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In this paper, X has a binomial (n,p) distribution, where n is known
and p is unknown, 0 < p < 1. Furthermore, let / be a given real valued
continuous function on [0,1]. We will be interested in the question exactly
when the "natural" estimator T(X) = f(X/n) of f(p) is admissible, always
under squared loss.

1. Introduction. In this paper, X has a binomial (n,p) distribution, where
n is known and p is unknown, 0 < p < 1. Furthermore, let / be a given real valued
continuous function on [0,1]. We will be interested in the question exactly when the
"natural" estimator T(X) = f(X/n) of f(p) is admissible, always under squared
loss. Special attention will be paid to the function

(1.1) /o(p) = max(p, 1 - p),

with associated estimator

(1.2) TO(X) = fo(X/n) = max(X/π, 1 - X/n).

It was stated by Johnson [4, p. 1586], and is easily shown, that:

i. Ifn = 2m is even and n > 6 then To is inadmissible for fo.

(1.3) ii. If n = 2m is even and n < 4 then To is admissible for fo.

iii. If n = 2m + 1 is odd and n < 7 then To is admissible for fo.

A main contribution of this paper is the following result.

THEOREM 1. If n — 2m + 1 is odd and n > 9 then To is inadmissible as an

estimator of fo(p)-

There are many other results. Some related papers are included in the list of refer-

ences .

2. Auxiliary results. The following result is due to Johnson [4]. Here and
below n, j , fc, r and s usually denote integers.

THEOREM 2. With T(X) as a proposed estimator, of the form T(X) =
f{X/n)y the following properties (i), (ii) are equivalent:

i. T(X) is an admissible estimator of f(p) relative to squared loss.

ii. T(X) admits a representation of the form
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(2.1) T(j) = /(O) i/O < j < r; T(j) - /(I) if s < j < n;

(2.2) TU) = Γ /(p)^'-r(l -P)s-jμ(dp)/ / V " r ( l ~ p)s~j μ(dp) ifr<j<s.
Jo Jo

Here 0 < r, 5 < n, αnc/ r < 5 + 1, ιcΛe7e μ w a finite nonzero measure on [0,1] with
μ((O,l)) > 0. Equivalently, μ is not entirely carried by the pair {0,1}.

COMMENTS. Johnson [4] instead used the parameters r' = r -1 and sr = s + 1 .
Note that the denominator in (2.2) is strictly positive if r < j < s, mainly due to
the condition that μ((0,1)) > 0.

The case r = s + 1 will also be called the trivial case. Here T is always admissible
and has the simple form

(2.3) T(j) = /(0) for 0 < j < r - 1 = s; T(j) = /(I) for s + 1 < j < n.

Here r is unique unless /(0) = /(I).
Also rather simple is the case r = s. Here, one may as well assume that T(r) φ

/(0), for, if not, then T is a trivial estimator of the form (2.3), but with r replaced by
r + 1. Similarly, one may assume that T(r) φ /(1) Condition (2.2) with j = r = s
obviously implies that

min{f(x) : 0 < x < 1} < T(r) < max{/(z) : 0 < x < 1}.

Hence, 0 < po < 1 exists with f{po) = T(r). Since T(r) φ /(0), one has po > 0.
Similarly, T(r) φ /(I) implies po φ 1; thus, 0 < po < 1. Now observe that (2.2)
with j = r — s is satisfied by the 1-point (Dirac) measure μ = dPo. It satisfies

Prom now on, we assume that T is not of the trivial form (2.3). Choosing r as
large as possible and 5 as small as possible, one can always achieve that r < s;
f(r) φ /(0) and f(s) φ /(I). In fact, such r = r(T);s = s(T) are uniquely given
by

(2.4) r = min{j : T(j) φ /(0)}; s = max{j : T(j) φ /(I)},

where j G {0,1, ..,n}. Always 0 < r < s < n.

LEMMA 1. Let T be a nontriυial admissible estimator of f(p) and let r, s be
as in (2.4) Further assume that j o e {r,r + 1,...,s} exists such that

(2.5) TOO) = inf / := min{/(p) : 0 < p < 1}.

Then necessarily

(2.6) TO) = inf / for all j <E {r + 1,..., s - 1}.

An analogous result holds when T(jo) = sup/ for some r < j o < s.
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Proof of Lemma 1. Since T is admissible and nontrivial, there exists a measure
μ as in Theorem 2, with 0 < r < s < n a s i n (2.4). Consider the measures η and σ
on [0.1] defined by

η(dp) := cpi°-r(l-py-i°μ(dp); σ(dp) := d^-r(l-p)s

Here c and d are uniquely defined positive constants. Prom (2.2),

T(jo)= f f(p)η(dp); T(j)= f f(p)σ(dp).
Jo Jo

Thus the given property T(jo) = inf / is equivalent to the probability measure η
being supported by the compact set

in the sense that η(Sc) = 0, while the desired property T(j) = inf/ is equivalent
to σ(5c) = 0. It thus suffices to verify that σ is absolutely continuous with respect
to η. In more detail, one even has that

- > o f o r a l l o <

dη c \l-p

Also observe that σ({0}) = 0 and σ({l}) = 0. The latter follow from r < j < s;
thus j — r > 0 and s — j > 0.

COROLLARY. Thus a nontrivial estimator T of /(p), which does not have the
rather strange property (2.6), nor the analogous sup/ property, can be admissible
only when

(2.7) inf / < T(j) < sup /, for all j = r, r + 1,..., 5.

APPLICATION. Consider the special case

(2.8) T(X) = f(X/n).

Superficially, this might seem to be a "natural" estimator of f{p). Note that T(0) =
/(0) and T(n) = /(I). Assume further that

(2.9)

Then T is nontrivial with r = 1 and s = n — 1, from (2.4); (even when for instance
n = 3; /(0) φ /(I); / ( |) = /(I) and / (§) = /(0)). Lemma 1 implies that T is
inadmissible for f(p) when
(2.10)

/ ( - J = inf/ for some 1 < j < n - 1; / ( - ) > i n f / f o r s o m e 2 < fc < n - 2.

And T is also inadmissible for f(p) when
(2.11)

/ I L j = S Up / for some 1 < j < n - 1; / ί - j < sup / for some 2 < k < n - 2.
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For example, the criterion (2.10) (with j = m and k — m ± 1) immediately yields
that the estimator

(2.12) TO{X) = fo(X/n) = max(X/n, 1 - X/n)

is inadmissible for fo(p) = max(p, 1 — p) when n = 2m is even and n > 6. This
confirms part (i) of assertion (1.3).

Similarly, criterion (2.11) (again with j = m and k — m ± 1) implies that
T(X) = X(l — X/n) is inadmissible for f(p) = np(l — p) when n = 2m is even and
n > 6, as was already observed by Brown, Chow and Fong [2].

In the sequel, T = T(X) is a fixed nontrivial estimator of /(p), (not necessarily of
the form (2.8)), while r = r(T), s = s(T) are defined as in (2.4). Thus, 0 < r < s < n
while T(r) φ /(0) and T{s) φ /(I) .

Next, consider the continuous functions g(j,p) on [0,1] defined by

(2.13) g(j,p) = (/(p) - T(j))pi-'{1 - p)-',{j = r,r + 1,..., •).

It is important to note that

(2.14) p(r, 0) = /(0) - T(r) # 0; g(j, 0) = 0 for r < j < β;

^(5,1) = /(I) - T(s) φ 0; ff(j, 1) = 0 for r < i < s.

THEOREM 3. Let T be a fixed nontrivial estimator of f(p) as above. Then in
order that T be admissible it is necessary and sufficient that there exists a finite
nonzero measure μ on [0,1] satisfying the moment conditions

(2.15)

We further assert that such a nonzero measure μ (if it exists) automatically satisfies

Proof. In view of Theorem 2, it suffices to prove the last assertion. Thus, suppose
μ is a nonzero measure on [0,1] satisfying (2.15). In view of a remark following
Theorem 1, one may as well assume that r < s. Now suppose that μ((0,1)) = 0;
that is, μ is of the form μ = aδo + βδi with a > 0, β > 0, a + β > 0. Applying
(2.15) with j = r and using (2.14), one obtains that

0 = ag(r,Q) + βg(r, 1) = α(/(0) - T(r)), and thus a = 0.

Similarly, β = 0 from (2.15) with j = 5, and thus α + β = 0, a contradiction.
EXAMPLE. If n = 4 then the estimator TO(X) = fo(X/n) is admissible for

fo(p) = max(p, 1 — p), as follows from Theorem 3 with μ — δo + 4^/2 + 5χ. This
same measure implies admissibility if n = 3. If n = 2 (thus r = s = 1) then
admissibility of To for / o leads to the equation f(fo(p) — l/2)μ(φ) = 0. It is
satisfied by μ = δχ/2 , and by no other probability measure on [0,1].

THEOREM 4. Let T be a fixed nontrivial estimator of f(p) as above and let
r = r(T), s = s(T) be as in (24) thus 0 < r < s < n. Then the following five
properties (i)-(v) are equivalent.
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i. T is inadmissible.

ii. There is no measure μ on [0,1] satisfying (2.15) and μ((0,1)) > 0.

iii. There is no nonzero measure μ on [0,1] satisfying (2.15).

iv. There exist constants c(j) (j = r, r + 1,..., s) such that

s

(2.16) ]Γ c(j)g(j,p) > 0, for allθ<p<l.
j=r

v. There exist constants c(j) (j = r, r + 1, ...,$) such that

s

(2.17) ^2c(j)g(j,p) > 0, for all 0 < p < 1.
j=r

REMARK. The results in the present section can also be developed by starting
instead of from Theorem 2, from the equivalence of the properties (i) and (iv) of
Theorem 4, which can easily be proved directly.

Proof of Theorem 4. Theorem 3 essentially says that (i), (ii) and (iii) are equiva-
lent. Since it is obvious that (iv) => (v), it suffices to show that (v) => (ii) and (iii)

Proof that (v) => (ii). Let the left hand side of (2.17) be denoted by φ(p). It
satisfies φ(p) > 0 for 0 < p < 1. By continuity, φ(0) > 0 and φ(l) > 0. Now suppose
μ were a measure on [0,1] satisfying (2.15) and μ((0,1)) > 0. Then it follows that

pi

=
JO

and we have a contradiction.
Proof that (iii) => (iv). Here we assume that there exists no probability measure

μ on [0,1] satisfying (2.15). In other words, (letting N = s — r + 1), the origin 0 in
R^ does not belong to the convex and compact subset K of R^ consisting of all
points y — (yr, 2/r+i,..., ys) £ R N that admit a representation

yj = / 9U,P)μ(dp) for j = TV

for some probability measure μ on [0,1]. For each 0 < p < 1, taking μ = δp, we see
that

h(p) G K, where h(p) = {g{r,p),g{r + l,p),. . . ,g(s,p)).

Since 0 ^ K, there exists a hyperplane ]Γ c(j)yj = 0 in KN (passing through 0)

such that Σj=r

cϋ)yj > °> f o r a 1 1 y e κ i a n d h e n c e for e a c n p ° i n t y - Λ ( P ) I n

other words, Σ)=r c(j)g(j,p) > 0 for all 0 < p < 1, which is precisely condition
(2.16).
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3. Proof of Theorem 1. In the present section, we take / = / o, that is

(3.1) /(p) = Soip) = max(p, 1 - p) for 0 < p < 1.

All admissibility statements below refer to / = / o . Note that

(3.2) /(I -p) = Sip); /(pi) > S(P2) if 0 < Pl < p2 < 1/2.

We further assume that n = 2m + 1 is odd. Our main goal is to prove that

(3.3) TO(X) = f{X/n) = max(X/n, 1 - X/n)

is inadmissible as soon as n > 9. Let T = T(X) be any estimator of S(p) satisfying

(3.4) T(j)=T(n-j), forj = 0,...,n.

By the way, T can be shown to be inadmissible unless /(0) > T(0) > . . . > T(m) >
/(1/2). For convenience, we impose the slightly stronger condition that

(3.5) 1 = /(0) = T(0) > T(l) > . . . > T(m) > /(1/2) = 1/2;

(as happens for T = To). Thus, (2.4) and (3.4) yield that r(T) = 1 and s(T) = n - 1 .
Further recall from (2.13) that

(3.6) g(j,p) := (/(p) - T ϋ ) ) ^ - ^ ! - p)*»-i, (i = 1,... ,n - 1),

where /(p) = max(p, 1 - p). From (3.2) and (3.4),

(3.7) g{n -jyl-p)= g(j,p), for j = 1 , . . . , n - 1 = 2m.

From part (v) of Theorem 4, T is inadmissible if and only if there exist constants
c(j) (j = 1,2,..., 2m) such that

n-l

(3.8) 0(p) := ^ c(j)g(j,p) satisfies φ{p) > 0 for all 0 < p < 1.

Using (3.7), one has

n-l

0(p) + 0(1 - p) =

Consequently, if (3.8) is possible at all, then it can even be attained in such a way
that c(n — j) = c(j) for all j. In which case (3.7) implies that φ(l — p) = φ{p).
Showing (3.8) is equivalent to

(3.9) φ[p) := Σ cU)\sU>P) + 9(n - j,p)] > 0 for all 0 < p < 1/2.

Next, consider the 1:1 map of [0,1/2] onto [0,1] defined by

z = p/(l - p), thus, p = */(l + ^) and 1 - p = 1/(1 + z).
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In view of (3.4) and (3.6), and f(p) = 1 -p = 1/(1 + z), (if p < 1/2), the inequality
(3.9) is thus equivalent to

(3.10) Σc(j)[l/(1 + z) - T(j)] 7 > 0 for 0 < z < 1.
j=i V + Z)

Let

(3.11) aj = l/T(j)-l, and thus, T(j) = 1/(1 + α, ), ϋ = l,...,ro).

It follows from (3.5) that

(3.12) 0 < αi < α 2 < ... < α m < 1.

Multiplying (3.10) by (1 + z ) " " 1 > 0, and letting c(j)/T(j) = d(j), we see that
(3.10) in turn is equivalent to

m

(3.13) ^2d(j)[aj - z](l + ^ - i H 1 ) ^ ' - 1 > 0 for 0 < z < 1.

i=i

In this way, we have proved the following result. Recall that always n = 2m + 1 is
odd while T = T(X) is an estimator satisfying (3.4) and (3.5).

THEOREM 5. In order that the estimator T be inadmissible (for f = fo and
squared loss), it is necessary and sufficient that (3.13) holds for at least one choice
of the constants d{j), (j = l,..,ra).

COROLLARY. If n = 5 (thus m = 2) then T is always admissible for fo.

Proof of Corollary. Let m = 2. It suffices to prove the impossibility of (3.13),

which now is of the form

(3.14) <ψ(z) := c[otι - z](l + z3) + d[a2 - z](l + z)z > 0, for 0 < z < 1.

Here c and d are constants and 0 < αi < α 2 < 1. It is impossible that c = 0
since the second term changes sign at z = c*2 The first term dominates for z small,
hence, c > 0. In order that ψ(z) > 0 for a\ < z < α 2 we need that d > 0. But then
φ(z) < 0 for a2 < z < 1.
Prom now on, let m > 3; that is, n > 7.

DEFINITION. We will say that the estimator T is strongly inadmissible (for fo)
if and only if there exists constants di, d2, d$ such that (3.13) holds with

(3.15) d(j) = 0 for 1 < j < m - 3,

and

(3.16) d(ra - 2) = di; d(ra - 1) = d2; d(ra) = d3.

If such constants di, d2, d3 do not exist then we will say that T is weakly admissible.

COMMENTS. One can show that weak admissibility of T is equivalent to ordi-

nary admissibility of T relative to the new risk function

Rj(T,p) = £ ( n V ( l -p)n-j(T(j) - f(p))\
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where n = 2ra 4-1 and J = {j : m — 2 < j < m + 3}. Equivalently, no better (in
the ordinary sense) estimator T" exists with T'(j) = T(j) for all j £ J.

Note that the above admissibility properties depend only on the three values
αm_2, OLm-i and α™, that is, the values T(ra — 2), T(m — 1) and T(m). In view
of Theorem 5, strong inadmissibility is a sufficient condition for inadmissibility.
Equivalently, weak admissibility is a necessary condition for admissibility.

Below, we will show, among other things, that To is strongly inadmissible (and
hence inadmissible) if ra > 4, that is, n > 9, thus proving Theorem 1. As a byprod-
uct, the proof also shows that To is weakly admissible if m = 3. Since then the
restriction (3.15) is void, this proves that To is admissible if n = 7. As was already
asserted by Johnson [4].

To simplify the notation, we introduce
(3.17)
a = α m _ 2 = 1/T(m - 2) - 1; b = α m _ x = 1/T(m - 1) - 1; c = am = 1/T(m) - 1.

Thus α, 6, c depend on T and are such that 0 < α < 6 < c < l , in view of (3.5). In
the spcial case T = TO these become

(3.18) α = α m = (m-2)/(m + 3 ) ; 6 = 6 m = ( m - l ) / ( m + 2);c = c m = m/(m + l).

Namely, To(j) = max(j/n, 1 — j/n) = n — j/n if 0 < j < m. A central role will be
played by the polynomials

hi(z) = Λi(o, z) = (a - z)(l - z + z2 - z3 + * 4 ) ;
(3.19) h2(z) = h2(b, z) = (b- z)(l -z + z2)z;

of degree 5, 4 and 3, respectively. They depend on α, b or c, respectively, and thus
on T. Observe that hι(z) = hι(a,z) changes sign at z = a and similarly for h,2(z)
and hz(z).

First dividing (3.13) by (1 + z)zm~3 > 0 (when 0 < z < 1) and using (3.15),
(3.16), (3.17), (3.19), one sees that T is strongly inadmissible if and only there exists
constants di, cfe, d3 such that

(3.20) diftiO*) + d2h2(z) + d3h3(z) > 0, for all 0 < z < 1.

Here, for z > 0 small, the first term dih±(z) dominates while h\{z) > 0, showing
that necessarily ά\ > 0. We may and will assume that dι — 1. Also note that the
LHS of (3.20) has at z = 0 the value fti(0) = a > 0. Letting s = -d2 and t = d3,
condition (3.20), for some constants s and ί, is thus equivalent to the validity of

(3.21) φ(z) := hχ(z) - sh2(z) + *ft3(z) > 0 for all 0 < z < 1,

for some choice of s and t. Which in turn is equivalent to the estimator T being
strongly inadmissible. By the way, (though we will not need this), it is easily seen
that (3.21) can only hold when both s > 0 and t > 0.

LEMMA 2. The estimator T is weakly admissible if and only if there exists a
probability measure μ on [0,1] such that

f ̂
Jo

(3.22) / hi(z)μ(dz) = 0, for i = 1,2,3.
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Proof. If such a measure μ does exist then (3.21) is impossible thus T must be
weakly admissible. Conversely, if μ does not exist then in the usual way, (see the
last part of the proof of Theorem 4), one shows that (3.21) must hold for some
choice of s and t, equivalently, T is strongly inadmissible.

In the sequel, we regard b and c as being fixed, 0 < 6 < c < 1. In view of (3.17),
this amounts to fixing the values T(ra — 1) and T(m). While the parameter a will
be treated as a variable with 0 < a < 6; (equivalently T(m — 1) < T(m — 2) < 1).

Let L = L(b,c) be the set of all values α, 0 < a < 6, for which T is weakly
admissible. By Lemma 2, L can also be defined as the set of values 0 < a < 6,
such that there exists a probability measure μ on [0,1] satisfying (3.22), (where hi
depends on a).

Let R = R(b,c) denote the complement of L = L(b,c) relative to the interval
(0,6). That is, R is the set of all values 0 < a < b for which T is strongly inadmis-
sible. Equivalently, R is the set of values 0 < a < b such that (3.21) holds for at
least one choice of the constants s and t. Since the continuous function f(z) > 0 on
[0,1] as in (3.21) is bounded away from 0, it follows easily that the set R is open.

In (3.21) only the term hι(z) = hι(a,z) depends on the parameter α. By (3.19),
/ii(α, z) is itself a strictly increasing function of α, hence, so is the RHS of (3.21).
Therefore, 0 < a < α' < b and a € R imply that a' € R. Hence, R = R(b, c)
is an interval of the form R = (α*,6), with α* = a*(b,c) such that 0 < α* < b.
Accordingly, the complement L = L(b,c) of R is a left interval of the form L —
(0, α*]. In this way we have proved the following.

LEMMA 3. In order that T be strongly inadmissible (for fo), it is necessary
and sufficient that a*(b,c) < a < b. Thus T is weakly admissible if and only if
0 < a < α*(&, c). Here a, b and c depend on T as in (3.17).

The following Theorem 6 yields a rather explicit formula for the boundary value
a*(b,c). In view of Lemma 3, that formula supplies us with a rather explicit test
towards determining whether or not a given estimator T (satisfying (3.4) and (3.5))
is strongly inadmissible. The proof of Theorem 6 is based on Lemmas 4 and 5 below.

THEOREM 6. For each choice of the numbers 0 < b < c < 1, let

(3.23) zo -zo = zo{b, 2 ^ _ v

and further

,, 0Λλ ,h A cz2

o + (l-c)(l-z3

o)zo

(3.24) ao = ao(b, c) = ,2 + ( 1 _ c ) ( 1 _ 23)

We assert that

(3.25) 0 < z o < α o < 6 < c < l

and further that

(3.26) a*{b,c) = ao{b,c).
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LEMMA 4. Let 0<b<c<lbe fixed. We claim that there is precisely one
value 0 < a < b, such that there exists a probability measure μ of the special form
μ = aδζ + βδi satisfying 0 < ζ < 1 and

(3.27) / hi{z)μ(dz) = ahi(z) + βhi(l) = 0, for t = 1,2,3.

In fact, necessarily a = ao while μ is unique with ζ = zo. Here zo and ao are defined
as in (3.23) and (3.24), <™d do satisfy (3.25).

COROLLARY. In view of Lemma 2 and the existence of the above special
measure μ, it follows that for the special choice a = αo(6, c), the estimator T is
weakly admissible. Equivalently, ao = αo(6,c) belongs to L(6,c) = (0,α*(6,c)]. In
other words,

(3.29) α*(6,c) >ao(b,c) > 0.

Proof of L e m m a 4. Observe, from (3.19), that hi(l) < 0 for all i and that hi,
/i2, hz have no common zero. Hence, (3.27) can only hold with a Φ 0 and β φ 0 in
such a way that p = hi(z)/hi(l) is independent of i. In fact, p = β/a. The latter
independence is equivalent to

(3.30) M O M i ) - M O M i ) = 0; M O M i ) - M O M i ) = o.

We will see that (3.30) is only possible when ζ = zo and a = αo, in which case
0 < C < a and thus p > 0. Afterwards, one may as well assume that a > 0, β > 0,
and a + β = 1, yielding the desired probability measure μ.

In view of these comments, we only need to satisfy condition (3.30). The first
equality (3.30), divided by ζ(l — ζ), immediately leads to the quadratic equation
ψ(ζ) = 0, where

(3.31) V(C) := (1 " c)ζ2 - (1 - bc)ζ + 6(1 - c).

Since ψ(0) > 0, ψ(b) = 6(6 - c) < 0, and ψ(l) = 6 - c < 0, the two zeros Ci and C2
are such that 0 < & < 6 < 1 < (2- In fact, Ci = zo with zo as in (3.23). Note that
0 < zo < 6; thus 0 < z o < 6 < c < l .

Prom (3.19), the second equation (3.30) is linear in α. Taking ζ = zo, and solving
for the parameter α, we find that necessarily a — ao with ao exactly as in (3.24).
Since zo < c, we see from (3.24) that zo < ao < c.

In proving that ao < 6, we employ the equation

hi(ao,zo)h2(l) - h2(zo)hi(ao,l) = 0 ,

which is linear in αo, and is a consequence of (3.30). Solving for αo, one finds that

(3.32) ao = 6 - -
+ zo-b(l-z$) '

clearly showing that ao < 6. The formulae (3.24) and (3.32) are naturally equivalent,
because of (3.23). This completes the proof of Lemma 4.
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LEMMA 5. Let 0 < b < c < 1 be fixed. Then there exist constants B, C, s,
and t, such that, for all < z <1,

(3.33) hi{ao,z) - sh2(z) + th3(z) = (1 - z){z - zo)
2(z2 -Bz + C)>0.

Here, zo — zo(b,c) and ao = a,o(b,c) are as in (3.23), (3.24)-

Proof of Lemma 5. Given 0 < b < c < 1, let μ = aδZo + βδ\ be the unique
probability measure described in Lemma 4; (it depends on 6 and c). Let further
Ή = Ή(b, c) denote the linear space consisting of all polynomials h{z) of degree < 5
that satisfy

(3.34) ί h{z)μ(dz) = ah(zo) + βh(l) = 0.

Clearly, dim(Ή) = 5. From Lemma 4, we know that h°, h2, h3 G Ή, where h%(z) :=
Λi(αo, z). Since (3.34) is true for instance if h(zo) = Λ(l) = 0; also Hu H2, H3 € Ή
where Hi(z) = z3~*(l — z)(z — zo)

2 (i = 1,2,3). Hence, the six functions ΛJ, /ι2, 3̂?
Hi, H2) Hz must be linearly dependent. In other words, there exist constants r, s,
t, A, B, C not all zero such that

rhι{ao,z) - sh2(z) + th3(z) = JUTI(Z) - 5^2(z) + CHz(z).

In more detail, we have the identity

(3.35) r(ao - z)(l - z + z2 - zs + z4) - s(b - z)(l -z + z2)z + t(c - z)z2

= (l-z)(z- zo)
2(Az2 -Bz + C), for all z.

Comparing the coefficients of z5, we see that A = r. We claim that r φ 0.
For, suppose r = 0 and thus A — 0. Afterwards, taking z = 0, (3.35) yields that

0 = Cz2, and hence C = 0. The coefficients of z4 and z yield next that

s = B and - sb = -z2

oB\ thus, (b - z2

o)B = 0.

Hence, B = 0 and thus 5 = 0. Finally, ί(c — z)z2 = 0; thus ί = 0 and we have a
contradiction. Here and below we also use that 0 < z o < α o < 6 < c < l .

Knowing that r φ 0, we may as well take r = 1; thus yl = 1, so that (3.35)
becomes the identity (3.33). It only remains to show that

(3.36) ψ(z) := z2 - Bz + C > 0, for all 0 < z < 1.

Taking z = 0 in (3.35) (with r = A = 1) yields αo = Cz^; thus C = ao/z* > 1.
Hence, (3.36) is obvious when B < 0 and also when S 2 < 4C. It remains to consider
the case that B > y/ΪC > 2. Clearly ψ(z) decreases for z < B/2 and hence for z < 1.
It thus suffices to prove that V(l) > 0, or equivalently, that

(3.37) B < 1 + (7, that is, B < 1 + αo

To prove this we need the formula

/« n̂x o 2ao/zQ + α Q b ~ 2 b ^ "

(3.38) ^ = jΓ—2
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For the moment, let us assume (3.38). Substituting (3.38), the desired inequality
(3.37) takes the form

(3.39) (2zo + z2

o + bzl - b)ao < bz2

o + 2bz

as is obvious when the coefficient of ao is nonpositive. Assuming that this coefficient
is positive, and recalling that ao < 6, it suffices to prove the inequality obtained
from (3.39) by replacing ao by b. But then

RHS - LHS = (1 - z2

o){b - zof > 0

and we are ready.
It only remains to prove (3.38). We will use the identity (3.35) where r — A = 1

and C = ao/zl. Talcing the coefficients of z and z4, one arrives at the equations

zo{2C + Bzo + Czo) = 1 + αo + s; 1 + B + 2zo = 1 + ao + s.

Eliminating $ and solving for B, one obtains (3.38).
Proof of Theorem 6. We must prove (3.26). In view of the Corollary following

Lemma 4, it only remains to show that

(3.40) a*(b,c)<ao{b,c).

Let ao = ao{b,c). Since Λi(α, z) is strictly increasing in a (see (3.19)), it follows
from Lemma 5 that there exist constants s and t such that

/ii(α,z) — sti2{z) + th,3(z) > 0 when ao < a < b and 0 < z < 1.

It follows from criterion (3.20) that T is strongly inadmissible for all a £ (αo, b). In
other words, (αo,6) is a subset of (α*,6), proving (3.40).

Proof of Theorem 1. Here, we restrict ourselves to the special estimator
TO(X) = max(X/n, 1 - X/n) with n = 2m + 1 odd. Prom (3.18), the associated
parameters α, 6, c axe now given by

ra-2 ra-1 m
(3.41) α m = — — bm = —7; cm =m + 3' '" m + 2' m m + 1

Let further

(3.42) ^:=^(^cm) = α o ( ^ , ^ τ ) .

Here the function ao(b,c) is defined by (3.23) and (3.24). It follows from Theorem
6, that T o is strongly inadmissible (and thus inadmissible) if and only if

(3.43) am > a*m.

We will show that (3.43) is true for all m > 4. The validity of (3.43) for small values
m > 4 is obvious from Table 1. If m -> 00 then zo -> 2 - Vs = 0.26794919. Since
a>3 < 3̂? we know that for n = 7 the estimator To is weakly admissible and thus
admissible. See the remark preceding (3.17). Similarly, am > a^ for 4 < m < 10
implies that To is strongly inadmissible (and thus inadmissible) if n is odd, 9 < n <
21.
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Table 1: Numerical Assessment of the Validity of (3.43)
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m
3

4

5

6

7

8

9

10

15

20

30

100

1000

n
7
9

11

13

15

17

19

21

31

41

61

201

2001

Zo

0.15100

0.17712

0.19376

0.20527

0.21370

0.22014

0.22521

0.22931

0.24184

0.24824

0.25472

0.26395

0.26755

0.20122

0.26199

0.31205

0.35475

0.39193

0.42475

0.45402

0.48033

0.58061

0.64811

0.73360

0.90120

0.98912

O"fn

0.16667

0.28571

0.37500

0.44444

0.50000

0.54546

0.58333

0.61539

0.72222

0.78261

0.84849

0.95146

0.99502

In the general case T = To, employing (3.23), (3.24) and (3.42), together with
some tedious but straightforward calculations, one arrives at the explicit formula

(3.44)

where

a*m = [P(m) + Q(m)y/3(1 + m

P(m) = -21 - 74m - 135m2 - 121m3 - 58m4 + 3m5 + m6;

(3.45) Q{m) = (2m + 1)(11 + 17m + 17m2);

R{m) = (m + 2) (3 + 5m2 + 6m3 + 12m4 + m5).

Because of (3.43), we are mainly interested in the sign of Δ(m) = am — a^. Elimi-
nating the square root, (and possibly dividing by Rim)), one easily sees that Δ(m)
has everywhere the same sign as the polynomial

(3.46) S(m) = -37 - 46m - 43m2 + 6m3 + 3m4.

Since S(m)/m3 is strictly increasing, for m > 0, S(m) has a single zero mo > 0; in
fact, mo = 3.54344. Consequently,

(3.47) αm > α* if m > mo; αm < a*m if m < mo.

Implying that To is strongly inadmissible (and thus inadmissible) for all odd n =
2m + 1 with m > 4; that is, n > 9. This proves Theorem 1. By the way, the
inadmissibility of To for all sufficiently large m already follows from α^ = 1 -
11/m + O(l/m2) and am = ^ ~ | = 1 - 5/m + O(l/m2).
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