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Definition of the variance of a sample as one half of the average squared
difference is more intuitive than the common definition as an average
squared deviation from the mean. Similarly, the one-way ANOVA F-
statistic has intuitively appealing definitions as the average of squared
ί-statistics, either of the t's for all pairwise comparisons of means, or of
the fs for comparing each mean with the average of all the others. These
are distinct from Scheffέ's definition of F as the square of the maximum
of t's for all contrasts. Analogous definitions extend to two-way ANOVA
and to MANOVA.

It is more intuitive to define overall test statistics as averages of statis-
tics for simple components of the overall hypothesis than by the classical
definitions, and there is much to be said for that in terms of heuristic
appeal and didactic usefulness.

1. Introduction In statistical inference, the choice and definition of a statistic
is determined by its optimality properties for estimation and testing. For example,
the center of a sample is usually defined as the mean because that definition is in
many ways optimal for Gaussian data. In descriptive statistics, on the other hand,
the purpose of a statistic is to reveal interesting features of the data, so the choice
of a statistic becomes heuristic. Thus, the median may be chosen to describe a
sample's center because of its intuitive appeal as bisecting the observations into
an equal number of larger and smaller ones; the mean is much less appealing as
it is defined by a quite non-intuitive algorithm involving addition and division. Of
course, some statistics may be intuitively motivated as well as optimally inferential
in certain contexts, and in non-parametric inference heuristic criteria are often used
because optimality is difficult to define.

Heuristics are also important for intuitively motivating the use of particular
statistics. Thus, it is didactically preferable to introduce the median as having
the simple property of bisecting by size, rather than as having the more abstract
property of minimizing the sum of absolute deviations. Several other well known
statistics are shown in this paper to have simple definitions with heuristic appeal,
and these may be used to advantage in teaching instead of the classical less intuitive
definitions.

2. The sample variance The variance of a sample of observations #*, i =
1,..., n, is usually defined by means of deviations from the mean x = ΣlLi χi/n
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as

(2.1)

An alternative, but equivalent, definition based on the differences X{ — xe between
all pairs of observations, due to Gini [7], is

(2.2) s2 = 1

' i=l e=l

We are more familiar with (2.1) but (2.2) is intuitively more appealing. Com-
mon sense would measure variability by averaging the (squared) differences between
observations rather than the (squared) deviations from the mean. Why involve the
mean in defining a measure of variability? - The definition of the inter-quartile
range does not involve the median or any other measure of the center. Of course,
the measurement of variability by means of squares rather than of absolute values
still needs to be motivated for both (2.1) and (2.2), and heuristics are not going to
help there. Note, by the way, that (2.2) may be seen as a [/-statistic of spread in
the sense of Bickel and Lehmann [1]: this is an instance where the non-parametric
approach uses a more heuristic definition.

The proof of the equivalence of (2.1) and (2.2) is quite elementary. The following
proves the more general, weighted, equality

(2.3)
i=l e = l e = l i=l

where w±,... ,wn axe the weights and xw = Σ l L i w%x%l Σ l L i w* * s the weighted
mean. First, ΣΓ=i Σ e = i WiWe{χi - χe)2 is rewritten as Σ " e = i wiwe{{χi ~ χw) -
(xe - χw)}2 which becomes £ ? = 1

 wi(x* ~ χw)2 Σ e = i w* ~ 2 ΣΓ=i Σ e = i w^χi ~
xw)we(xe — xw) + ΣΓ=i wi Σ e = i we{χe — χw)2- The middle term equals zero and
the other two terms axe equal, and that proves the equality.

The prevalence of (2.1) in teaching, and the common ignorance of (2.2), is paxtly
due to the former being easier to compute, for it involves fewer terms. But compu-
tational convenience should not be a didactic criterion. Indeed, in the days of pencil
and paper calculation, we used

(2.4) O 2 -

and looked up the squares in Barlow's Tables (Comrie, [4]). But no one suggested
then that this formula gave insight into the idea of a variance, nor does anyone now
propose to introduce the variance by means of algorithms used by calculators or
computer software. So why continue to introduce the variance by (2.1)? - Surely
the more heuristic (2.2) would make it easier to motivate the concept of measuring
variability.
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3. The one-way analysis of variance F-statistic The usual formulation of
one-way ANOVA focuses on the F -statistic defined as the ratio

(3.1)

with obvious notation, s2, being the pooled "within samples" variance estimate.
This definition is commonly motivated as a "between to within " comparison of
alternative estimates of the variance, a definition that implicitly assumes under-
standing of the distribution of the sum of squares of sample means. More intuitive
explanations can be provided by using one or another of the following alternative,
but equivalent, definitions of this statistic. All of these definitions are based entirely
on ^-statistics which are more intuitive in their structure since each one of them
involves only a single comparison.

The first alternative is based on the pairwise ί-statistics tjί9 = (XJ —

Xg)/[sp\/nJ1 + ng~
1] that compare the means Xj and xg of pairs of samples

j,g, but use the within samples estimate s^, rather than the more commonly used

separate estimates based only on samples j and g. This allows the definition of the

F-statistic as

(3-2) F l

where n = ΣjLi nj Since ΣjLi Σ L i ( n j + ng) ~ 2(& — 1)^ , this is an average of
the ^ ) 5 ' s, i.e., of the two-sided pairwise test statistics, each weighted by the number
of observations in that pair of samples. The proof of (3.2) follows the same lines as
that of (2.2).

Definition (3.2), though computationally more cumbersome than (3.1), is heuris-
tically more attractive: It uses the collection of sample-pair test statistics to define
the all-sample statistic, just as the collection of hypotheses of pairwise equalities is
equivalent to the hypothesis of equality of all expectations. It is intuitive to reject
the overall hypothesis if, and only if, the statistics testing the pairwise hypotheses
are large.

The second alternative is based on the one-vs-the-rest statistics tj^j = (XJ —

x\j)l\sPAjnjι + (π — τij)~λ] that compare one sample mean Xj to the mean x\j =

(nx — ΠjXj)/(n — Πj) of all n\j = n — rtj observations outside that sample, again

using the within samples estimate Sp. The subscript \j reads "all except". This

definition of the F-statistic is

Since Σ,k

=1 n\j = (k — l)n, this is a weighted average of the t2, v 's, i.e., of the two-
sided one-vs-the- rest test statistics weighted by the numbers of observations in the
rest of the samples. To prove (3.3), introduce the definition of tj^j and rearrange
terms.
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Definition (3.3) does not involve much more computation than (3.1), and yet is
heuristically more attractive: It defines the all-sample statistic as an average of the
k statistics for comparing any one sample with the average of all other samples,
just as the hypothesis of equality of all expectations is equivalent to the collection
of hypotheses that each individual expectation is equal to the average of all the
other expectations. And again it is intuitive to reject the overall hypothesis if, and
only if, the statistics for the one-vs-the-rest hypotheses are large.

A third alternative is based on the t -statistics tc = } • CJXJ)/[

for all contrasts Σj CjXj. That formula is less intuitive in the way it accommodates
the different coefficients (ci, . . . , C&), but it is easy to see that it simplifies to the
above two fs when the contrasts have, respectively, c3 , = l ,c p = — 1 and all other
coefficients zero, or Cj = 1 and cg = — l/(k — 1) for all g ψ j. These fs for contrasts
allow the third alternative definition

(3.4) F= max t2j(k-l)
ci,...,cfc:]Cci=0

as a constant multiple of the maximum of the squares of the fs for all contrasts
(Scheffe, [9], Appendix III; Gabriel and Peritz, [5]).

Definition (3.4) is intuitively appealing since it shows the F-statistic to be large
if and only if at least one contrast has a large ^ - s t a t i s t i c ft corresponds to the
equivalence of the overall equality hypothesis with the intersection of the hypotheses
that individual contrasts have zero expectation. Its intuitive appeal has led Brown
and Hollander [3] to use it to introduce the F-statistic in their textbook.

Each one of the above alternative definitions uses a decomposition of the overall
hypothesis into components such that the former is true if, and only if, all of the
latter are true, i.e., respectively, all the pairwise contrasts are null, all the one-
vs-the-rest contrasts are null, and all contrasts are null. It is therefore intuitive
to reject the overall hypothesis if, and only if, at least one component hypothesis
is rejected, and therefore to define the overall statistic as the maximum of the
component statistics. That, indeed, is the Union-Intersection principle (Roy, [8]).
Definition (3.4) is the only one which satisfies that principle, whereas (3.2), (3.3)
define the overall statistic as an average of the component statistics, a heuristically
less compelling choice. (Indeed, if one applied the Union-Intersection principle to
the pairwise components one would obtain the Studentized Range statistic instead
of the F-statistic). Definitions (3.2), (3.3), on the other hand, are based on simpler t-
statistics which compare two means, whereas definition (3.4) is based on ̂ -statistics
for all contrasts, a more complicated notion.

4. F-statistics in balanced two-way ANOVA The usual analysis of a two-
factor design involves three F-ratios, one for each main effect and one for interaction.

Each of these F-statistics can be expressed as a mean of appropriate f2's, as follows.

Denote the A and B factor levels as i(= 1,..., k) and j(= 1,..., q) , respectively,

the number of replications in the (i,j) -th cell as n ^ = ΐii+n+j/n (this expression

being possible since the layout is assumed to be balanced), where n;+ = ΣQj=i n*,i»

n+j = Σi=i n*,j> a n d n = Σi=i nH- = Σ j=i n + j The mean in cell (i,j) is denoted

by Xij, and the marginal means by X{. — Σ*=i n+j%ϋ/ni X j = ΣiLi ^i
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x.. = Σi=i Σ?=i rii+n+jXij/n. Also, s2 denotes the independent error variance
estimate.

The A main effect statistic can be defined as the average

of the squares of the pairwise A levels statistics ^,eeA = {x%- — Ze )/[s\/ni+ + ne+].
This is analogous to definition (3.2). The B main effect statistic can similarly be
defined as the average

( 4 2 ) FB = 2 ^ Ί W
W ' j=l 9=1

of the squares of the pairwise B levels statistics tj,geB = (x.j — x g)/[sJn~^ + n+J].
The AB interaction statistic can also be defined as an average

.. k k q q

(4.3) FAB = 4n(k_1), 1} Σ Σ Σ Σ ( n i + + n«
^ ' ^ ' i=l e=l j=l g=l

of the squares of the tetrad difference statistics

/_ _ _ _
U,eeA,j,geB = {%ij - Xej ~

 xig + x

v / r I n n ή n .

e 9 ) / N n n + n + ̂ -^— + ].
which test AB interaction at A levels i and e and B levels j and g (Gabriel, Wax and
Putter, [6]). This can be proved by applying the earlier arguments twice, once for
j and g and once for i and e. Again, (4.3) provides a heuristic basis for explaining
FAB since null AB interaction is equivalent to the lack of interaction between any
two levels of A and any two levels of B.

Alternative definitions are based on one-vs-the-rest ^-statistics analogous to (3.3).
Other alternatives are those based on maxima of the appropriate linear sets of
contrasts (Bradu and Gabriel, [2]) and are analogous to those of (3.4).

Similar results could be derived for balanced higher-way ANOVAs.

5. The Hotelling-Lawley Trace of one-way MANOVA One of the statis-
tics for testing one-way MANOVA is the Hotelling-Lawley trace

k

(5.1) trlSoS-1} = triΣnjfrj-xfS-1},
3=1

where ΐtj is the multivariate (column) vector of means of the j-th sample whose
size is nj, the overall mean vector is x = Σ*= ΠjXj/n, where n = ΣjLi n3-> an<^ ̂ P
is the pooled "within samples" variance estimate. This is commonly presented as a
multivariate generalization of the between-to-within F-ratio of sums of squares in
univariate one-way ANOVA. More intuitive motivations can be provided by using
one or another of the following alternative, but equivalent, definitions of this trace
statistic, all of which are based entirely on Hotelling T2-statistics which are more
intuitive in their structure.
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The first alternative is based on the pairwise T2-statistics

ΊfΛ = (x, - x 9 ) τ S; 1 (x i - x,,)/^ 1 + n"1)

that compare the mean vectors x̂  and xp of pairs of samples j , g . Thus, the trace
in (5.1) can be defined as

v ' j=l g=l

an average of the Tj^'s, i.e., of the pairwise test statistics. The proof of (5.2) follows
the same lines as that of (3.2).

The second alternative definition is based on one-vs-the-rest T2-statistics analo-
gous to (3.3). A third alternative is that based on maxima of the appropriate linear
sets of contrasts and is analogous to those of (3.4). Again, similar definitions can
be derived for higher order MAN OVA.

6. Concluding remarks Alternative definitions of the variance, and of
ANOVA and MANOVA statistics, have been pointed out as being more heuristic,
that is, as having more intuitive appeal than the definitions that are almost
invariably used in classes and in texts. The classical definitions are conceptually
more difficult, but had presumably been introduced because of their analogies with
moments in physics. The beauty of their generalizations into lengths of projections
onto subspaces still makes them attractive for the mathematically sophisticated.
Also, they were computationally simpler than the heuristic definitions, and that
justified their use when pencil and paper computations were used but is irrelevant
today. Better intuitive understanding and more effective teaching should now be
sought by using the more heuristic definitions, either instead of, or in addition to
the classical ones.
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