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This paper is concerned with general methods for making efficiency comparisons for esti-
mators with the aid of matrix inequalities. It is shown that a unified approach is possible
for several distinct cases in the general regression model, one involving quasi-likelihood
estimation and the other two generalized estimating equations. The paper includes some
specific comparisons between an ordinary least squares estimator and the best linear unbi-
ased estimator for an error component model. We also present some numerical examples.

1. Introduction

It is always interesting and useful to make efficiency comparisons in estima-
tion in statistics. For example, simple estimators which are suboptimal may
suffer little loss in efficiency relative to likelihood based estimators which are
difficult to use. For regression models and inferences, Heyde (1997) and Rao
and Rao (1998) present various results. In the present paper, we focus on
the following cases for which we give a unified treatment:

1. Heyde (1989) introduces composite quasi-likelihood estimators (QLE).
The comparison ensures that composition is generally advantageous. Heyde
and Lin (1992) and Heyde (1997) study quasi-likelihood estimators for the
general linear model. Two alternatives are ΘA and #Q5(y), the latter being
prefered on efficiency grounds.

2. Balemi and Lee (1999) make an application to clustered binary regres-
sion in the context of generalized estimating equation (GEE) (see Liang and
Zeger, 1986; McCullagh and Nelder, 1989, Section 9.4), and include an effi-
ciency comparison involving a working correlation matrix R and the correct
correlation matrix RQ.

3. Wang and Shao (1992) and Liu and Neudecker (1997) study Σ, the
asymptotic variance matrix of an estimator βι under the independence work-
ing assumption studied by Liang and Zeger (1986). Wang and Shao (1992)
give Σ an upper bound in the Lowner order sense. Liu and Neudecker (1997)
give both the determinant |Σ| and the trace trΈ an upper bound.
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4. Mukhopadhyay and Schwabe (1998) present a comparison result be-
tween an ordinary least squares estimator (OLSE) and the best linear un-
biased estimator (BLUE) for an error component model. This is an upper
bound for the largest eigenvalue of the difference of the two variance matri-
ces.

It is noted in the overview of Heyde (1997, Chapter 2) that GEE is closely
linked with QLE. The QLE/GEE framework is very general. We then make
a further study of comparisons for these cases. The structure of the rest of
the paper is as follows: In Section 2 we give a brief technical introduction
to the four cases. We introduce some comparison measures in Section 3,
and then establish an upper bound for each of the comparison measures in
Section 4. We present some numerical examples in Section 5. In the last
section, we make some supplementary remarks.

2. Four cases

Case 1. Consider the general linear model (see Heyde and Lin, 1992; Heyde,
1997, Section 11.2)

(2.1) y = Xβ + u,

where y is an n x 1 vector of observations, X — {X\,..., Xn)
f is an n x k

matrix of full column rank, β is a k x 1 vector of unknown parameters and
u is an n x 1 vector of independent residuals with mean zero and variance
matrix

where &(0) = σ2(Xf

iβ)2(<1-^ is a scalar function of 0, 0 = (/3',σ2,α)' is a

p x 1 parameter vector (p = fc + 2), and Xι — (Xn,..., Xik)' is a k x 1 vector,

i = 1,... ,n.

Using two different estimating functions we can obtain the two estimators

of interest, namely ΘA and 0Qs(y), though Anh (1988) derives ΘA via non-

linear least squares. For the efficient estimation of 0, it is shown that ΘA is

a strongly consistent and asymptotically normal estimator with asymptotic

variance

(2.2) Vι = {A!A)-1

and ΘQS(V) is a quasi-likelihood estimator with asymptotic variance

(2.3) V2 = (A!F-χA)-\

where F = F(θ) > 0 is a known function of 0 and in this context is a
diagonal and positive definite matrix, A — (dgi(θ)/dθj) is an n x p matrix
of full column rank. We have in the Lowner order

(2.4) Vι > V2.
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This means that V\ — V2 > 0 is nonnegative definite, so that ΘQS(V) is prefered

to ΘA, in terms of asymptotic efficiency. This result can be derived from (and

viewed as an analogous version of) the Gauss-Markov theorem; see Heyde
(1989).

Case 2. Balemi and Lee (1999) study

(2.5) μki =

where Y& = (Y&1,... ^YknkY denotes the n ^ x l binary response vector for
cluster k (i = 1,. . . , n/-; k = 1,. . . , K\ n\ H h ΠK = n), Y^i is the response
from the ith unit in the fcth cluster, μ^i is a function of the covariates vector
Xki and a vector /3 of regression parameters, assuming a generalized linear
model for the marginal responses.

They compare the efficiency of the estimator based on the exchangeable
working correlation relative to the efficiency that could be achieved if the true
correlation was known. The leading term in the variance of their estimator
is

(2.6) V3 = (X'R^X^X'R^RoR-iXίX'R^X)-1,

where R is an n x n block diagonal working correlation matrix, i?o > 0 is the
n x n block diagonal correct correlation matrix and X is an n x p matrix.
We define

and then obtain

(2.7) V3 > V4.

This means that maximum efficiency is achieved by using RQ as R. To study
how much we can lose by getting the correlation wrong, we can calculate the
relative efficiency e(c) of c β^j and cr/3χ (for two estimators βw and /3χ, the
"W" and UT" standing for "working" and "true" respectively) with c , a p x l
vector:

However, for notation convenience we consider efficiency measure E = E(c) =
l/e(c) instead. Following Hannan (1970, Section 7.2) or Scott and Holt
(1982), Balemi and Lee (1999) give the inequalities (in our notation)

(2.9) ! < E < <*££) ! ,
4ΛiΛ
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where λi and \ n are the largest and smallest eigenvalues of R~λR^^ respec-
tively.

The first relation in (2.9) corresponds to (2.7) or the Gauss-Markov the-
orem, and the second to a counterpart to it. We see that the two estimators
are equivalent if E reaches the lower bound (E = 1), but not in general.
To study E, we may need to examine its upper bound, i.e., examine how
far it is from 1. If it is (relatively) close to 1, we accept that R functions
(reasonably) well as RQ.

Case 3. Liang and Zeger (1986) discuss large-sample properties of the

solution βi of the equation X'AS = 0, where X = (xi,... ,xn)
f, A =

diag(Λ(a;i/3),..., h(x'nβ)), h(t) = d{g{μ))-ι/dt, S = (yi-<Γ Vi/?),... ,ί/ n-

g-\xf

nβ))', E{yi) = μ(θi), D(yi) = φμ{βi), g(μ{θi)) = x[β, μ is a scalar

function and μ is the derivative, g is a known link function, X{ is a p x 1

observable vector and β is a p x 1 parameter vector, i = 1,... ,n. See also

Wang and Shao (1992), for the assumptions and notations. Under some reg-

ularity conditions, βj is an asymptotically normal estimator with asymptotic

variance

Σ = (XfAAAX)-1XfAD(y)AX(XrAAAX)-1,

where Λ = diag[/ϊ(0i),.. .,μ{θn)].
To study Σ, Wang and Shao (1992) consider the case in which the vari-

ance matrix D(y) > 0 of y = (yi,..., yn)
f is of the form of their (2.1), i.e., a

block diagonal matrix with small block sizes. Let Γ = [X/AAD~ι(y)AAX]'1,
and observe that in the Lowner order

(2.10) Γ < Σ,

which again corresponds to (a version of) the Gauss-Markov theorem.
Wang and Shao (1992) give

(2.11) Σ < ( Λ ^
4Λ

where λi > > λn are the (positive) eigenvalues of A~1D(y). Having
(2.10) as a benchmark implying that Γ is the lower bound of Σ, we may
just examine the number multiplied by Γ in the upper bound in (2.11); the
number is larger than or equal to 1 and is a function only of the largest
and smallest eigenvalues of A~1D(y). Essentially (2.11) is equivalent to the
inequality established by Marshall and Olkin (1990).

In addition, for the same case Liu and Neudecker (1997) present

(2.13)
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where Γ and λi > > λn are the same as given in (2.11) (from which
(2.13) follows immediately). More than two eigenvalues λ̂  (i = 1,... ,p, n —
p + 1 , . . . , n; p > 1) are involved in the upper bound in (2.12), and then more
information is used and improvements on (2.11) are expected.

Case 4. A sample survey model with OLSE has been investigated earlier
by, e.g., Scott and Holt (1982) and Wang, Chow and Tse (1994). A random
effects model in the context of panel or longitudinal data analysis is discussed
by Liu and Neudecker (1997). An error component model is studied by
Mukhopadhyay and Schwabe (1998), which covers the models in both Wang,
Chow and Tse (1994) and Liu and Neudecker (1997). Most of these use
OLSE and BLUE methods. We then make a further study in the same
OLSE/BLUE context, which can be viewed as a special case for our general
comparisons.

Consider the model

(2.14) y = Xβ + e,

where y is an n x 1 observation vector, X = ( # i , . . . , xn)
f is an n x p matrix,

β is a p x 1 unknown parameter vector and e is an n x 1 error vector with

mean E(e) = 0 and variance D(e) = Ω. We compare the estimators of β.

Let β0 and β* denote the OLSE and BLUE of /?, respectively. Without

loss of generality, we suppose Ω > 0 is positive definite with eigenvalues

λi > > λn, X is of full column rank and n > 2p. We have

(2.15) β0 = {X'

(2.16) V5 = D(βo)

(2.17) β* = ( lΏ- 1 ! )- 1 !^- 1 ^

(2.18) V6 = Dφη = ( X ' Ω - 1 * ) - 1 ,

(2.19) Vh > Vfe,

where (2.19) comes from a typical application of the Gauss-Markov theorem.
The error component model in Mukhopadhyay and Schwabe (1998) is a

special case of (2.14), where

Ω = σ

2 ( l - p - δ)INT + σ2(pC + δB),

C = IN® J τ ,

B = JN®Iτi

σ2 > 0, p > 0 and δ > 0 are the only scalar parameters of the variance

matrix, 1 — p — δ > 0, n — NT, Im is an m x m identity matrix, Jm is an

m x m matrix of ones and ® indicates the Kronecker product of matrices.
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For further details, see Mukhopadhyay and Schwabe (1998). In particular,
when T = 1 this model reduces to the one in Wang et al. (1994).

To compare V5 and VQ in addition to (2.19), Mukhopadhyay and Schwabe's
(1998) idea is to study d, defined as the largest eigenvalue of V5 — VQ. They
give an upper bound for d as follows:

(2.20) rf^μp^λi-λn)

where λi > > λn are the eigenvalues of Ω, μp is the smallest eigenvalue of
X'X and the upper bound of d happens to be equal to the largest eigenvalue
of pC + δB.

For the above cases, there are other comparison studies and results, in
addition to (2.4), (2.9) and (2.10)-(2.13). For example, there are discussions
on correlation structures and relative efficiency for GEE. However, most of
them give calculations of efficencies themselves, based on simulation, see e.g.
Sutradhar and Das (1999). In contrast, we will proceed in the following
sections by studying alternative measures to E in (2.9) and establish further
results. In Cases 1, 2 and 4, we will give the efficiency measures and their
upper bounds. In Case 3, we will consider matrix determinants and traces
involving Σ and give their upper bounds.

3. Comparison measures

For the first case, we see from (2.4) that §A is not as good as ΘQS(V)- TO fur-

ther compare ΘA with ΘQS(V) from a different point of view, we can introduce

and examine matrix determinants and traces as our comparison measures.

The following measures are defined in a unified approach for all the four

cases:

= -tτίZ'WZZ'W^Z),
P

= \z'wz-{zfw-ιz)-ι\1/p,

= - tτ[Z'WZ - {Z'W-XZY\

\{Z'W~1Z)-1\1IP

where W > 0 is an n x n positive definite matrix and Z is an n x p matrix
such that Z1 Z — I. The measures d\ and ds are geometric means of the
eigenvalues of Z'WZZ'W~XZ and Z'WZ - {Z'W~ιZ)-1, respectively, and
c?2 and c?4 are arithmetic means. Note that d§ is linked to d\ and d% in
a nice way. The idea of introducing d\, c?2, ^3, c?4 and d§ is to study the
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difference between Z'WZ and (Z'W~1Z)~ι, and is similar to, e.g., the one
used to introduce (2.8) to study the difference between V3 and V4. However,
they are each implemented with a specific function in a (slightly) different
way. More information is then involved in and reflected by the determinant
and the trace functions in the definitions, with which we expect to gain
improvements in the comparisons. We choose Z/WZZ/W~1Z because it is
a "relative" difference between Z'WZ and (Z'W~1Z)~1, each of which can
be a variance matrix of some estimator for the parameter vector. We use
Z'WZ - (Z'W-xZyx because it is an "absolute" difference. In the simplest
form of the general linear model {y, Zβ, W}, W can be the variance matrix
of the error vector in the model, Z can be the design matrix with Z'Z = /,
and then Z'WZ is the variance matrix of an OLSE of β and (Z'W^Z)'1 is
the variance matrix of the BLUE. The result Z'WZ > (Z'W^Z)'1 is the
Gauss-Markov theorem, which implies those in which di, o?2? 3̂? 4̂ and d§
are lower bounded. The inequalities in which di, d2, ^3, <̂4 and d$ are upper
bounded can be viewed as just countparts of the Gauss-Markov theorem.
Also, di, d2 and d^ can be viewed as the modifications of the corresponding
measures in Rao and Rao (1998, Section 14.8), by taking a geometric or
arithmetic mean. It is important to take such a mean in the sense that the
measures are "normalized." We wish to see how the differently "normalized"
measures or their upper bounds behave or if a single one can be optimal
(better than the others). Some commonly used measures whose motivation
is to compare an OLSE and the BLUE can be found in Rao and Rao (1998).
A collection of relevant matrix inequalities is given by Liu and Neudecker
(1999). For further results and extensions, including those measures based
on Z'W2Z - (Z'WZ)2, see Drury, Liu, Lu, Puntanen and Styan (2002) and
references therein.

For the first case in which we compare ΘA with ΘQS(V) ? inserting W = F
and Z = A(AΆ)~1/2, we can present the comparison measures in the forms

(3.1) /iHWY^

(3.2) f2 = ^tv(V1V2-
1),

(3.3) h = [{AΆ)1'2^ - VMAΆf'ψ* = \A'A{VX -

(3.4) U = -

(3.5) /5

where (AΆ)1/2 is a square root of AΆ, V\ is given in (2.2) and V2 is in (2.3).
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To compare βw and βr in the second case, inserting W =
and Z = R-^XiX'R^X)-1/2 we have

(3.6) gi = \

(3.7) 92 = -

(3.8) gs = \(X'R-ιX)ι/2{Vz - VA){XfR-ιX)ι/2\ι/lp

= \

(3.9) gA = ±

(3.10) »5

where R1'2 is a square root of R, (X'R^X)1/2 is a square root of X'R~ιX,
V3 is given in (2.6) and F4 is in (2.7).

Notice that the reciprocals of f\ and g\ are genuine relative efficiency
measures in the sense of (2.8). In addition to the differences of the (asymp-
totic) variance matrices, /β, /4, #3 and 54 have an extra term, namely
(AΆ)1/2 or (X'R^X)1/2, which plays a role like c in (2.8). Each of fu

Ϊ2, /3, fa, h, Qi, 92, 53, 94 and #5 has an upper bound. If we find such an
upper bound not far from the lower bound 1 for /1 and /2, and not far from
0 for /3, fa and /s, we can accept ΘA as an alternative to ΘQS(V) i n the first
case. In the second case, if a chosen R leads to an upper bound not far from
the lower bound 1 for g\ and #2? and not far from 0 for #3, #4 and #5, it is
then reasonable for us to use this R in practice.

For the third case in studying Σ, we can insert W = A~1/2D(y)A~1^2 and
Z = Λ1/2ΔX(X/ΔΛΔX)"1 / 2 to have a set of forms similar to gι through
#5. For the fourth, we can consider W = Ω and Z = ̂ (X'X)""1/2, and then
rewrite d\ through cfe in terms of V5, Vβ and (X'X)1/2.

4. Upper bounds

We now present the upper bounds of the comparison measures. Without
loss of generality, we assume n > 2p. We have the following inequalities:

(4.1) 1 < \Z'WZZ'W~ιZ\ < f]

(4.2) p < tr(Z'WZZ'W-ιZ) <

(4.3) 0 < \Z'WZ - (Z'W-'zy'l <
{s't} t=i
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p

(4.4) 0 < tτ[Z'WZ - {Z'W^Z)-1} <

(4.5) 0 < \Z'WZZ'W-χZ -I\< maxTT
v~>-/ < = s l

 4 λ s W λ ί W

where W > 0 is an n x n matrix, Z is an n x p matrix satisfying ZfZ = /,
λi > > λ n are the eigenvalues of W, and the maxima in (4.3) and (4.5)
are each taken over all possible partial matchings (s, t) of (1,2, . . . , n) into p
pairs with the ith pair being denoted (s(i),£(i)).

The right-hand inequality in (4.1) is the well-known Bloomfield-Watson-
Knott inequality established by Bloomfield and Watson (1975) and Knott
(1975). For (4.2), see, e.g., Rao and Rao (1998). The upper bound in (4.3)
was first established in Drury et al. (2002) improving an early version in a
preprint of Liu and King (2002). The right-hand inequality in (4.4) is due
to Rao (1985). The result (4.5) can be established in a similar way to the
derivation in Liu and King (2002). By using (4.1) through (4.5), we obtain
the following results for the "normalized" measures in the four cases each
with a W > 0 which is given in Section 3:

„ _ J χ/p

(4.6)

(4.7) 1 < d2 <
" ~ P Ϊ

r p i V P

v i _ 3 _ y i i i β ( i )

(4,0)

Clearly, more (distinct) eigenvalues in (4.6) though (4.10) than in, e.g.,

(2.9) are involved. To make efficiency comparisons in the first two cases,

what we do is to examine the upper bounds of /i, /2, /3, /4 and /s, or

9i j 92, P3? 94 and 55, in addition to the one of E. For Case 1 we define

E = E(c) = c'Vic/c'V^c, with c being a p x l vector, and have

with λi > > λn being the eigenvalues of F.
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Note that (4.6) for the third case is equivalent to (2.12) given by Liu and
Neudecker (1997), though (4.7) is better than (2.13). The upper bound in
(2.13) containing the same information as (2.9) depends on only two eigen-
values, but (4.7) does involve more information. In Case 3, (4.8) through
(4.10) are useful and complementary.

In Case 4, we note that d in (2.20) is the spectral norm of the difference
between the variance matrices of βo and β*. Actually we can improve (2.20)
to have

(4-11) d < \ ' 2

This is deduced as follows:

v5-v6 = {x'xyι

where Z = X(X'X)~1/2, and we use in the third step a matrix Katorovich

inequality in, e.g., Liu and King (2002). This upper bound is sharper than

the one in (2.20), as \\/2 - XlJ2 < \\'2 + \lJ2.
The five upper bounds can be presented in the same forms as in (4.6)

through (4.10) with λi > > λn, which are the eigenvalues of Ω. We see

that the upper bounds of ds and d^ involving more than two eigenvalues are

better than those involving only two in the key terms λi — λn in (2.20) and

(Af-A?/ 2) 2 in (4.11).

5. Numerical examples

We study two examples and carry out numerical calculations to get an im-
pression of the upper bounds, which are dependent on our generic W.

Example 1. Consider Case 2. As a candidate for R = diag(i?i,..., RK) in
(2.6) consider

(5-1) Rk = Rk(p) = (1 - P)h + pJk,

where /& is an n& x n& identity matrix, J/~ is a matrix of ones, p is an
unknown parameter and n& is the size of the kth cluster (k = 1,...,AΓ;
n\ + - - - + ΠK = ή). This is the working correlation parameterized by p
(which must be estimated); see (2) in Balemi and Lee (1999). If p becomes



Efficiency Comparisons for Estimators 367

po, then Rk becomes Rko and R becomes #o We can find the n eigenvalues
of R~ιRo by using (5.1) rewritten as

Rk = (1 - p)Mk + (1 + (nk - l)p)Jk/nk,

where Mk = Ik-Jk/nk and using MkMk = Mk, JkJk = nkjk and MkJk = 0.
The n eigenvalues of R~λRo consist of K groups with the fc-th group being
nk — 1 eigenvalues equal to

(5.2) ^ = Ί^7

and one eigenvalue equal to

(nk - l)po

1 + (njb - l)p '
(5.3) μs =

If p = po, then μm = μs = 1. If p < p 0 , then μm < 1 < μs. If p > p 0 ,
then μm > 1 > μs. Based on (5.2) and (5.3), we are able to establish the
corresponding upper bounds, which are each a function of p.

To illustrate, we now give two figures, in which we draw plots for the
upper bounds against p. We assume n = 90, K — 30, n\ = = 7130 = 3,
p = 2 and run p from 0 to 0.95. In Figure 1, we set po = 0.1, and then
W\ = Wι(p) = #- 1 / 2(p)i?o(O.l)i?~ 1 / 2(p) which has the same eigenvalues
as R-1(p)R0{0.1). In Figure 2, we set p 0 = 0.4, and then W2 = W2(p) =
R-1/2(p)R0(0Λ)R-1/2(p). In each case, R^Ro has 90 eigenvalues: 60 of μm

and 30 of μs. We choose μm once and μs once to calculate the upper bound
of E, and choose μm twice and μs twice to calculate the upper bounds of #1,
g2, (73, #4 and 55; the upper bounds of E, g\ and g2 are the same, so are the
upper bounds of g% and #4. We observe that all the plots reach a minimum
at p = po (which corresponds to the lower bounds of E, #i, g2, #3, #4 and #5).
The performances of the plots also vary. In both figures, #3, #4 and g$ are
much more sensitive than E, g\ and g2, and g$ seems sharper and better than
gs and #4. The trends of E, #i, g2, #3, #4 and #5 in Figure 2 seem similar to
those in Figure 1, though the differences among E, g\, g2, #3 and #4 is more
distinguishable in Figure 2 for po = 0.4. The upper bounds stay (relatively)
close to the lower bounds even when |p — po| is close to 0.4, especially the one
for #5 in Figure 2. Thus we can be fairly certain of choosing a good ϋ , close
enough to Ro, with small loss of efficiency. However, the difference between
using R and i?o may still be small for a large range of p.

Example 2. Noting that F is diagonal in Case 1, we arbitrarily choose W$ =

Ws(p) to be a diagonal matrix. We choose W4 = W^(p) to be of a moving

average MA(1) variance structure as studied by Fomby, Hill and Johnson
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(1984, Section 10.7.2). Sometimes dependent variables are unavoidable. The
matrices W3 and W4 are both n x n and denned as follows:
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where n = 15 and 0 < p < 0.95. We find the eigenvalues of VF3 and W4, and
the corresponding upper bounds which are each a function of p. We draw
plots for the upper bounds against p in Figures 3 and 4. The upper bounds
of <7i and gi are close and sharper than E, and g\ seems the best. The upper
bounds of g% and 54 are close, and even indistinguishable in Figure 4, though
#3 is slightly sharper than 54. In Figure 3 #5 is sharper than gs and #4, but
in Figure 4 g3 and 34 are sharper. In both figures, 35 has a similar trend to
those of E, g\ and <?2

Among all the plots, the ones in Figure 3 seem most distinguishable,
perhaps because the eigenvalues there are most distinct. However, in all the
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four figures each of (the function forms of) the upper bounds plays its own
important role. Additional upper bounds may provide further insights. We
could rescale all the measures by using E — 1, g\ — 1, #2 — 1, 9s, 94 and g§ so
that identity corresponds to a value of zero, but we have chosen no to do so
in order to avoid obscuring the distinctions between the plots.

6. Remarks

The "normalized" measures d\ through d^ in Section 3 and their upper
bounds in (4.6)-(4.10) are advocated. The measures based on the deter-
minants and traces are useful, and their upper bounds involving more infor-
mation are better than the one for E relying only on the largest and smallest
eigenvalues of a positive definite matrix. The behaviour of the upper bounds
of the measures depends on specific cases; no upper bound can always be
optimal. This is clearly seen through the examples in Section 5, although
even Example 1 is for a specific case in which (nondistinct) multiple eigen-
values are involved. Of course, the values of the measures themselves are
not known. Further investigation in studying the measures themselves and
then making efficiency comparisons is required.
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