the proper row of N.
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6. Cost. The notation for the cost function is equation (9). Define the fixed
cost to be a column vector, where each element of this 9 x 1 matrix is the averaged
costs per utilization state of the system. It should be noted that the elements for
the states "no use of services" and "termination from the plan" have no allowable
costs associated with them. The cost function can be represented as

(9) C g χ l = {0,Ci,C2,C3,C4,C5,C6,C7,0}.

The model is defined by multiplying T' and (9) with the result

F{xi) = T'9xl{xi)Clx9,

where X{ is the conditions of interest (gender, age, and diagnosis). The value of the
function JF is the predicted cost for an individual over a two-year period of January
1, 1996 through December 31, 1997. The vector of utilization, T', has a dimension
of 1 x 9. The vector of cost, C, has a dimension of 9 x 1. Taking their product
generates a scalar value, F i x i , which is the predicted cost given gender, age, and
diagnosis.

7. Application - Data. Administrative databases are commonly used for eco-
nomic evaluation [22]. The claims data used in the model will originate from the
OneCare claims database maintained for research purposes by the Health Services
and Technology Assessment Program at the University of Texas-Houston School
of Public Health. OneCare is an independent physicians association in the state of
Texas. The claims covered the period January 1, 1996 through December 31, 1997.
The model under consideration requires the claim records and demographic identi-
fiers for the enrollees of the managed care plan. Unfortunately, the database has a
few restrictions. The demographic identifiers of marital status, and Socioeconomic
Status (SES) are not available. The claims for pharmaceutical services, medical
equipment and long term care (skilled nursing facilities) are not collected. With
respect to these limitations, the information abstracted for predicting the costs and
utilization was age; gender; and respective claim records.

The Physician's Current Procedural Terminology (CPT 97) manual was used in
conjunction with the ICD-9 codes to define the states necessary for the model
based upon the procedures and diagnostic tests to be included in the table of
costs incurred. Validation of the model was addressed. The data were divided into
subsets generating two samples, randomly, from the data. From these samples the
demographic identifiers gender and age, were determined. Each combination of the
identifiers generated a subset of the sample for each disease. The total number of
models to be checked was nine. A Chi-Square Statistic, "goodness-of-fit" measure,
was used to determine reliability of the predictions based on the model, namely the
mean time in each state of the process.

For the purposes of estimation and independent model validation the population
was separated into two separate random samples (group 0 and 1). The transition
probability matrix for utilization is based on empirical estimation from the data.
The actual utilization of the enrollees is used to generate the probabilities of the
different states of utilization.

Defining age and gender subgroups is the next step. Due to the size limitations
of the data, there are only two age groups, those people less than or equal to 66
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Table 2. The attendant allowable costs for enrollees in the OneCare plan
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Resident Transient States for the Model
No use of services
PCP Visit
Specialist visit
Inpatient (hospital stay per day)
Emergency Room (ER)
Outpatient Surgery
Radiology & Outpatient Treatment
Pathology

Average Allowable Costs Per Event
$0.00

$61.75
$82.70

$1,749.43
$225.29
$559.83
$93.17
$29.28

years of age and those greater than 66 years of age. The median age is 66 for the
population subgroups and was a suitable cutoff point. A second reason for the choice
of age cutoff is that an administrator would be interested in knowing the differences
between a most likely working subgroup (those less than or equal to 66) and their
counterparts that are probably retired. The sample size of the hypertension group
was n = 1019. They were split evenly between two groups.

The second part of this model considers a deterministic or fixed cost component.
Finding the mean cost in each resident state of cost derived the costs. The attendant
costs or charges were derived from applying a table of costs or charges for each
episode of disease or event, such as a visit to a physician, emergency room visit,
hospital stay, and outpatient surgery or outpatient treatment. The cost will be set
for each resident state in the Markov chain. This is realistic in that this is how bills
and utilization are usually derived in the health care environment. The focus of this
study does not require the cost to be stochastic or random.

The values of cost for each state in Table 2 were computed from the claim records.
Each event that occurred during the two-year period was classified as one of the
seven states that incur a cost. The values in the table are the averages for the
population.

This section will show the results of testing the cost model for the index con-
ditions or chosen subgroups. The analysis of the subgroups will be illustrated in
Table 3. The estimated cost for each subgroup is located in Table 4. The chosen
subgroups used to predict cost based on utilization were hypertension all categories;
age specific; gender specific; gender and age specific. Some adjustments were made
due the output of the probability transition matrix. Equation (6) requires a square
matrix of transient states. For hypertension the resident state of utilization of out-
patient surgery had no occurrences and could not generate an expected mean time.
Also, the states of ER and specialist each had a probability of one, thus becoming
ergodic and needing to be omitted from the matrix that generated the mean time
before absorption. The observed times from the second sample were still used, but
the expected time was coded as zero. This was included with the long- range view
of being conservative in the estimates.

The sequence of models for the hypertension subgroups was run. The components
of the model used that contributed to allowable cost were the utilization states,
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Table 3. The results of modeling the subgroups of Hypertension.

Subgroups
Hypertension - group as a whole
Hypertension k, Age 66 or less
Hypertension & Age greater than 66
Hypertension & Female
Hypertension & Female & Age 66 or less
Hypertension & Female & Age greater than 66
Hypertension & Male
Hypertension & Male & Age 66 or less
Hypertension & Male & Age greater than 66

Statistic χ2

3.54
2.96
3.70
4.11
3.23
4.76
3.09

Unstable
2.91

Model Fit
OK
OK

OK

OK

OK

OK

OK

Unable to Fit
OK

Table 4- The predicted costs based on the model are as follows for a two-year period

for Hypertension

Hypertension
Hypertension & Age 66 and under
Hypertension & Age older than 66
Hypertension & Female
Hypertension & Female & 66 and under
Hypertension & Female & Age older than 66
Hypertension & Male
Hypertension & Male & Age 66 and under
Hypertension & Male & Age older than 66

$3,996.25
$3,763.23
$4,168.60
$3,767.21
$3,516.27
$3,918.91
$4,250.79

Unable to Fit the Model
$4,505.74

{mi,77i2,m3,ra4,ra5,7716,7717}. The critical value changed to the value 11.07 with
five degrees of freedom and using the one-sided test with a = 0.05, due to loss of
one degree of freedom. The results for the hypertension subgroups are in Table 4.
The fit of the model for the subgroups was determined to be good for all except
one. The subgroup needing scrutiny has the identifiers- hypertension and male &
age less than or equal to 66 years old. The utilization states of outpatient surgery
and pathology have probabilities equal to one and that left only three states that
were transient. This subgroup could not generate a stable transition matrix with
just three transient states and low cell counts.

Combining the Markov process and the cost schedule from Table 2 gave esti-
mates for each of the subgroups for the two-year period of January 1, 1996 through
December 31, 1997.

The values in Table 4 reflect the results from the full model developed in this
study. The trend of the older age group having higher expected costs continues.
It should be noted that the costs for the male subgroups are higher than for their
female counterparts. The costs in Table 4 are based on the general utilization plan
and the schedule of costs for each subgroup. This could be expanded to any sub-
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group the reader wanted to provide some inference about provided the necessary
information is contained in the database the model is being used to test.

8. Summary and Discussion. The aim of this study was to explore a flexible
stochastic model to predict costs based upon selection criteria such as diagnosis,
gender, and age. The model was tested on a large administrative database of claims.
Considering the results, it seems realistic that the model can incorporate any num-
ber of conditions and produce an estimate of utilization to be used in the model.
There is a restriction. If the number of transitions is small in one or more res-
ident states with the addition of one or more resident states becoming ergodic,
then an unstable probability transition matrix is generated. The unstable matrix
cannot provide appropriate estimates. The model seems to be able to predict the
utilization patterns in the various subgroups. Sample size, alone, does not seem to
dramatically affect the "goodness of fit" of the model. The difficulty occurs when
the number of transitions is less than ten. Overall, the subgroups that generated
stable probability transition matrices provided good estimates of the utilization
patterns of the data. There were several limitations to this study that should be
addressed in future research. The first limitation was the restrictions due to the
database with the lack of demographic identifiers. The absence of ethnicity, mar-
ital status, and SES leads to questions about the changes in utilization patterns
for these groups of enrollees. A second limitation of the study was the choice of
deleting the multiple events per day for an individual. This could have accounted
for the states remaining transient in the probability transition matrices. This sce-
nario occurred when the sample sizes were small, less than 200, and the patterns
of utilization were minimal, that is when the number of transitions is less than 10.
This minimal utilization is more than likely a product of the small sample size. One
of the subgroups (hypertension males age less than or equal to 66) had this occur
leading to an unstable probability transition matrix and an inability to predict cost
for the subgroup The direction of future research for this healthcare problem re-
quires addressing the limitations and changing the some the decisions for inclusion
into the model. One possible extension of this study is not to restrict of the number
of events on the same day to the first one taken. This would require a much larger
utilization array to encompass all the possible pathways per day A third extension
allows the cost to be a random function. The model would then contain two ran-
dom processes and has the potential to be used globally, without the requirement
of the cost function to be conditioned depending on the region, nationality, etc. In
allowing the cost to be random function, it could be applied to any region without
any loss of generality. The analysis that would be required would necessitate the
use of two random processes, preferably stochastic. Then the mean and variance
could be computed using stochastic integrals.
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