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We consider the problem of estimating the parameter p of a binomial (n,p) distribution
when p lies in a symmetric interval of length m/y/n, m < y/n. We establish sufficient
conditions for the domination of the maximum likelihood estimator with quadratic loss.
We suggest three other estimators for the estimation of p. The first two dominate the
maximum likelihood estimator. The first one comes from Moors (1985) and corresponds
to the bayesian estimator with respect to the symmetric prior concentrated on the end
points if and only if TO < 1 when n is odd or m < y/n/(n — 1) when n is even. The
second estimator comes from Charras and van Eeden (1991); it is in fact the maximum
likelihood estimator for the problem where m is replaced by TOO, 0 < mo < TO. We give
an algorithm for the selection of TOO- The third is the Bayes estimator with respect to
the prior having a density proportional to (p(l — p)) . This estimator dominates the
maximum likelihood estimator for some values of (n, TO) but not for all of them. We give
simple sufficient conditions for the domination of the Bayes estimator over the maximum
likelihood estimator. It is clear that the maximum likelihood estimator is inappropriate
when either n or TO is small. When n is large, all of the estimators have approximately
the same behaviour except for the last. Numerical evaluations illustrate our comments.

1. Introduction

Assume that the statistician observes x, the realisation of X, a binomial(n,p)
random variable. Consider the problem of estimating the proportion p with
quadratic loss when p lies in a symmetric interval around \. In many situ-
ations, prior knowledge tells us that this symmetric interval has length less
than 1 simply because successes and failures are not rare events. For ex-
ample, in an effort to protect the privacy of the respondant, Warner (1965)
has developed a method where one is interested in the estimation of TΓ and
p = πP + (1 — τr)(l — P). In his setup, P is known, ^ < P < 1 and the
distribution of X is a binomial(n,p), therefore, 1 — P < p < P. In the
following, m will be fixed, 0 < m < yfn, and we shall set p = (1 + θ/y/n)/2,
θ(m) = {θ e R : ||0|| < m}.

In this problem, the maximum likelihood estimator δm\e is the truncation
of the empirical proportion (x/n) on the parameter space. It is given by
<W&) = {1 + [\2x/n ~ 1| Λ (jn/y/n)] sgn(2x/n - l)}/2. This estimator
is inadmissible because it takes values on the boundary of the parameter
space, (see, Sacks, 1963, DasGupta 1985 or Charras and van Eeden, 1991).
Actually, Charras and van Eeden (1991) specifically treat our problem in
their Example 5.2. They propose that we modify the maximum likelihood
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estimator when it touches a boundary point. They mention that for some
constant mo, 0 < rao < m, the maximum likelihood estimator in the problem
\θ\ < mo dominates 5mie. In this paper, we shall provide an algorithm for
the selection of mo and the corresponding estimator will be called δcve. In
his thesis, Moors (1985) studied this problem in great detail. He found that,
for each value of x, δ(x) must belong to a certain closed interval. If 5(XQ) is
not in the interval then it is preferable to replace S(XQ) by the closest end
point in the corresponding interval. This modified version generates a better
estimator. We apply this technique to Jmie, that gives us the estimator δmrs.
Finally, Marchand and MacGibbon (2000) have also worked on the present
problem in the very special cases n = \ and n = 2.

The strategy behind the works of Charras and van Eeden (1991) and
Moors (1985) consists in having a criterion such that when this criterion is
not met a correction is proposed. These approaches are oriented towards
finding a complete class. They are not helpful in verifying if another estima-
tor dominates the maximum likelihood estimator. For instance, it is easy to
show that a Bayes estimator with respect to a symmetric prior distribution
will always satisfy their criterion but we still do not know if this Bayes es-
timator dominates ίmie. A series of sufficient conditions for the domination
of m̂ie will be established in Section 3. These conditions depend strongly
on the binomial distribution. In Section 2, we shall analyse some properties
for this distribution. Many of the results in Set ions 2 and 3 are inspired by
the methodology used in Marchand and Perron's (2001) paper. Our Corol-
lary 3.3 of Section 3 says that if m is small enough then any symmetric
estimator (i.e., δ(n — x) = 1 — δ(x) ) such that δ shrinks δm\e towards \
will dominate 5mie. Our Corollary 3.2 of Section 3 says that if δ satisfies
some regularity conditions and δ is not far from 5mie then δ dominates 5mie.
Many Bayes estimator will satisfy these regularity conditions. We study the
one corresponding to a prior density proportional to (p(l -p))~λ called #bys
Numerical results are given in Section 4. We provide some evaluations for
πiQ. We compare graphically the risk function of 5mie, δmrs, δcve and <5bys

2. Definitions and Preliminaries

Let

X = X/n, S = sgn(2X - 1), R = ̂ ί\2X - 1|,

p = (1 + θ/y/n)/2, Θ(m) = {θ : |β| < m}

and
λ = \θ\, c(n, λ) = log(l + X/y/n) - log(l - X/y/n).

All the estimators considered below are symmetric, i.e., δ(n — x) — 1 — δ(x)
for x = 0,1,... ,n. Any symmetric estimator can be parametrized with a
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function g via the following formula:

For instance, the maximum likelihood estimator corresponds to g(r) =
1 Λ r/m. The quadratic loss is used to obtain the risk, i.e., R(θ,δg) =
Eβ[(δg(X) — p)2]. After simplifications we obtain R(θ,δg) = Eo[(g(R)mS —
0)2]/4n. Our dominance results are based on conditional risk decomposi-
tions. In short, if we partition the sample space into Aι,A2,"-,Ak say, and
we show that Eθ[(δmιe(X) - θ)2 - (δ(X) - 0)2 |Λ] > 0 for all θ G θ(m),
i = 1,2,..., k then R(<9, δm\e) > R(0, δ) for all θ G θ(m). In the following,
the partitions will depend on the statistic R. Therefore, it is important to
analyse the mass function of R and the conditional expectation of S given
that R is fixed.

Lemma 2.1. Let 0 < λ < y/n. The probability mass function /n(λ, •) of R
is defined on 1Zn with TZn = {^/n{2k/n — 1) : n/2 < k < n). For r G lZn, it
is given by:

K ' ^ \2-"+1( ( n +^ r ) / 2)(l-λ2/nr/2cosh(c(n,λ)v^r/2), if r > 0

and the family of distributions has monotone likelihood ratio. Moreover, if
ri,Γ2 G Tln, ri < ΐ*2 then /n(A,r2)//n(A,ri) is nondecreasing in λ.

Proof. The derivation of /n(λ, •) is direct. It is easy to see that the nonde-
creasing property in t of the expression cosh(at)/ cosh(bt) for all 0 < b < a
implies that the ratio /n(λ2,r)//n(λi,r) is nondecreasing in r for all 0 <
λi < X2 < \[n, i.e., the family of distributions has monotone likelihood
ratio. In fact,

d ί cosh(αί) Ί _ (α - b) sinh((α + b)t) (a + b) sinh((α - b)t)

9ί\cosh(&ί)J = ~~2 cosh2 (to) + ~ 2 cosh2 (to) "

for all t, 0 < b < a. If {r, r + 2/y/n} C ΊZn then

d

ί [2y/n/(y/ή - λ)2](l - exp{-2c(n, λ)}) > 0, if r = 0
= < [2φl/(φi - λ)2][r(l - e-2c(n,λ))/(erc(n,λ) + e-rc(n,λ))2

[ + (erc(n,λ) _ e-(r+2)c(n,λ))/(erc(n,λ) + e-rc(n,\)y > Q, if r > 0

for all 0 < λ < y/n. This implies that /n(λ,r2)//n(λ,ri) is nondecreasing in
λ on [0, y/n) for any ri, Γ2 G 7^n, ri < Γ2 •
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We introduce a function called pn. This function plays a key role in the

derivation of our estimators. The domain of the function is [0, y/n) x [0, oo),

the image is [0,1) and the function is given by

ί \[τiT \
Pn (A, r) = tanh I c(n, λ) — — ).

Lemma 2.2. 7/0 < λ < y/n and r eUn then Eχ[S\R = r] = /9n(λ,r). The

Bayes estimator #BU; with respect to the uniform prior on {—m/y/n, m/y/n},

is given by

c / \ 1 Λ / ,ms\

2 V y/nj

Moreover,

(a) If 0 < λ < y/n then pn(λ, •) is increasing with pn(λ,0) = 0 and pn(λ, r)

—> 1 as r ^ oo.

(b) T7ιe function pn(\, •) i5 concave, pn{\, r) < λr for all r G 7£n, n ocίc?
Pn(λ,r) < λr/(l + λ 2/n) /or aZZ r G TZn, n even.

(c) If r > 0 then p n( ,r) is increasing on [0,

(d) If r > 0 then the expression

(1 + λ / v ^ ) ^ + (1 -

is nondecreasing in λ on [0,

Proo/. If 0 < λ < y/n and r G 7£n then E λ [S \ R = r] = ρn{\r) and
<5BU(^) = (l + Pn(™>,r)ms/y/n)/2. Using the properties of the tanh function
we obtain the results of part (a), part (c) and the concavity of pn(λ, •) for 0 <
λ < y/n. Since pn(λ, r) = λr for r = 0, l/y/n and pn(λ, r) = λ r / ( l + λ 2 / n ) for
r = 0,2/y/n, 0 < λ < y/n, the concavity of Pn(λ, •) implies that pn{\, r) < λr
for all r G 7£n, n odd, 0 < λ < y/n and p n (λ,r) < λr/(l + X2/n) for all
r G 7£n, n even, 0 < λ < y/n. Finally, if 0 < λ < y/n and r > 0 then

xa f (1 + A/v/H)v/^+1 + (1 -

which gives the proof of part (d). D

Some of the risk function decompositions below will bring into play the
conditional expectations

αn(λ,m) = Έ,θ[pn(\,R) \R>m],
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and
βn(\m) = Έθ[\pn(\,R)/R I 0 < R < m],

where 0 < λ < ra, as well as the functions

An(ra) = sup αn(λ,m), and Bn(ra) = sup βn(\m).
0<λ<ra 0<λ<m

Notice that the definition of Bn applies only in the case where Pχ[0 < R <m]
> 0. The following properties, which are proved in the appendix, will be
required.

Lemma 2.3. (a) The function α n( , •) is increasing in both arguments and,
consequently, An(ra) = αn(ra, ra). Furthermore, An(ra) —> 0 as m —> 0

An(ra) —» 1 as ra —> oo.

(b) //n is ode? £/ιen /3n( ,m) is an increasing function on (0, y/2n/(n + 1)]
and, consequently, Bn(m) = βn(m,m) whenever m < ^/2n/(n + 1).
More generaly, 0 < Bn(ra) < m2 and l i m m ^ ^ B n ( m ) > 1.

Finally, since An is increasing from (0, y^ϊ) onto (0,1) we shall denote
by A"1 the inverse function of An. This inverse function is defined on (0,1)
onto (0, y/n).

3. Dominance results

In this section, the space TZn is partitioned and the conditional risks are based
on these partitions. All symmetric estimators satisfy g(0) = 0 if 0 G TZn. The
maximum likelihood estimator corresponds to a function g which is linear
on (0,ra] Π 1Zn and constant on (ra, y/n\ Π TZn. Therefore, it seems natural
to consider the partition TZn = ({0} Π TZn) U ((0, m] Π Un) U ((m, V^] Π 7^n).
Theorems 3.1 and 3.2 give some properties of conditional risks given that
R belongs to (0,ra] Π 1Zn and (ra, v ^ Π 7?.n respectively. Corollaries 3.1
and 3.2 are based on Theorems 3.1 and 3.2 and they provide general results.
In both Theorems 3.1 and 3.2 the function g has to be nondecreasing. In
Theorem 3.3 we show that if a prior π is symmetric then the corresponding
estimator δπ is also symmetric so

Moreover, we show that if π does not assign probability one to the event
{θ = 0} then gπ has to be increasing. In Theorem 3.4 the set {r : pn(m, r) >
r/m,r G TZn} belongs to the partition and all other elements are singletons.
The idea is that the maximum likelihood estimator and the other estimator
have the same values on {r : pn(ra,r) > r/m,r G 1Zn}. In Corollaries 3.3
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and 3.4 we use the results of Theorems 3.1 and 3.4 where two elements of
the partition are {r : pn(ra, r) > r/ra, r G TZn}, (ra, y/n\ Γ)TZn while all others
are singletons of 1Zn.

Theorem 3.1. Let g be a nondecreasing function on (ra, y/n\ Π lZn. If

(2 An(ra) - 1) < g(r) < 1 for all r G (ra, y/n\ Π ftn

E^[L(6l,ίmie(X)) -L(0,J</PO) | f l > r a ] > 0 for all θ G Θ(ra).

Proof. First, Lemma 2.3 shows that (2An(m) - 1) < 1, for all ra > 0,
which implies that the given condition on g is not vacuous. Decomposing
the difference into conditional risks, we obtain

Έθ[L(θ,δmle(X)) -L(θ,δg(X)) \R>m]

i? > m

m2

- g(R)) (g(R) - J2^αn(λ, m) - R> m

- g(R)) (g(R) - {2 An(m) - 1}) | Λ > m] > 0

where the equality comes from the conditional expectation given R and
Lemma 2.2; the first inequality holds by virtue of the inequality

Covθ[pn(λ,R),g{R) I R > ra] > 0,

which in turn is valid since both pn and g are nondecreasing on (771, y/n\ (Ί7£n,
and the second inequality follows from Lemma 2.3. D

Corollary 3.1. Consider that ra < 1/y/n when n is odd or m < 2/y/n when
n is even. If the conditions of Theorem 3.1 are satisfied then R(0,5mie) —
R{θ,δg) > 0 for allθ G Θ(ra).

Proof. We obtain that

τ>(β x \ "p(β β\ \ "p ΓT (fj £ (JCλ\ T if) Λ (JCW I /? "*> TTΪΊ P ί/? >̂ Πl

for all (9 G Θ(ra). D

Remark 3.1. If n = 1 then An(ra) = ra and the conditions of Corollary 3.1
are satisfied if and only if 2ra — l < p ( l ) < l . If n = 2 then An(?77,) =
\/2m/(l + ra2/2) and the conditions of Corollary 3.1 are satisfied if and only
if 2\/2ra/(l + ra2/2) - 1 < g{y/2) < 1. These two results are identical to the
ones in Marchand and MacGibbon (2000, Theorem 4.2 p. 145).
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Theorem 3.2. Assume that m > l/\fn when n is odd and m > 2/ΛJU when
n is even. Let g(r) andr(r—mg(r)) be nondecreasing inr on (l/^/n,m\Γ)lZn.

If
Bn(m) < 1

and

then

(2 Bn(ra) - l)r/m < g(r) < r/m for all r G {l/y/n, m] (Ί Hn

Eθ[L(θ,δmle(X)) - L(θ,δg(X)) I 0 < R < m] > 0 for all θ G Θ(m).

Proof. First, note that {m : Bn(ra) < 1} φ 0 since the properties of Bn in
Lemma 2.3 imply that (0,1] C {m : Bn(m) < 1}. Let A = {0 < i? < m}.
We obtain

E4L(MmleP0)-L(M9P0) 1̂ ]
,2

m

>
>

m

—
An

An

TTί
A

^|-f l(i2)j^(Λ)-{2Bn(m)-l}^) A\ >0

where the first inequality holds because r(r — mg(r)) is nondecreasing in r on
(l/y/n,m] Γ\TZn and pn(λ,r)/r is nonincreasing in r for r G (l/y/n,m] ΠlZn

which implies that Covθ[R(R-mg(R)),pn(λ,R)/R \ 0 < R < m] < 0. The
second inequality comes from Lemma 2.3. D

Corollary 3.2. Let rrt- — sup{r : r < ?77,,r G lZn U {0}} and m+ = inf{r :
r>m,re TZn}. Let 0 < g(r) < 1 Λ r/m for all r eTZn with g(0) = 0. //

• g is nondecreasing on 1Zn,

• d(r)/r is nonincreasing in r for all r G Hn \ {0};

• g(m-) > (2Bn(ra) — l)rri-/m and g(m+) > 2An(m) — 1

then
R(0, δg) < R(θ, for all θ G Θ(m).

Proof. Since g is nondecreasing and bounded by 1 on 7£n, g(m+) >
2 An(m) - 1 implies that 2 An(m) - 1 < g(r) < 1 for all r G (m, y/n[ (Ί ^ n

and the conditions of Theorem 3.1 are satisfied. If (0,ra] Π 7?,n = 0 then
the proof is complete. Otherwise, since g(r)/r is nonincreasing in r for all
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r G 7£n\{0} we obtain that r(r—mg(r)) is nondecreasing in r on TZn. Finally,

g(rri-) > (2Bn(m) — l)m_/ra implies that (2Bn(m) — l)r < mg(r) < r for

all 0 < r < ra, r G TZn and the conditions of Theorem 3.2 are satisfied. D

Theorem 3.3. Let T = λ. For a given symmetric prior π on Θ(m)

with τr({T = 0}) < 1 the Bayes estimator δπ is given by δπ(x) = (1 +

gΈ(r)ms/y/n)/2 where gπ(r) = E[Tpn(T,r)/m \ R = r]. In other words,

gπ(r) is the expectation ofTpn(T,r)/m with respect to the posterior distribu-

tion ofT. Moreover, gπ is increasing with gπ(0) = 0 and 0 < gπ < pn{jn, •)•

Proof. Assume, without loss of generality, that r φ 0, r G TZn. We use
the representation θ = TU with T = \θ\ and U = sgn(^). T is distributed
according to a probability measure σ on [0,ra] and, conditionally on the
event T = t, t φ 0, U is uniformly distributed on {-1,1} while V[U = 0 |
T = 0] = 1. This representation now implies that the posterior distribution
of T has a density, with respect to the measure σ, proportional to / n ( ί ,r),
that is,

*(dt I x) = / f^ 1 σ(dt) for t G [0, m],
Jo /n(τ,r)σ(dτ)

and that, conditioned on the event Γ = t, the posterior distribution of f7 is
given by

if ί = 0, « = 0.

The Bayes estimator of θ is given by Έ[θ \ X = x] and

E[θ\X = x]= Έ[TU \X = x]

= E[TE[U\T,X = x] \X = x\

= E[TPn(T,r)s\X = x]

= E[TPn(T,r)\R = r]s

= gπ(r)ms

where the fourth equality holds because the posterior distribution of Γ de-
pends on x through r only. Since 0 < pn{t,r) < pn(m,r) for all t € Θ(m),
we obtain 0 < gπ(r) < pn(m,r). Finally, for 0 < n < Γ2, r i , r 2 G 7£n we
obtain

= E[2>n(T, r 2)/m | Λ = r2]

>E[Γp n (Γ, r i )/m| i? = r2]

>E[Tpn(T,r1)/m\R = r1]
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where the inequalities come from the monotonicity property of pn( ,r) and
the fact that the conditional distribution of Γ given that R — r has mono-
tone likelihood ratio when r is viewed as the parameter (this is a direct
consequence of Lemma 2.2 part (d)). D

Theorem 3.4. Assume that r G Ίln and pn(m,r) < r/m. If

2pn(ra, r) — (1 Λ r/m) < g(r) < 1 Λ r/m

then

Eθ[L(θ,δmle(X)) -L(θ,δg{X)) \R = r] > 0 for all θ G Θ(m).

Proof We have

Eθ[L(θ,δmle(X)) -L(θ,δg(X)) \R = r]

m?
= — (l Λ r/ra - g(r))(g(r) - {2Xpn(\r)/m - 1 Λ r/m})

m2

> — ( 1 Λ r/m - g(r))(g(r) - {2pn(ra, r) - 1 Λ r/m}) > 0
4n

where the first inequality comes from the monotonicity of the function
Pn(',r). D

Remark 3.2. It is possible to improve on the class of estimators in Theo-
rem 3.4 by adding the condition g(r) < pn(m,r) Λ r/m. In fact, Moors
(1985) shows that if g does not satisfy the condition 0 < g{r) < pn(m,r)
for all r G TZn then we can replace g by g* where g*(r) = g(r) when
0 < g(r) < pn(m,r) and 0 < g*(r) < pn{m,r) for all r G TZn.

Corollary 3.3. Let 0 < g(r) < 1 Λ r/m for r eTZn. If

g is nondecreasing on TZn and m < A~1(l/2) Λ V ^,

then
R(#, δg) < R(<9,5mie) for all θ G θ(m).

Proof This proof is based on verifying the conditions of Theorem 3.1 on
r G (ra, y/n\ Π 1Zn and the conditions of Theorem 3.4 on r G (0, m] Π TZn. To
apply Theorem 3.1 we need to verify that (2An(ra) — 1) < g(r) < 1 for all
r > m, r e TZn. The conditions of Corollary 3.3 imply that 2 An(m) — 1 < 0.
Therefore, if g is nondecreasing on TZn and 0 < g(r) < 1 for r > ra, r G 7£n

then the conditions of Theorem 3.1 will be satisfied. To apply Theorem 3.4,
we need to verify that (2pn(ra, r)—r/m) < g(r) < r/m for all r G (0, m]ΠTZn.
Theorem 3.4 applies whenever pn(r, ra) < r/m. Part (b) of Lemma 2.2
tells us that pn(ra,r) < rar for all r G 7£n. Since ra < λ/J, we obtain
pn(m, r) < r/m for all r G 7£n and 2pn(ra, r) — 1 < 0 for all r G (0, ra] Π 7£n.
Therefore, g satisfies the conditions of Theorem 3.4 for r G (0, ra]
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Corollary 3.4. Let m0 = ra[(2 An(m) - 1) V sup{2(pn(m, r) Λ r/m) - r/m :

0 < r < m,r E 7£n U {0}}]. Assume that mo < m\ < m. If δg is the

maximum likelihood estimator for the new problem where \θ\ < m\, then

R(#A) < R(Mmie) for all θ G Θ(m).

Proof. We have g(r) = (mi Λ r)/m. Notice that if r > mo then pn(m,r) <
r/m so δg(r) = δm\e(r) o n the set {r : pn{m, r) > r/m}. The rest of the proof
is based on verifying the conditions of Theorem 3.1 on r G (m, y/n\ΠlZn and
the conditions of Theorem 3.4 on r G (0, m] Γ\TZn Π {r : pn(m, r) < r/m}. D

4. Examples and numerical evaluations

In this section we shall consider three competitors to the maximum likeli-
hood estimator. Two of them will always dominate the maximum likelihood
estimator while the third will sometimes dominate the maximum likelihood
estimator. We have chosen these estimators for their simplicity but we could
have provided more complicated ones using a bayesian approach.

Example 4.1. We set g(r) = pn(m,r) Λ r/m and denote the estimator by

^mrs

This example comes from Moors (1985). Since δmΐS satisfies the condi-

tions of Theorem 3.4 it dominates δm\e. We obtain that δmτs = 5BU if
only if m < 1 when n is odd or m < yjn/(n — 1) when n is even. Notice

that £BU is a Bayes rule, so it is admissible.

Example 4.2. We set g{r) = (mo Λ r)/m and denote the estimator by δcve.

In Charras and van Eeden (1991) it is shown that there exists mo such
that δcve dominates δm\e. We give an explicit value to mo in Corollary 3.4
and use it in this example. In Charras and van Eeden (1991) it is also
shown that the class of Bayes estimators is complete. In our case, it is not
difficult to see that the class of Bayes estimators with respect to symmetric
priors is complete for the class of symmetric estimators. Notice that if m <
(n — 2)/y/n with n > 2 then any estimator satisfying the conditions of
Corollary 3.4 will correspond to a function g which is not strictly increasing.
However, Bayes estimators are associated with a strictly increasing function
g (see Theorem 3.3). Therefore, any estimator satisfying the conditions of
Corollary 3.4 is inadmissible. This gives a partial answer to the open question
raised in a remark on page 127 in Charras and van Eeden (1991).

Since we know that the class of Bayes estimators with respect to sym-
metric priors is complete it is then important to study at least one estimator
in this class.

Example 4.3. We set g(r) = E[Γpn(Γ, r)/m \ R = r] where the distribution
of T is the conditional distribution of λ given that R = r and the prior density
of p is proportional to (p(l - p ) ) " 1 . The estimator is called δ\>ys.
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In other words, #bys is the Bayes estimator of p based on the prior den-
sity proportional to (p(l — p)) . This estimator has been inspired by the
methodology developed in Marchand and Perron (2001). As m tends to Λ/n,
n being fixed, £bys tends to δm\e. It can be shown that the function g will
satisfy the first conditions of Corollary 3.2 but we still have to verify numer-
ically that g(m+) > 2An(m) — 1 and #(ra_) > (2Bn(ra) - l)ra_/ra. If g
satisfies these two conditions then δ\yγs dominates δm\e. Numerical evalua-
tions show that the two conditions are satisfied for small values of m as it
can be seen in Table 1.

For example, set n = 10. Table 1 tells us that if m < .601 then our
Bayes estimator dominates the maximum likelihood estimator. Notice that
m = .601 corresponds to p G [0.405; 0,595] with 0.595 = (1 + 0.601/\/Ϊ0)/2.
In Fig. 2, [0.4,0.6] φ. [0.405; 0,595] so we do not know if δ^ys dominates
δm\e because our approach uses only sufficient conditions. However, we can
see graphically that £bys dominates δm\e. For p G [0.4,0.6], we can verify
from Table 1 that δ\>ys dominates δm\e whenever n — 1,2,3,4,5,6 and 8. In
general, the risk of δhys is smaller than the one of δm\e when λ is small. In fact,
a minor modification to Theorem 3.4 will give that R(#,£mie) > R(0,5bys)
for λ G [0, α] if 2αpn(α, r)/m < gπ(r) + (1Λ r/m) for all r G TZn but aρn(a, r)
tends to 0 as α tends to 0.

We know from theoretical considerations that if n is small or m is small
then δm\e is a bad estimator. Suppose that the nature of the problem tells us
that p must be between 0.4 and 0.6. In this case, m = 0.2^/n and δmτs — 5BU
if and only if n < 26. The estimator δcve corresponds to the maximum
likelihood estimator for the problem p G [(1 — πio/<s/n)/2, (1 + mo/^/n)/2].
Numerical evaluations are given in Table 2.

From Table 2 we shall expect a very slight improvement of δcve over δm\e

when n is large and rn^/n is fixed. We evaluate the risk functions in Figs. 1,
2 and 3 numerically. We have used n = 10, 25, 1000. When n — 10, δm\e

takes only three values, 0.4, 0.5 and 0.6. The estimator δcve takes the three
values 0.45, 0.5 and 0.55. We can see from Fig. 1 that all of estimators
given in the three examples dominate δm\e. We would have observed the
same phenomenon for n < 10. In these cases, the risk function of δcve stays
between those of δmrs and #bys Even if δm\e takes the value 0.6 for x > 5,

Table

n

m <

Table

1.

1

.615

2.

2

.485

n

(l + mo/y/n)/2

3

.577

1-4

.500

4

.547

5

.518

5

.456

6

.501

6

.574

7

.525

7

.487

8

.510

8

.590

9

.532

9

.507

10

.549

10

.601

15

.569

15

.544

20

.581

20

.504

25

.588

25

.573

30

.592

30

.532

50

.599
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0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6

Figure 1. Risk functions for the estimation of p in a binomial (n,p) with n = 10 and
pβ [0.4,0.6].

mle maximum likelihood estimator
eve mle for the problem p £ [0.450, 0.550]
mrs Moors' estimator
bys Bayes, prior proportional to (p(l — p))

its risk function is the worst at 0.6. When n = 25, δmrs is still a Bayes
estimator. However, Fig. 2 shows that the improvements over δm\e are less
impressive for δmrs and δcγe. Prom this figure, we see that δmrs dominates δcve.
Here, the risk function of δm\e becomes better as p approaches a boundary
point. The risk function of the estimator #bys behaves differently from the
other risk functions. The Bayes estimator no longer dominates δm\e but the
improvement on the risk function is quite big when p is near | and holds
until p approaches a boundary point. In a real situation, one might expect
that n is large, something of the order of 1000. When n is that large, using
<5mie> ĉve ° r <5mrs makes no perceptible difference. The differences between
δm\e and #bys will be more significant when r is close to m. Therefore, the
risk functions will be approximately the same when p is near ^, something in
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Figure 2. Risk functions for the estimation of p in a binomial (n,p) with n = 25 and
pe [0.4,0.6].

mle maximum likelihood estimator

eve mle for the problem p G [0.412, 0.588]

mrs Moors' estimator

bys Bayes, prior proportional to (p(l — p))~

the neighbourhood of l/4n. One would then have the same result as if there
were no constraints on p. Similarly, when p is on a boundary point, δm\e will
be on target with a probability almost equal to ^ so we should expect a risk
of 0.4-0.6/2n for δm\e. The Bayes estimator still shrinks δm\e towards ^ even
if r is close to m and this may explain why there is a sudden growth in its
risk function when p is close to the boundary. These phenomena were also
observed for large values of n in numerous numerical evaluations and Fig. 3
shows the case n = 1000.

In conclusion, if the length of the parameter space for p is of the order of
O(l/y/n) then any of the suggested estimators will outperform the maximum
likelihood estimator. When n is small, one should never use the maximum
likelihood estimator. If the length of the parameter space for p is not of
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x 1 0
2.61 1 1 r -ι 1 1 r

2.4

1.2
0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59

Figure 3. Risk functions for the estimation of p in a binomial (n,p) with n = 10 and
pe [0.4,0.6].

mle maximum likelihood estimator
eve mle for the problem p G [0.400, 0.500]
mrs Moors' estimator
bys Bayes, prior proportional to (p(l — p))

the order of O(l/\/n) but the choice of m is conservative (that is: Θ(ra)
is too large), then it seems preferable to select δ\^γs even though (5bys does
not dominate δm\e. As we mentioned in the beginning of this section, it is
possible to develop Bayes estimators which perform better in comparison to
δm\e but this goes beyond the scope of this paper.
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APPENDIX

A. Proof of Lemma 2.3

(a) Let 0 < λi < λ2 < m. From Lemma 2.2 we obtain

αn(λi,ra) = Eλjpnlλi,R) \ R> m]

<E λ l[p n(λ 2,i?) \R>m]

<Eλ2[pn{λ2,R) \R>m]

= αn(λ2,m)

where the first inequality follows from the monotone increasing property
of pn, and the second inequality follows from the fact that the probability
distribution function of R has a monotone likelihood ratio. Assume that 0 <
λ < mi < m2 < yfn. If Pχ\m\ < R < rn2] = 0 then αn(λ, mi) = arι

Otherwise,

P λ [ β > m 2 ]
— Γ Ί LXγt \ s\% i

P λ [Λ>mi] nK

+ ί 1 ~ p Λ ! p ^ m 2 Π Eλ[Pn(λ,Λ) I mi < R < m2] < αn(m2,λ),
since the increasing property of pn leads to pn(λ, r) < α(λ, 7712) on {r : mi <
r <m2}. Finally, from Lemma 2.2 with |0| = m, we obtain

0 < Kirn) = mj < m E λ [ β | β > m ] _ 0,R

and
lim An(ra) = lim pn(m, y/n) = 1.

(b) Notice that in this proof, the condition saying that n is odd is used
only to state that Eλ[pn(λ,R)R\0 < R < m]) = Eχ[pn(λ,R)R\R < m\).
Now, straightforward computations give

<9/?n(λ,m)

\{l-\2/n + βn^mϊ ί1 ~ λ l " ^/nEχ[pn{\R)R \ 0 < R < mU | .

dλ
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Moreover, since rpn(λ, r) is nondecreasing in r, when n is odd P\[R = 0] = 0.
Thus

Ex[pn{λ,R)R I 0 < R < m] < Eλ[pn(X,R)R]

= Eλ[^(2X - 1)] = λ

and βn(X, m) < λ2 because Pλ[pn(XR) < XR] = 1. If λ< 1 then dβn(X, m)/dX
is the sum of two positive elements so βn(X, fή) is increasing in λ. If 1 < λ <
ΛJ2Π/{Π + 1) then 1 - λ2/(l - X2/n) < 0 and

dβn(X,m)
dX

& i ^ E* <λ R)R I ° < R £

\2

1-λVn

Finally,
/?n(λ,m) < λ2 < m2 for all λ < m

so Bn(ra) < m2 and, for m >

Bn(m) > /3n(m, m) > Em[pn(m, Λ) | 0 < R < m] ^ m _ ^ 1. D
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