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The context is that of a sequential trial based on Brownian motion with
linear stopping boundaries, possibly truncated. Along with the monitoring
process, a secondary Gaussian process with constant mean is observed; the
mean is to be estimated once the monitoring process reaches a boundary.
We provide a formula for the conditional bias, conditioning on the final
position of the monitoring process; this formula can then be integrated
to obtain an overall bias. Special attention is given to evaluating bias -
mathematically and by Monte Carlo - of the Kaplan-Meier estimator of
one of the survival functions (and similarly for the Nelson-Aalen estima-
tor of the corresponding cumulative hazard function) upon completion of
a survival-analysis-based two-arm clinical trial. Implications in a recent
clinical trial are cited.

1. Introduction. It is now standard practice in large clinical trials to have
interim monitoring and the potential for early stopping—sequential clinical trials.
Statistical issues then arise in the interpretation of the data, issues connected with
the bias that inevitably enters in statistical procedures that were designed for fixed-
sample (nonsequential ) trials when used to interpret data from sequential trials.
Substantial advances have been made in recent years to eliminate such bias in
the primary inference: deciding whether or not there is a statistically significant
effect (with significance quantified by an appropriately adjusted p-value). Progress
has also been made in removing bias from estimators of the primary parameter,
but some issues remain. Relatively little progress has been made in evaluating, or
removing, bias in inference about other parameters, whether testing hypotheses
about them or quantifying their possible magnitude. Examples of such secondary
inference are

• Estimating the cumulative hazard function in a specific arm, using the Nelson-
Aalen statistic

• Estimating the survival function in a specific arm, using the Kaplan-Meier
statistic

• Estimating area between two survival curves

• Testing for a strata x treatment interaction in a trial in which recruitment is
stratified

• Inference regarding regression coefficients in a Cox regression model.

2. The Problem. The monitoring process Z(t) is assumed to be a Brownian
motion with drift θ and unit variance per unit time. The secondary process W(t) is
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Gaussian, jointly with Z(t), with a constant mean δ. The covariance function of W
and the joint covariance function cov[Z(s), W(t)] complete the definition. These
latter two functions are assumed to be known (parameter free); θ is the parameter
of primary interest in a sequential test, while δ is a secondary parameter to be
estimated when the test terminates.

The monitoring process has linear stopping boundaries:

upper(U) : αi + bit, t < to;

lower(L) : α0 + M> t < to\

vertical(V) : t = to

for αo < 0 < aι,to < +00, and 61 < 60 whenever to = 00; let T be the boundary-
hitting time.

For any fixed time t, W(t) is an unbiased estimator (and MLE) of the secondary
parameter δ. And W(T) continues to be the MLE of δ when T is the hitting time
of stopping boundaries, but typically a biased estimator. It follows from Theorem 2
of [9] that the bias of W{T) is

(1) E[J β(s,T)d[Z(s)-θs]),

where

β(s,t) = | - cov[Z(s),W(t)}.
OS

We also define Tu(< 00) as the first time the monitoring process hits the upper
linear boundary (ignoring other boundaries), and TL similarly for the lower linear
boundary. Write B(s) = Z(s) — 0s, a standard Brownian motion. In terms of B(s),
stopping times are as above but with the upper and lower boundary slopes shifted,
ΐrom bi to bi-θ (i = 0,1).

We propose computing the bias (1) by first conditioning on the coordinates of
the monitoring process when first hitting the stopping boundary, and later inte-
grating with respect to the distribution along the stopping boundary. Expressions
for the density along linear boundaries are available [1, 3]. Thus, in principle, the
only problem is to compute the conditional expectation of /0 β(s,T) dB(s), given
(T, B(T)) with T the hitting time of the shifted boundaries for Brownian motion B.
The only random element here is the process B(s), with the conditional measure.
(If conditioning only on the first position, the measure would be Brownian bridge,
but conditioning also implies that path lies between stopping boundaries.)

3. The Conditional Bias. For general linear boundaries, the methods below
can be developed to provide a Volterra integral equation of the second kind for the
conditional bias. We consider first a simpler case where only one boundary (say,
the upper) is present, and indicate extensions and approximations for the general
case afterwards. Then the boundary location (ί, x) satisfies x = a\ -f (61 — θ)t, say
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uu(t) =E{ β(s,t) dB{s)

pt

Mχ(t) = E(exp{iλ / β(s,t) dB(s)}

λ=0

a + &£, and hence it is sufficient to condition on T (= Tu) = t. We apply results
and methods from [9] to compute the desired conditional expectation

Define

Note that

Ύυ = ί ) .

According to Theorem 3 of [9], the characteristic function M\(t) satisfies

= l(t)Kx(t) - J*Mx(s)Ί(s,t)Kx(s,t)fa(s,t) ds

c(t)-f*c(s,t)fa(s,t)ds

where, for s < t (and some changes in notation),

β(τ,t)dτ,

σβ(8,t)= f\β{τ,t)-β{s,t)fdτ,
J S

Kx(s, t) = exp [iλb(t - s)β(s, t) - -λ2σβ(s, t)},

c(ί) = (o + bt)/t = {a It) + b,

t — s

and where fa(s^t) is the conditional density of TJJ at s (< t), given B(t) = α + bt.
Prom Brownian bridge considerations, we find

(3) fa(s,t) = ^

with φ the standard normal density and fB(s)\B(t)(%\y) t n e conditional (given
B(t) = y) density of B(s) at point x. It follows that the denominator in (2) is aft.
Moreover

(4)

t-s
cov[Z(t),W(t)] - cov[Z(s),W(t)}};
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and we write β(t) = β(O,t) = cov[Z(ί), W(t)]/t.
Using the relation

Kλ(t)= f Mx(s)Kx(s,t)fa(s,t)ds,
Jo

it follows from (2) that

Mχ(t) = Kχ(t)(l - —β(t)) +— f β(s,t)Mχ(s)Kχ(s,t)fa(s,t) ds.

Taking derivatives with respect to λ and letting λ ->• 0 gives

Uu(t) = (o + bt)β(t) - -β(t) + - / β(s,t)fa(s,t) ds.

In terms of the original monitoring process and stopping boundaries, and using (4),
we conclude:

PROPOSITION 1. LetTu be the hitting time by Z of the (single) linear boundary
OΊ + bit (αi > 0). Then the conditional bias of the estimator W(Tu) of δ, on the
event {Tv < oo}? is

vu(t)=E(W(Tu)\Tu = t)-

(5) = [ ^ -

+ ί τ^—(s cov[Z(t),W(t)]-t coy[Z(s),W(t)])-fai(s,t) ds.
JO t — S \ ' Q>\

Similarly, with TL the hitting time by Z of the (single) boundary αo + bot (αo < 0),
the conditional bias uL(t) ofW(TL) on {TL < oo} is given by (5) with aι replaced
by - α 0 .

Note that the only dependence on the slope b\ in (5) is the implicit condition
that Z(t) = αi + ht. We speculate that, for many purposes, the leading term in
(5) will provide a satisfactory approximation; see later sections. Indeed, the second
term may vanish:

COROLLARY 1. //, for some function v(t),

(6) cσv[Z(a), W(t)] = %(*) for 0 < s < t,
t

then

(7)

If there is a vertical (truncation) boundary, at £o, (5) remains valid on the event
{Tv < to}; we deal with the possibility {Tu = to} below.
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We turn now to the general linear boundary case, but only on the event {T <
to}—and more specifically on {T = Tu < to} Write

p(t) = P(TL > t\TΌ =t)= pu(t)/Pu(t),

the ratio of the sub-density of T on the event {T = Tu} divided by the density of
T\j. The former is given in [3] while the latter is well-known to be

pu(t) = + U1'2) = -ώt{a + bt),

with φc the normal density with mean zero and variance c.
Then

βdB

β dB TL > t\τv = i) I p{t)

(8)

-E( f βdB;TL<t
^ Jo

Now writing qL(s\t) for the conditional density of T& at s, given Tu =

(9) = ή= ί β dB ds.

Integrating first over (0,5) and then over

βdB βdB

(10) ( ί βdB\ B(s) = ao + (b0 - θ)s,Tu = ή.

Finally, the conditional density #z,(φ) in (9) may be written as the joint density
of (TLITU) at (s,t) divided by the density of Tu at t; for $ < ί, the numerator is
also the joint density of (T, Tu) at (5, t), which equals pL(s)pu>(s) (t - s)/pu(t)—the
numerator here being the density of T at s on {T = TL} times the density of T{jt,,
at (t — $) where T{j,,, is the hitting time of the single boundary a[ + (61 — θ)u by
a standard Brownian motion B'(u) with a[ = aι — ao + (bι — bo)s > 0, i.e.

/ u\ _PL(s)Pu'(8)(t-s)
Pu(t)

Hence, (8-10) yield

- [ βdB B(s) =

{^ ί βdB

-θ)s,Tv = - s)pL(s) ds
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βdB- ί
The conditional expectation on the left as well as the one in the last term on the

right, involves two-boundary conditions, whereas the first two conditional expecta-
tions on the right involve only one-boundary condition and are given in Proposi-
tion 1.

For practical usage, we suggest substituting a one-boundary version for the last
conditional expectation on the right, thereby yielding an explicit approximation for
the conditional bias on the upper boundary.

On the other hand, by symmetry, a similar expression can be obtained for the
conditional on {T = TL = t} bias of W(T). Substituting this in the last integral on
the right, gives a second kind Volterra integral equation for

Vu(t)=pu(t)E([

which could be solved numerically.
Let
a{u) = a\ — α0 4- (&i — bo)u, for u > 0;
PL{S',CL) and pu(s a) be the densities of TL and T\j respectively, but with the

changed intercept a (instead of αo and a\ respectively);
vυ{t\a) be the vχj(t) defined by the right hand side of (5) with the changed

intercept α.

PROPOSITION 2. The conditional bias of the estimator W(T) of δ, given
{T = Tu = t}, on the event {T < to}, is

uu(t) = E(W(TU) I T = Tu = t J - δ = Vu(t)/pu(t),

where Vu(t) is the solution of the following second kind Volterra integral equation:

(11) Vu(t)=f(t)+ f K{s,t)Vu{s)ds
Jo

with

f(t)=Pu(t)vu(t;a1)- / pu(t - S]a(s))vu(t - s;a(s))pL(s) ds
Jo

nt

- \ PL(S)VU(S; -ao)pu(t - s; a(s))pL(s) ds
Jo

+ / { / vu{& - u] -a{u))pL(s - u] -a(u))pu{u) du}

x Pu{t - s; a(s))pL(s) ds
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and

nt

K(s, t) = - pL(u - s; -a(s))pu(t - u\ a(u))pL{u) du.
Js

A similar result holds for the conditional bias vL{t) ofW(T) given {T = TL = t}.

We now return to the case of boundaries consisting of upper and vertical com-
ponents, but no lower boundary—a truncated one-sided SPRT. As noted above,
what is yet needed is a formula for the conditional bias given that the process has
not crossed the upper boundary by time to and is at level x (< a -f bto) at time to.
Writing r(ί, x) = P{TV > t | B(t) = x), we find

(12) E^f βdB Tu>t,B(t)=x>) =E([ βdB;Tu>t\B(t)=x)/r{t,x).

The expectation term in the last expression in (12) is of the form dealt with in
(5). Similar arguments would lead to a recursive formula for two-boundaries with
a truncation—that is, general boundaries. Details are omitted.

4. A Random Sampling Model. When a Brownian motion monitoring pro-
cess serves as an approximation to a simple random sampling model, as considered
by Whitehead [7], a great deal of simplification occurs. Thus, we assume, that to
an adequate approximation, the stopping rule is based on a cumulative sum with
independent identically distributed increments reaching a linear boundary. Each in-
crement has expectation θ. Information is therefore proportional to sample size n.
A secondary process is based on another cumulative sum, with increments having
expectation <S, and W(t) represents the corresponding average. The correlation be-
tween increments in the two processes is a constant r. Then the covariance between
the two processes satisfies the condition in the Corollary with a constant v(t).

Then, as apparent in [7], and noted in [4, 5], the conditional bias of W{t) is
given by Corollary 1 (that is, the leading term in (5)), with a constant covariance
term. Thus, the second term in (5) may be interpreted as a departure-from-random-
sampling effect, while the first term relates the bias to that of Z(T)/T as an es-
timator of the primary parameter θ. This latter fact has been used in [7, 8, 4] to
derive bias adjustments, or fully unbiased estimators, of secondary parameters in a
random sampling model. Whenever the second term is small, the first term in (5)
may provide the basis for some bias removal from W(T).

5. The Bias of a Kaplan-Meier estimator after a Survival-Analysis-
Based Sequential Trial. A random sampling model, though useful in some ap-
plications, cannot cover many situations that can occur in secondary inference. In
this section, we consider estimating the survival function in a specific arm using
the Kaplan-Meier estimator. We will assume that the monitoring process is the
logrank statistic, plotted against its (estimated) variance. The model is such that
the observations {Eki,Xki, Uki), k = 1,2, i = 1,2,...,—where Ek% is the entry time,
Xki is the survival time and Uki is the censoring time for the i-th subject from arm
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A:—are independent random vectors with nonnegative components with (Eki,Uki)
and Xki independent for all i and fc. Define

Nki(t9a) = l{Eki + Xki < t,Xki < Uki,Xki < α},

Yki(t, a) = l{t - Eki > α, Xki > α, Uki > α},

and let

Nk = JTNki and Yk
i=l

be the counting process and the risk process for arm k. Let n = Πι +ri2, N. = i\Γχ +N2

andY.=Y1+Y2.
Assume that the limits

j m

(13) yk(t9α) = lim - V P(ί - Efei > α, C/fei > α)
77i—> oo 777, ^ ^

i=l

exist for all fc,ί, α and that they are continuous in t and α and positive. Assume
that ni/n ->> 7 and that 0 < 7 < 1. Denote y.(t,α) = ηyι(t,α) + (1 — 7)t/2(^^)
Let 5fe, Λfe and λ& be the survival function, the cumulative hazard function and the
hazard function respectively of the random variable Xki.

A natural nonparametric estimator of the value of the cumulative hazard at
survival time α, given the data that was accumulated by calendar time t, is the
Nelson-Aalen estimator

where Jk{t, s) = l{Yk(t, s) > 0}. The Kaplan-Meier estimator is given by

(14) S{^\t,a)--
s<a s<a

where

and similarly for ANk.
The logrank statistic can be defined as

Y{n)(t s)

Gu and Lai [2] proved the following:

For fixed Si — S (and therefore λi = X), suppose that as n -» oo? ^2 -> S
such that

\X2(s)/X(s) - l\X(s) ds = O(n-Γ
Jo
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and

uniformly in s £ / αrcd sups€/ |#(s)| < oo /or αZ/ closed intervals I of
{s £ [0,r] : 5(5) > 0}. Tften { n - ^ Z W ^ O < ί < r} converges weakly
in D[0,τ] to {Z(£),0 < t < τ}9 where Z(t) is a Gaussian process with
independent increments with drift

and variance

Under the Cox proportional hazards model with contiguous alternatives, i.e.
g(u) = —θ, the limiting process Z is a time-transformed Brownian motion with
drift θ and unit variance per unit time.

The (asymptotic) covariance structure between the monitoring process and the
Nelson-Aalen estimator for the group specific α-years cumulative hazard is given

cσv[Z(β),Λ2(t,α)] = -7 Γ ^ § ^ | λ ( t t ) du
Jo Cτ(ί,w)

for 5 < ί, t > a. Here we assume G(t,u) = P(Ei < ί - u,l7i > u) = P{E2 <
t — u, U2 > u).

The random field n 1 / 2 [5^(ί , α) — 5fc(α)] is asymptotically equivalent to the
random field -SfcίαJn^Aj^foα) - Λfc(α)). It follows that

cσv[Z(*),Si(i,α)] = -(1 - 7)Λ(α) Γ
Jθ

This suggests the following adjustments to the Kaplan-Meier estimators when
the trial was stopped at T = t:

(16) Sxftα) = 5i(*,α) - (1 - Ί)(^~~ ~ θ)Sx(t, a) logS^t, a)

and

(17) 52(ί,α) = 52(t,o)+
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where θ is a "good" estimator of the primary parameter 0, e.g., uniformly minimum
variance mean-unbiased estimator (UMVUE), or median-unbiased estimator, or
bias adjusted MLE.

6. Simulation Results. In order to evaluate the accuracy of these adjust-
ments to Kaplan-Meier estimators, we performed Monte Carlo studies. First, we
demonstrate that the original (naive, ignoring the sequential stopping rule) Kaplan-
Meier estimators are indeed biased. Then we show that the adjustments proposed
in (16) and (17), although based on the crude approximation of conditional bias of
the two-boundary stopping rule with only the first term of the conditional bias of
a one-boundary stopping rule (5), are accurate enough.

But before that, we need to introduce an appropriate measure of bias of these
estimators. One can use overall bias averaging the estimators over all simulated
trials. It can be argued that the conditional distribution, given that the trial lasted
to units of time, is a more appropriate measure under which the properties of an
estimator should be analyzed, e.g. one would expect that the estimators calculated
after early-stopped trials will perform differently from the estimators calculated
after late-stopped trials. Therefore, we propose the following definition of the con-
ditional bias of an estimator of survival function Sk {a) at point a upon completion
of the clinical trial:

E(sk(T,a)\τ>to)-Sk(a),

for given £0 A "good" estimator would have small both overall and conditional
biases over a reasonable range of ί0 values.

To assess the bias of the naive Kaplan-Meier estimator and the proposed ad-
justed one under each of these measures, data arising from a randomized controlled
clinical trial of a new treatment are generated. Upon entering the study, patients
are randomly assigned to one of the two groups, receiving either the new treatment
(TRT arm) or the control treatment (CT arm). Assume that patients enter the
trial uniformly during the two-year recruitment period. The primary endpoint of
the clinical trial is patient survival. The monitoring process is the logrank statis-
tic based on observations from the two arms. The proportional hazard model is
assumed. A triangular stopping boundary test is used for testing the null hypoth-
esis of no difference between treatments (θ = 0, where θ is the log hazard ratio)
versus the one-sided alternative that the new treatment is better with a 5% signif-
icance level and 95% power at θ\ = 0.63. The interim analysis is performed after
each month starting 6 months after the beginning of the trial. 1200 patients are
expected to be enrolled. This is a prototype of an ongoing Multicenter Automatic
Defibrillator Implantation Trial MADIT II. (By the time of revision, this trial has
been successfully terminated and results reported in The New England Journal of
Medicine, see [6].)

The simulations were performed for three situations: under the alternative hy-
pothesis θι, under the null hypothesis θ — 0 and under the in-between hypothesis
#i/2 which corresponds to the largest average duration of the trial. The survival
distributions were generated from the exponential distribution with 19% two-year
mortality rate in the control arm and the respective one for the treatment arm.
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The average duration of the trial was 27 months under both null and alternative
hypotheses and 31.5 months under the in-between hypothesis. 5000 such clinical
trials were simulated under each situation.

Results are presented in Figures 1-6. The overall bias in the naive Kaplan-Meier
estimator was negligible under the third situation. Under the alternative hypothesis,
the naive Kaplan-Meier estimator was slightly underestimating the control arm
survival at the early time points and overestimating it (even considerably) at the
late time points. The situation was reversed for the treatment arm. Similar behavior
(but in the opposite direction) was observed under the null hypothesis. However,
confining attention to late-stopped trials (those stopping after 24 months) there
was considerable bias for naive Kaplan-Meier estimator over the whole range of
time points. Late stopping led to over-estimating survival in the control arm and
under-estimating it in the treatment arm under the alternative hypothesis, with the
reverse tendency under the null hypothesis.

On the other hand, the adjustment with θ = θ works perfectly in all situations
except under the in-between hypothesis. In this case, the stopping time is close to
the vertex and thus the stopping rule effect is not so crucial, leading to an almost
unbiased estimate of the primary parameter 0, which implies that the adjustment
is negligible, see (16) and (17). Fortunately, the naive Kaplan-Meier estimator is
working well in this situation (see Figures 5 and 6), so there is no practical need
for adjustment at all.

Unfortunately, the situation is not so optimistic when a "good" estimator θ is
used in (16) and (17). See Figure 7 and 8 (the alternative hypothesis situation).
One explanation is that this estimators of θ are "good" in the ideal framework of
the Brownian motion. In these simulations (like in the real trial), the monitoring
was done on logrank statistic which is only approximately a Brownian motion.
Furthermore the interim analysis was done after each month, not continuously. The
known effect of excess over the boundary in discrete time monitoring may well
apply in this situation. For example, we found, by limited simulation studies, that
the actual bias of the UMVUE in this situation is of the similar magnitude as
that of MLE, only in the opposite direction. We are working now on the discrete
time adjustments for UMVUE and median unbiased estimators of the primary
parameter. Another explanation could be the high correlation between the MLE
Z(T)/T and θ, diminishing the adjustment in (16) and (17).
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Figure 1: Bias of Kaplan-Meier estimators, θ = θ\. Est. θ = θ.
Control tθ=12 tθ=18

tθ=24 t0=30 tθ=36
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Figure 2: Bias of Kaplan-Meier estimators, θ = θ\. Est θ = θ.
Treatment tθ=12 tθ=18

tθ=24 t0=30 tθ=36

/
y

B
ia

s 
K

-M

).
O

15
 

0
.0

 
0

.0
1

0

Original

Adjusted

\ — ^ '

20 30

time

20 30

time



BIAS IN SEQUENTIAL ESTIMATION 25

Figure 3: Bias of Kaplan-Meier estimators, θ = 0. Est. θ = θ.
Control tθ=12 tθ=18

tθ=24 t0=30 tθ=36
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Figure 4: Bias of Kaplan-Meier estimators, θ = 0. Est. θ = θ.
Treatment tθ=12 tθ=18
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Figure 5: Bias of Kaplan-Meier estimators, θ — θχ/2. Est θ = θ.
Control tθ=12 tθ=18

tθ=24 t0=30 tθ=36
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Figure 6: Bias of Kaplan-Meier estimators, θ = #i/2. Est. θ = θ.
Treatment tθ=12 tθ=18
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Figure 7: Bias of Kaplan-Meier estimators, θ = θ±. Est. θ is UMVUE.
Control tθ=12 tθ=18

tθ=24 t0=30 tθ=36
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Figure 8: Bias of Kaplan-Meier estimators, θ = θ\. Est. θ is UMVUE.
Treatment tθ=12 tθ=18
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