
Inference for the Proportional Mean Residual Life Model

BY DAVID OAKES AND TAMRAPARNI DASU

University of Rochester and AT & T Labs Research

We review the proportional mean residual life model for the analysis
of reliability and survival data. In the single sample case with known
baseline distribution the Fisher information matrix for the proportionality
parameter is derived. A class of weighted ratio estimators is defined and it
is shown that the right choice of weight function yields an asymptotically
efficient estimator. It is conjectured that the methodology will extend to
the two-sample case, i.e. with unknown baseline distribution.

1. Introduction Oakes and Dasu [15] introduced the proportional mean resid-
ual life (PMRL) model for the analysis of reliability and survival data . As its name
suggests, in the two sample case this model implies that the mean residual life
(MRL) functions for the two samples ej(x) = E(Xj — x\Xj > x), (j = 1,2) are in
a constant (i.e. #-free) ratio 0,

(1) e2(x)=e(x;θ)=θe1{x).

We assume that the corresponding survivor functions Sj(x) = P(Xj > x),(j — 1,2)
are absolutely continuous.

In many ways the MRL function provides a more natural basis for the modeling
of such data than the hazard function - the basis for Cox's proportional hazards
model ([4]). The former summarizes the entire residual life distribution, whereas the
latter relates only to the risk of immediate failure. In industrial reliability studies
the MRL function may therefore be more important than the hazard function in
the planning of strategies for maintenance and replacement. Demographers have
used the life expectancy or expectation of life function e{x) + x for centuries in
studies of human populations. Hall and Wellner [10, 11] gave a detailed discussion
of the properties of the MRL function. They characterized the class of distributions
with linear MRL, e(x) = ax + b, and showed that the only continuous distributions
with this property are the Pareto, exponential and a certain class of rescaled beta
distributions.

The MRL function does have one serious disadvantage for statistical work. It is
highly dependent on the tail behavior of the survivor function, and is therefore hard
to estimate with precision, especially when no parametric form can be assumed. The
model (1), if it is appropriate, would be expected to lead to substantial gains in
efficiency in the estimation of each βj(x) for large x.

In this paper we study parametric and nonparametric methods for the analy-
sis of data from (1). We concentrate mainly on the one-sample problem, where
the baseline survivor function S±(x) is assumed known, but we also consider the
the two-sample problem where both functions are unknown. In Section 2 we re-
view some known results concerning the MRL and its sample estimate, and present
conditions for the existence of a PMRL family. Section 3 considers maximum likeli-
hood estimation of θ in the one-sample case, derives a simple expression for Fisher's
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information and compares the asymptotic variance of the maximum likelihood es-
timator (MLE) with that of the simplest nonparametric estimator, the ratio of
ordinaxy sample means. Still in the one-sample problem, Section 4 proposes a class
of non-parametric estimators for 0, based on the ratio of a linear combination of
the estimated MRL functions for the sample at a series of prespecified support
points, and show that as these support points become dense, the asymptotic vari-
ance approaches the reciprocal of Fisher's information. The corresponding vector
of coefficients converges to a discrete necessarily positive delta function spike at the
origin x = 0 and a "density", which may take positive and/or negative values, over
x > 0. Section 5 considers the corresponding class of estimators for the two-sample
problem. Explicit results are harder to obtain in this case. The optimal vector of
coefficients can be determined under the null hypothesis S2(x) = Sι(x) i.e. θ = 1 of
equality of the two survivor functions, and also for general values of θ when the dis-
tributions are from the Pareto family. A computational recipe is given to determine
the optimal vector of coefficients in the general case.

The PMRL has attracted some interest among researchers, for example Asadi [2]
and Ma [12, 13] focus on multivariate extensions of the PMRL property. However
the only published work on inference for the PMRL model, by Maguluri and Zhang
[14], exploits the fact that the hazard function for the "forward recurrence time
density" fn{x) oc S(x) is the reciprocal of e(#), so that the PMRL model for S(x, θ)
translates to a proportional hazards model for /#(#,#). Maguluri and Zhang [14]
use this relationship to derive a consistent estimator for the regression coefficients
β in an extended model with the constant θ replaced by a function exp(/3Tz) of a
covariate vector z. However they do not address the efficiency properties of their
estimator.

Some of the results of the present paper axe contained in [6], which also includes
more detailed examination of certain special cases of model (1). We acknowledge
many useful discussions with Jack Hall.

2. Mean Residual Life and the PMRL Model The mean residual life func-
tion e(x) for a survivor function S(x) exists for all x if and only if the ordinary
expectation μ = e(0) = E(X) is finite. It is well known, see [8] or [3, p. 128], that
for any continuous distribution S(x) is determined by its MRL function

e(x) = E(X-x\X>x) = I* ^ d U

by the inversion formula

(2) 5 ω

Since e(x)S(x) -» 0 as x -ϊ oo it follows that fQ{e(u)}~1du -+ oo as x -» oo. Also,
it is easily seen that the expectation of life function e(x) + x must be non-decreasing
in x, so that e'{x) > — 1 for all x. Integration by parts gives a simple formula for
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the variance σ(x) = var(X - x\X > x) of the residual life at age x,

This formula, attributed by Hall and Wellner [11] to Pyke [16], becomes more
intuitive when viewed from a martingale perspective. It shows that σ(x) is finite
for all x if and only if σ(0) = var(X) is finite.

The exponential distribution has the simplest form of the MRL function, e(x) =
6, a constant. When the MRL is linear in #, i.e. e(x) = ax + 6, (2) gives

where the subscript + means that we take the positive part of the expression in
parentheses. This function is a valid survivor function provided b > 0 and a > — 1.
We refer to (4) as the Hall-Wellner family. For a > 0, a = 0 and — 1 < a < 0 we
obtain respectively a Pareto distribution, an exponential distribution and a beta
distribution Beta(l,—l/a — 1), rescaled to have support [0, — b/a]. The natural
estimator of the mean residual life function e(x) at age #, based on a random
sample -XΊ,... ,Xn of size n from the survivor function S(x), is the sample mean
of the residual lifetimes of the observations that exceed x, that is

e { x ) -

where the summations run from i = 1 to n, and I(y) = 1 or I(y) = 0 according as
y > 0 or y < 0, so that the denominator Σ I{X% — x)= N(x) is the total number of
observations that exceed x. If N(x) — 0 then we arbitrarily set e(x) = 0. Properties
of this estimator were studied by Yang [17] and by Csδrgδ, Csorgδ and Horvath [5].
These authors showed that the process

converges in law to a Gaussian process Z(x) with zero mean and covariance function

(5) %fi
Here x\/y and x/\y denote max(#, y) and min(#, y) respectively, and the convergence
is over any finite interval [0, L] contained in the support of S(x).

Since the form of the covariance function C(x, y) is important in our work we
give a brief heuristic derivation here. Suppose that 0 < x < y < T, where T lies
in the support of S(x), and consider cov{e(x),e(y)}. We condition on the vectors
{I(#), I(y)}, where I(z) = {I{X% — z), for z = #, y and i = 1,...,n}. The possibility
that N(x) = 0 may be ignored, since the probability of this event converges to zero
geometrically fast in n. The iterated expectation formula gives

cov{e(ar),e(y)} = JS[cov{e(a?)

+ cov[E{e(x)\I(x)J(y)},E{e(y)\l(x),l(y)}}.
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The second term converges to zero geometrically fast in n, since E{e(y)\I(y)} = e(y)
unless N(y) = 0. The first term times n is

as required.
Oakes and Dasu [15] used (2) to show that the PMRL model (1) implies the

relationship
1/0-1

I / " ^ V. l*ι\H<n ί

(6) S2(x) = S(x;θ)=S1(x)<

between the corresponding survivor functions. If Sι(x) is a survivor function and
0 < 0 < 1 then S(x;θ) as defined by (6) is always a survivor function, but if 0 > 1
this is not always true. To see this, consider the corresponding density f(x;θ) =
—S'(x θ), which may be written in the form

(7) ί(x]θ) =

where μi = ei(0). If e[(x) > 0 for all x this will be non-negative for all 0 > 0,
but if l/0o = max[0,-inf{ei(a:)}] > 0, then we must have 0 < 0O for (4) to be
a probability density function. In the sequel we shall assume that 0 is an interior
point of the parameter space, which implies that e'(x, 0) + 1 > c for all x and some
Oθ.

We define the PMRL family generated by a baseline survivor function S\ (x) to
be the parametric family {5(#;0),O < 0 < 0o}, where S(x]θ) is given by (6) and
we set 0o = oo if e[(x) > 0 for all x. The simplest PMRL family is the exponential,
with Sι(x) = exp(-px), (p > 0) and S(x;θ) = exp(-ρx/θ), (0 > 0). The Pareto
baseline survivor function Sι(x) = (1 + px)~a (a > 0,ρ > 0), a reparameterization
of (4), also defines a PMRL family, with

/ i \ 7

(8) S(x;θ) =
1 + ρxJ

where 7 = 1 + ςLψ^-
One further example of a PMRL family is worth noting. Suppose that e(x; 0) =

0exp(—α#), where 0 < a < 1 and 0 < 1. The inversion formula gives

\cf) u yX, Ό) '-
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a form of the Gompertz distribution.

3. Maximum Likelihood Inference - Fisher Information In this section
we consider maximum likelihood inference for the parameter θ of the proportional
mean residual life model generated by an arbitrary baseline survivor function S\{x).
Equation (7) gives

\ogf{x;θ) = logμi - 21oge1(a:) - \

The score function (derivative of the log-likelihood) is

dϊogf(x;θ) 1 f du 1

θθ θ

The second derivative of the log-likelihood may be written in terms of e(x; θ) =
θei(x) and its derivative e'(x;θ) in a; as

θ2 log /(*; θ) _ 2 fx du

dθ2 θ2 Jo e(u;θ) θ2

The Fisher information I(θ) per observation is

! _ _ e'(x;θ)

e'(x;θ)}2 *

{
fl2log/(*;g)l 1 Γ /"» [* du

E{ 7r^ > = -^ 2 / / ——— /(a; β)dx - 1

+ e'(x;θ)}2

With the aid of the identity e' = — 1 + ef/S the last term may be written as

dxdX
e{x;θ)2f{x;θ)

Since θ is an interior point of the parameter space we have e' + 1 > c > 0 so that
S/(ef) < c" 1, so that both integrals above are finite. After a little further algebra
and use of Fubini's theorem, we obtain the expression

α )
When the baseline survivor function Si (x) is known, standard large sample the-

ory shows that the limiting distribution of \/n{θ — 0), where θ is the maximum
likelihood estimator of 0, is normal with mean zero and variance I(θ)~1.

For the exponential distribution with S(x;θ) = exp(—x/θ) we find that I(θ) =
θ~2 as expected. For the Pareto distribution (8) (with a known) we find that

For the Gompertz family (9) we obtain, after some manipulation,
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where 0 = 1 / 0 - 1 and Eι(z) = f^°(e~u/u)du is the exponential integral [1]
Formula (10) yields an interesting though unsurprising inequality for 7(0). The

Cauchy-Schwartz inequality gives

Using Pyke's formula for the variance, (3), we obtain

(U) m >
vaxe(X)

This inequality states that the asymptotic variance of the parametric estimator is
always less than or equal to (l/n)x the coefficient of variation, which equals the
variance of the simple ratio estimator 0 = X/μι. Equality in (11) is obtained if and
only if

Sjx θ)

where the constant of proportionality may depend on 0 but not on x. Rearrangement
and integration yield

1 A • B

=

J™S(u;θ)du S(x;
for some constants A(θ) and B(θ). This can be integrated again to give the the
quantile function S~1(l — •), but with some awkward constants of integration. It
seems likely that there exist families other than the exponential for which 0 is
asymptotically efficient at a particular value of 0, but there can be no such family
for which 0 is asymptotically efficient for all 0.

4. Ratio Estimators - Single Sample Problem We have seen that the ratio
0i = X/μi of the sample mean to the population baseline mean gives a consistent
estimator of 0 that is asymptotically normally distributed with

For any prespecified point x i.e. in the support of X, the ratio e(x)/eι(x) also gives
a consistent asymptotically normally distributed estimator of 0. For any integer k
and vectors x = {#i,... Xk}Ύ and w = {wi,.. .Wk}Ύ we may consider the ratio of
linear combinations

~ w τe(x)
0fc(x,w) = \ \ ,

w 1 e i (x)

where e(x) = {e(#i),... ,e(xk)}Ύ and eχ(x) = {ei(#i),... ,ei(#fc)}T It is under-
stood that some of the coefficients Wi may be negative. The variance of 0(x, w) can

be simply calculated in terms of the matrix Σ with entries

_ σ(xi V Xj)
σij
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In fact

r/)/ \Ί w τ Σ w
W ) }

It follows by simple matrix algebra that, for given #, the variance of 0(x, w) is
minimized for

and that the achievable minimum variance is

Although the optimal vector w* depends on the unknown parameter 0, a stan-
dard argument shows that replacing θ by a preliminary i/n-consistent estimate,
for example the ratio X/μi, leaves the asymptotic distribution of the estimators
unaffected. Of course in the single sample problem considered here the vector ei (x)
is known, since it is a function of the known baseline survivor function Sχ(x).

The special structure of the matrix Σ allows it to be inverted explicitly. For
Σ = DBD, where D is the diagonal matrix with elements σ{ — σ(a^), (i = 1,..., k)
and B has elements bij — 6/ where I = min(i,j) and bι = l/(σS)ι. Here and in the
sequel we write (£)» = Sι(xi) and (σS)i = σ(xi)Sι(xi) for notational economy. The
inverse of B is a tridiagonal matrix with diagonal elements ί̂ 7 = (6* — ί^-i)""1 +
(6i+i — δi)"1, (i — 1, , k — 1), bj~k = (6^ — b^-i)" 1 and off-diagonal elements
tfr.Q = bl+Q = — (6<+i - bi)-1, (i = 1,..., Jfe - 1). After a little further algebra
we find that Σ " 1 has elements

(_D
(σS)2 - (σ

+(σS)t - (σS)^ + (σS)i+1 - (σS), } '

σk (σS)k -

Σ!~ =°> ( l * - i l > i )
The reciprocal of the optimal variance is

{(eS)i+1 - (eS)i}i(S) ( g ) } 2

Once the optimal vector w* has been chosen for a given x it is theoretically possible
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to perform a second optimization, over x for the given fc, to find the optimal choice
of support points # i , . . . , #&. Dasu [6] gives some explicit evaluations of x<ι for the
case k = 2 with xx = 0 in the Hall-Wellner family. The coefficient w^ turns out to
be positive for the rescaled beta distribution but negative for the Pareto. For the
latter distribution the contribution of the second support point is to downweight
the influence of the extreme observations on the estimated ratio of means.

Finally we consider the limiting case as the set of points Xi become dense in the
support of S\(x). It is easily seen that w* has as its limiting form a delta function
spike at x = 0 of magnitude

dW*(0) = -

and for x > 0 a continuous component

"' ~κ"'dx\f(x)e(x)

Here and in the remainder of this section we drop the argument θ and write μ = e(0).
We can show directly from (5) that the variance of the estimator

g, = fΦ)dW*(x)

is equal to the reciprocal of the Fisher information I(θ) given in (10), showing that,
in the single sample case, the ratio estimator achieves full asymptotic efficiency with
appropriate choice of W(t). We do require the additional assumption that σ(x) is
finite as well as e(x).

We first show that

We have

f e(x)dW*(x)=θ2I(θ).

e(x)dW*(x) = e(0)dW*(0) + / e(x)dW*(x)

-Γo f{y)e(y?
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We now examine var{/ e(x)dW*(x)}. This requires a little care, because of the
0). We have

nίvar I / e(x)dW*(x)\ + dW*(0)2var{e(0)}l

/»OO /»OO

= 2n / / cov{e{x),e{y)}dW*{x)dW*{y)
J x=0 J y=x

-+2Γ Γ τπχdW*(x)dW*(y)
Jχ=θJy=χ δ\X)

= 2 / σ(y)-
Jy=O

S{y) ;dW*(y).
f(y)e(y)2

Since σ(y)S(y) = f°° e(z)2f(z)dz by (3) this expression equals

/

OO /»OO

var{e(0)}

The second terms cancel so that

nvaJ / e(x)dW*(x) >-* Θ2I(Θ).
{Jo J

Putting these results together and using e(x) = θeι(x) we obtain

as claimed.

5. Ratio Estimators - Two-Sample Problem In the previous work we have
assumed that the baseline survivor function S\(x) was known. We now relax this
assumption and consider the case of two-samples X\ — ( I n , . . . ,Xim), X2 =
(X21, , X2n) from Sι(x) and 52(x; ^) respectively. The first subscript denotes the
sample, the second (if present) the observation.
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Likelihood estimation for the two-sample problem would involve estimation of
the unknown function Si(x), and its derivatives, which is beyond the scope of this
paper. However, as in the one sample case, the simple ratio of means, now

Θ = X2/XU

in an obvious notation, will still be consistent and asymptotically normally dis-
tributed for θ as will the ratio of linear combinations

- w τ e 2 (x)
0 ( x'w ) = ^ i ^ ) '

where the notation follows that of the previous section. For given fc, and support
points 0 = a?i,..., Xk the optimal weights and the variance of the resulting estimate
can be estimated empirically from the sample.

The limiting variance of the estimator is given by

(xw)}^

Choice of an optimal vector of coefficients now requires inversion of the matrix
Σ 2 + 0 2 Σi. There is no immediately obvious explicit formula for this inverse except
under the "null hypothesis" θ = 1 when also Σ 2 = Σi, when the optimal weights
are the same as those derived in the previous section. The formulas of Section 4
extend easily when Σ 2 oc Σi also. However this can be true for all θ only in the
Hall-Wellner family for which a simple parametric maximum likelihood estimator
of θ is available.

In the general case, since both Σ ^ 1 and Σ ^ 1 are band-diagonal it follows that
Σ ^ 1 + 0~2Σ^X is also band-diagonal. Graybill [7, Section 8.3] gives a necessary
and sufficient condition for the inverse of a matrix to be a band-diagonal matrix.
It must be of expressible in the form

(b\ 62 63 64 ... bk \

CI3&3 C&3&4

CI3&4 £1464

This provides a recipe for computing

(Σ^+^Σ-1)"1,

although not an explicit formula.
Finally Hall [9] gave the general matrix result

(A + B)- 1 = A - ^ A " 1 + B " 1 ) - ^ - 1 ,

which shows that the inverse of the matrix (A -I- B) can be expressed in terms of
A" 1 , B " 1 and (A" 1 + B " 1 ) " 1 . These formulas provide a computational recipe for
inverting Σ 2 + 0 2Σi and hence for calculating the optimal vector of coefficients
w(x). However the results are not transparent and the limiting behavior as the
number of support points become dense is not clear.
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6. Discussion The PMRL provides a simple example of a semiparametric
estimation problem which is not rank invariant, in contrast to the proportional
hazards model and the proportional odds model which have received much recent
attention.

There remain many unanswered questions with regard to this model. First, it
would be of interest to derive an explicit or implicit formula for the optimal function
w* (x) in the two-sample case. Secondly, we may conjecture that use of this optimal
weight function would lead to an asymptotically efficient estimator. In proving this
an explicit formula for the semiparametric Fisher information in the two-sample case
would be useful. Finally, since the optimal weight function depends on the unknown
survivor function Sι(x) and its derivatives as well as the unknown parameter 0,
construction of a feasible efficient estimator is likely to remain a hard problem,
even if the other questions can be answered satisfactorily.
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