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Abstract

We show that a number of apparently disparate problems, involving
distribution approximations in the presence of discontinuities, are actually
closely related. One class of such problems involves developing bootstrap
approximations to the distribution of a sample mean when the sample in-
cludes both ordinal and continuous data. Another class involves smooth-
ing a lattice distribution so as to overcome rounding errors in the normal
approximation. A third includes kernel methods for smoothing distri-
bution estimates when constructing confidence bands. Each problem in
these classes may be modelled in terms of sampling from a mixture of
a continuous and a lattice distribution. We quantify the proportion of
the continuous component that is sufficient to "smooth away" difficulties
caused by the lattice part. The proportion is surprisingly small — it is
only a little larger than n~1 logn, where n denotes sample size. Therefore,
very few continuous variables are required in order to render a continuity
correction unnecessary. The implications of this result in the problem of
sampling both ordinal and continuous data are discussed, and numeri-
cal aspects are described through a simulation study. The result is also
used to characterise bandwidths that are appropriate for smoothing dis-
tribution estimators in the confidence band problem. In this setting an
empirical method for bandwidth choice is suggested, and a particularly
simple derivation of Edgeworth expansions is given.

Keywords: Bandwidth, bootstrap, confidence band, confidence interval,
continuity correction, coverage error, Edgeworth expansion, kernel meth-
ods, mixture distribution.

1 Introduction

1.1 Smoothing in distribution approximations

Rabi Bhattacharya has made very substantial contributions to our understand-
ing of normal approximations in statistics and probability. None has been less
important and influential than his exploration and application of smoothing
as it is related to distribution approximations. For example, his development
of ways of smoothing multivariate characteristic functions lies at the heart of
his pathbreaking work on Berry-Esseen bounds and other measures of rates of
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convergence in the multivariate central limit theorem (e.g. Bhattacharya 1967,
1968, 1970; Bhattacharya and Rao, 1976). His introduction of what has become
known as the "smooth function model" (Bhattacharya and Ghosh, 1978), for
describing properties of Edgeworth expansions of statistics that can expressed
as smooth functions of means, has allowed wide-ranging asymptotic studies of
statistical methods such as those based on the bootstrap. The present paper
is a very small contribution, but nevertheless in a related vein — a small to-
ken of our appreciation of the considerable contribution that Rabi has made to
distribution approximations in mathematical statistics.

A key assumption in many distribution approximations in statistics is that the
distribution being approximated is continuous. Without this property, not only
are approximation errors likely to be large, but special features that the ap-
proximations are often assumed to enjoy can be violated. These include the
property that the coverage error of a two-sided confidence interval is an order of
magnitude less than that for its one-sided counterpart. In a range of practical
problems the assumption of smoothness can be invalid, however. In such cases
there may sometimes be enough "residual" smoothing present in other aspects
of the problem for it to be unnecessary to smooth in an artificial way. Never-
theless, even in these circumstances it is important to know how much residual
smoothing is required, so that the adequacy of the residual smoothing can be
assessed. In other problems there is simply not enough smoothing to overcome
the most serious discretisation errors; there, artificial smoothing, for example
using kernel methods, can be efficacious.

In the present paper, motivated by particular problems of both these types, we
derive a general theoretical benchmark for the level of smoothing that is ade-
quate in each case. In the first class of problem, encountered in several practical
settings, we suggest an empirical method for assessing whether the benchmark
has been attained. In the second class, related to smoothed distribution estima-
tion, we introduce an empirical technique for determining how much smoothing
should be provided. Both types of problem have a common basis, in that they
represent mixture-type sampling schemes where a portion of the data are drawn
from a smooth distribution and the remainder from a lattice distribution.

It is shown that the sampling fraction of the smooth component can be surpris-
ingly small before difficulties arise through the roughness of the other compo-
nent. The threshold is approximately n~1 logn, where n denotes sample size. In
the case of the second problem this result may be interpreted as a prescription
for bandwidth choice, which can be implemented in practice using a smoothed
bootstrap method. For the first problem the result may be interpreted as defin-
ing a safeguard: only when the smooth component is present in a particularly
small proportion will the unsmooth component cause difficulties. Next we in-
troduce the two classes of problem.

1.2 First problem: bootstrap inference for distributions
with both ordinal and continuous components

In some applications it is common to encounter a data distribution that is a
mixture of an atom at the origin and a continuous component on the positive
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half-line. Examples include the the cost of health care (e.g. Zhou, Melfi and
Hui, 1997) and the proportion of an account that an audit determines to be in
error (e.g. Cox and Snell, 1979; Azzalini and Hall, 2000). In the second example,
both 0 and 1 can be atoms of the sampled distribution. In both examples the
mean of the mixture, rather than the mean of just the continuous component,
is of interest.

If all the data are ordinal and lie within a relatively narrow range, for example
if the costs or proportions in the respectively examples are distributed among
only a half-dozen equally-spaced bins, then the lattice nature of the data needs
careful attention if bootstrap methods are to be used to construct confidence
intervals for the mean. Indeed, particular difficulties associated with this case
were addressed in the first detailed theoretical treatment of bootstrap methods
for distribution approximation; see Singh (1981). One way of alleviating these
difficulties is to use smoothed bootstrap methods; see for example Hall (1987a).
On the other hand, no special treatment is required if just the positive part of
the sampled distribution is addressed, provided this portion of the distribution
is smooth.

This begs the question of what should be done in the mixture case. Does the
implicit smoothing provided by the continuous component overcome potential
difficulties caused by the ordinal component? How does the answer to this
question depend on the proportion of the ordinal component in the mixture?
Our results on the effects of smoothing on distribution approximation allow us
to answer both these questions; see sections 3.1 and 4.1.

A related problem is that of smoothing a discrete distribution so as to construct
a confidence interval for its mean. One approach is to blur each lattice-valued
observation over an interval on either side of its actual value; see for example
Clark et αl. (1997, p. 12). For example, if a random variable Y with this distri-
bution takes only integer values, we might replace an observed value Y = i by
i + eZ, where e > 0 and Z is symmetric on the interval [—1,1]. How large does
e have to be in order to effectively eliminate rounding errors from an approxi-
mation to the distribution of the mean of n values of YΊ In particular, can we
allow e to decrease with sample size, and if so, how fast? Answers will be given
in sections 3.1 and 4.1.

Of course, in this second aspect of the first problem it is the mean of V, not the
mean of X = Y + eZ, about which we wish to make inference. However, the
mean of eZ is known, and so it is a trivial matter to progress from a confidence
interval for E(X) to one for E(Y).

1.3 Second problem: confidence bands for distribution
functions

Let U = {f/i,..., Un} denote a random sample drawn from a distribution F,
and write F for the empirical distribution function based on U. Then, with
zα/2 denoting the upper ^α-level point of the standard normal distribution,
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F ± {n~ιF(l — F)}1/2zα/2 is a conventional confidence band for F founded
on normal approximation, with nominal pointwise coverage 1 — α. In more
standard problems, involving a mean of smoothly distributed random variables,
the coverage accuracy of such a band would equal 0{n~1). In the present setting,
however, owing to asymmetric rounding errors that arise in approximating the
discrete Binomial distribution by a smooth normal one, coverage error of even
a two-sided symmetric confidence band is in general no better than O(n^

A particularly simple way of smoothing in this setting, and potentially over-
coming difficulties caused by rounding errors, is to use kernel methods. Let K,
the kernel, be a bounded, symmetric, compactly supported probability density,
write L for the corresponding distribution function, and let H e a bandwidth.
Then

is a smoothed kernel estimator of F. We may interpret E{Fh(u)} in at least two
different ways: firstly, as the mean of a sample drawn from a mixture of two
distributions, one taking only the values 0 and 1 (the latter with probability
F(u — /ιc), where [—c, c] denotes the support of K), and the other having a
smooth distribution (equal to that of L{(u — Ui)/h}, conditional on (u — Ui)/h
lying within the support of K)\ and secondly, as the distribution function of
X = Y -\- hZ, where Y and Z have distribution functions F and L, respectively.
Hence, this problem and those described in section 1.2 have identical roots.

The bias of Fh{u), as an estimator of F(u), equals O(h2) provided F is suf-
ficiently smooth. In relative terms its variance differs from that of F(u) by
only O(ft). See Azzalini (1981), Reiss (1981) and Falk (1983) for discussion of
these and related properties. Together these results suggest that taking h as
small as possible is desirable, since then h would have least effect on moment
properties.

Indeed, the moment properties suggest that h = O(n~ι) might give the O(n~1)
coverage error seen in conventional problems. However, it may be shown that
this size of bandwidth is not adequate for removing difficulties caused by lack
of smoothness of the distribution of F. With h — O{n~ι), rounding errors
still contribute terms of order n " 1 / 2 to coverage error of two-sided confidence
bands. Can we choose h large enough to overcome these problems, and yet small
enough to give an order of coverage accuracy close to the "ideal" O(n~ι)Ί And
even if this problem has a theoretical solution, can good coverage accuracy be
achieved empirically? These questions will be answered in sections 3.2 and 4.2,
where we shall propose and describe an empirical bandwidth-choice method in
the confidence band problem. Additionally we shall show that our approach to
the problem of smoothed distribution estimation, via sampling from a mixture
distribution, leads to particularly simple derivations of Edgeworth expansions.

There is of course an extensive literature of the problem of bandwidth choice
for kernel estimation of distribution functions. It includes both plug-in and
cross-validation methods; see Mielniczuk, Sarda and Vieu (1989), Sarda (1993),
Altman and Leger (1995), and Bowman, Hall and Prvan (1998). However, in all
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these cases the bandwidths that are proposed are of asymptotic size n" 1 / 3 , much
larger than n~ι. They are appropriate only for estimation of the distribution
function curve, not for confidence interval or band construction, and produce
relatively high levels of coverage error if used for the latter purpose. The class of
distribution and density estimation problems is characterised by an interesting
hierarchy of bandwidth sizes: n" 1 / 5 for estimating a density curve, n " 1 / 3 for
distribution curve estimation, and a still smaller size, approximately n - 1 l o g n
(as we shall show in section 3.2), for constructing two-sided confidence bands
for a distribution function.

Distribution-Approximation Difficulties Caused
by Lack of Smoothness

Let X\,..., Xn be independent and identically distributed random variables
with the distribution of X, and let X = n~1 ]ΓV X{ denote the sample mean.
Many explanations for the small-sample performance of bootstrap approxima-
tions to the distribution of X are based on properties of its Edgeworth expan-
sion. A formal expansion exists under moment conditions alone. In particular,
provided only that

E(\X\k+2)<oo, (2.1)

the formal Edgeworth expansion up to terms in n~kl2 is well defined; it is

Qk{x) = Φ(χ) + n-1'2 πi(a ) φ(x) + . . . + rΓkl2 πk(x) φ(x), (2.2)

where Φ and φ are standard normal distribution and density functions, respec-
tively, and 7Γj is a polynomial of degree 3j — 1, odd or even according as j is even
or odd respectively, its coefficients depending only on the first j + 2 moments
of X. In particular, πλ(x) = \β(\- x2), where β = E{X - £X)3/(varX)3/2.
See for example Hall (1992, Chapter 2). These results have straightforward
extensions to the Studentised case, which we shall discuss in section 5.5.

If, in addition to the moment assumption (2.1), the distribution of X is smooth
(for example if it is absolutely continuous), Qk can provide an accurate approx-
imation to the standardised distribution of X. For example, if the distribution
of X has a bounded density, and if we define μ = E(X) and σ2 = var(X), then

P{n^2(X - μ)/σ < x) = Qk(x) + o(n"fc/2) , (2.3)

uniformly in x, as n —> oo. The performance of bootstrap methods rests heavily
on this result, through the property that the bootstrap provides a particularly
accurate estimate of the term Qk on the right-hand side of (2.3).

However, (2.3) fails if the sampled distribution is lattice. For example, if nX
has the Binomial Bi(n,q) distribution, where 0 < q < 1, then (2.3) holds only
if we add, to the right-hand side, a continuity-correction term for each order
from n~χl2 to n~hl2 inclusive. Such terms compensate for errors introduced by
approximating the relatively rough Binomial distribution by a smooth function.
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In particular, if the sampling distribution is supported on the set of integers and

has lattice span 1, and if we define

Dk(χ) = Qk(χ) ~ Σ Q'Λd

then the "corrected" form of (2.3) holds:

P^'^X - μ)/σ <x}= Qk(x) + Dk(x) + o(n'k/2) (2.4)

uniformly in x. See for example pp. 237-241 of Bhattacharya and Rao (1976).
Of course, (2.4) has analogues in the case of other lattice distributions. In these
general cases we may express Dk(x) as an expansion with terms of size n"-7/2,
for 1 < j < k. The term in n" 1 / 2 equals

Dkl(x) = n'1'2 σ~ι S(σn1/2x + nμ) φ(x),

where S(u) = (u) — u + | and (u) denotes the integer part of u. The well-
known continuity correction, applied for example to normal approximations to
the Binomial distribution, adjusts for Dki(x)

We shall show in section 5, however, that if the distribution of X is smoothed
through being a mixture of only a small proportion of a continuous distribution,
then all aspects of the continuity correction Dk(x) may be dispensed with. That
is, Dk(x) may be dropped from (2.4), and (2.3) holds for all k > 1.

The implications of this result for coverage accuracy of confidence regions can
be considerable. To appreciate this point, note that since πι(x) at (2.2) is
symmetric in x then, in the case of a smooth sampled distribution, potential
coverage errors of size n" 1 / 2 cancel from the formula for coverage of the two-
sided confidence interval X zbn~1/2σ^α/2 As a result this interval has coverage
error O(n~1). However, since the correction term Dk(x) is not symmetric in x
then this property fails when the sampled distribution is unsmooth, and there
the order of coverage error is only O(n~1//2), even for symmetric, two-sided
confidence intervals. Moreover, a conventional continuity correction does not
remove all the error of this size; taking that approach, the best that can generally
be achieved is to produce a conservative confidence interval where the coverage
error is dominated by, rather than equal to, the nominal level plus O(n~1). See
Hall (1982, 1987a) for discussion of this issue.

Of course, these results have direct analogues in the Studentised case; in the
discussion above we have treated the non-Studentised case, where σ is assumed
known, only for convenience.
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3 Overcoming Difficulties Caused by Lack

of Smoothness

3.1 Solution to first problem

Suppose the distribution of X is obtained by mixing a smoothly distributed
random variable Y (for example, one having a bounded probability density)
with an arbitrary but nondegenerate random variable Z, in proportions p and
1 — p respectively, where p may depend on n. We wish to know the effect that
any smoothing conferred by the distribution of Y has on the distribution of a
mean X of n independent random variables distribution as X.

It will be shown in section 5 that if n~1 log n = o(p) then the discretisation-error
term Dk is negligible, and in fact sup .̂ \Dk{x)\ = o(n~k/2). As a result, the dis-
tribution of X is accurately approximated by its formal Edgeworth expansion,
to any order that is permitted by the number of moments enjoyed by the distri-
bution of X. This property applies equally to the distributions of Studentised
and non-Studentised means; in both cases, the comparatively small amount of
smoothing obtained when n - 1 logn = o(p) is nevertheless sufficient to com-
pensate for highly unsmooth features of the other component of the sampling
distribution.

We shall also note in section 5 that these results extend to applications of the
bootstrap. Indeed, all those properties of the bootstrap that are valid whenever
a fixed sampled distribution is accurately approximated by its formal Edgeworth
expansion (see e.g. Hall, 1992, Chapter 3), continue to hold for our mixture
distribution, provided n~1 logn = o(p).

Of course, these results are somewhat asymptotic in character, although the
particularly small lower bound to the effective value of p suggests that in most
cases the results will be available in practice. Numerical work in section 4.1
will bear this out. In a specific, practical problem an empirical method for
determining whether p is sufficiently large is to explore the problem by Monte
Carlo means: model the distribution of the smooth component of the sampled
distribution, and, taking the mixing proportion equal to its naive estimate,
simulate to ascertain the effect of discretisation error in the context of the model.

In the case of specific component distributions (e.g. a normal smooth compo-
nent and a Bernoulli lattice component) it can be shown that the constraint
n~ι logn = o(p) is necessary as well as sufficient for formal Edgeworth approx-
imation to be valid at all orders. In more general cases it is readily proved that
the less stringent constraint n " 1 = O(p) is not sufficient.

Very similar results may be derived in the related problem of smoothing the dis-
tribution of an integer-valued random variable Y by adding to it, rather than
mixing it with, a continuous component. That is, we replace Y by Y + eZ,
where e > 0 and Z has a continuous distribution. As long as e = e(n) decreases
to 0 more slowly than n~ι logn, this modification allows us to approximate the
distribution of the mean of Y + eZ by its formal Edgeworth expansion to any or-
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der; see section 5.3. If the distribution of Z is symmetric then the distributions
of both Y and Y + eZ have the same mean and skewness, and their variances
differ only to order e2. Moreover, the "converse" results described in the previ-
ous paragraphs have direct analogues in the setting of additive smoothing of a
discrete distribution.

3.2 Solution to second problem

Recall from section 1.3 that we seek a pointwise, (1 - ce)-level confidence band
for the distribution function F. We noted there that the standard normal-
approximation band, F ± {n~1F(l — F)}1/2za/2, has only O(n~1//2) coverage
accuracy, owing to uncorrected discretisation errors. We suggest instead the
smoothed band,

Fh ± {n~lFh(l - Fh)}1/2za/2 (3.1)

where Fh is as defined at (1.1). We shall show at the end of this section that by
taking h = n~1(logn)1+€, for any e > 0, coverage error of this band is reduced
to O(h). That is only a little worse than the O(n~ι) level encountered in related
problems, where the sampled distribution is smooth.

These properties are highly asymptotic in character, however. To achieve a
good level of performance in practice we suggest the following approach. Using
standard kernel methods, compute an estimator of the density f = Ff based
on the sample U. For example, if employing the same kernel K as before, the
estimator would be

U — ί

where hi is a bandwidth the size of which is appropriate to density estimation.

(In particular, hi would generally be computed using either cross-validation or

a plug-in rule; it would be of size n" 1 / 5 , in asymptotic terms.) Let Fhι(u) —

Iυ<u fhi (v) dv denote the corresponding distribution function. Draw bootstrap

resamples W = {tZ-j*,..., U*} by resampling from the distribution with this

density, conditional on ZY, and use them to compute the bootstrap version Fh*

of the smoothed distribution estimator Fh, this time using bandwidth h rather

than hi. Calculate the corresponding confidence band, Fh* ± {n~1Fh*(l —

Fh*)}1/2zα/2, and for each u compute the bootstrap probability βα(u,h) that

this band contains Fhλ(u):

βα(u,h) = p(Fh*(u) - [n-'Fh^u) {1 - Fh*(u)}]1/2zα/2 < Fhl(u)

< Fh*{u) + {n^Fh^u) {1 - Fh*(u)}]1/2zα/2

Choose h = hα to render βα(u, h) as close as possible to α over the interval X
where we wish to construct the final confidence band. For example, we might
select ha to minimize Aα(h), where

AΊ{h)= ί{βΊ(u,h)-(l-Ί)}2du.
Jτ
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Our confidence band is that defined at (3.1), but with h = hα. If desired, an

additional level of calibration can be incorporated by choosing (7, h) = (7, h)

simultaneously, to minimise AΊ(h), and taking the band to be that at (3.1) but

with bandwidth h and critical point z^/2 (instead of zα/2).

Finally we outline a derivation of the theoretical properties claimed of the con-
fidence band at (3.1). It will be shown in section 5.4 that if h decreases to 0 at
a slower rate than n~ι logn, i.e. if

n ft(n)/(log n) -> oo , (3.2)

then the smoothed empirical distribution function estimator Fh, defined at (1.1),

admits a formal Edgeworth expansion of any order k > 1. That is, if Qk = Qh,k

at (2.2) denotes the formal Edgeworth expansion of Fh(u) then the analogue of

(2.3) holds for each k > 1:

p(U2Fh(u)-Fh(u) \ _ n M+n(n-k,2λ ,ooϊ

uniformly in x, where

Fh(u) = E{Fh(u)} = ί K(υ) F(u - hv) dυ ,

σh(u)2 = nvΆγ{Fh(u)} = / L\^-~-\ f(υ) dv - Fh{u)2 .
J \ n /

If F" exists and is bounded in a neighbourhood of u then F^(u) = F(u)-\-O(h2)
and σh(u)2 = F(u){l - F(u)} + O(h). Therefore, provided

n'1 logn < h = O(n-1/2) , (3.4)

(3.3) for k > 2 implies that

uniformly in x. It may be shown by Taylor expanding the argument of the
probability that this implies

/ 1 / 2 Fh(u)-F(u) < χ \ Q k{χ) + o { h ) m

Since the bandwidth h = n~ 1(logn) 1 + e satisfies (3.4) then the claims made
immediately below (3.1) follow from (3.5).

Another advantage of our approach is that it leads to particularly simple deriva-
tions of detailed Edgeworth expansions. Indeed, once one appreciates that the
problem can be posed in terms of sampling from a mixture, (3.3) immediately
gives a simple form of the expansion, to arbitrarily high order. Deriving the
expansion in more traditional form, with terms of orders n~ιl2h? for z, j > 0
(rather than simply n~2/2), is only a matter of Taylor expanding the quanti-
ties σπ and Qh,k at (3.3). A different argument, based on intrinsic properties
of the smoothed distribution function, was given by Garcίa-Soidan, Gonzalez-
Manteiga and Prada-Sanchez (1997). In addition to the complexity of that
technique, it requires more severe conditions on the smoothness of K.
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4 Numerical Properties

4.1 Effects of different mixing proportions in the first prob-
lem

We conducted a simulation study to assess the effects of mixing proportions on
coverage accuracy of two-sided confidence intervals based on either Studentised
or non-Studentised means. We generated 1000 samples of sizes n = 10 and 20
from a mixture of a discrete Bernoulli distribution with probability of success
0.1 and different continuous distributions: chi-squared distributions with two,
four and six degrees of freedom, and a standard normal distribution. Figure 1
graphs coverage probabilities for two-sided 95% confidence intervals in both
Studentised and non-Studentised cases, where the endpoints of the intervals are
taken to be Xd=1.96n~1/2σ and X^zl.96n~1^2σ^ respectively, and σ is the boot-
strap standard deviation. Coverage accuracy in the non-Studentised case is high
for even small proportions of continuous data, as argued in section 3.1. More
difficulties are experienced in the Studentised case, however. There, increasing
the proportion of continuous data has a more marked influence on coverage ac-
curacy. Analogous results are obtained for one-sided confidence intervals, except
that there the effect of the proportion of continuous data is confounded with the
influence of skewness which now has a significant effect on coverage accuracy
for different sample sizes.

4.2 Effect of different mixing proportions in the second
problem.

Numerical studies which are not detailed here show that for small band widths,
before bias becomes a significant problem, coverages of smoothed confidence in-
tervals for distribution functions increase monotonically with increasing band-
width. This is a consequence of the variability of smoothed distribution es-
timators decreasing with increasing bandwidth. Confidence intervals usually,
although not always, undercover when h = 0 and overcover when the band-
width is taken to equal the value, /IMSE say, that gives least mean squared error
for a given argument u of the distribution function. As the bandwidth is in-
creased from h = 0 to /IMSE it typically passes through a value that, when used
to construct a smoothed α-level confidence interval for F(u), gives zero cover-
age error. The bootstrap method suggested in section 3.2 produces an empirical
approximation hα to this interval-optimal bandwidth.

Table 1 gives numerical examples of the performance of hα. There we took F
to be the standard normal distribution function, although results are similar in
other cases; only u = 0, where the normal density has zero gradient and, con-
sequently, the bias of a distribution estimator equals O(h4) rather than O(/ι2),
is atypical. Columns of Table 1 give approximations to the true coverage of
confidence intervals (obtained by averaging over 1000 samples, using B — 1500
bootstrap simulations) for different values of n. Rows express (a) the confidence
interval using the bandwidth h = /IMSE that produces optimal pointwise accu-
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Chi-square with df=2 when n=10 Chi-square with df=2 when n=20

0.1 0.2 0.3 0.4

Proportion of continuous data

Chi-square with df=4 when n=10

0.2 0.3 0.4 0.5

Proportion of continous data

Chi-square with df=4 when n=20

Proportion of continous data

Chi-square with df=6 when n=10

Proportion of continous data

Chi-square with df=6 when n=20

Proportion of continous data

N(0,1)whenn=10

Proportion of continous data

N(0,1)whenn=20

0.2 0.3 0.4 0.5

Proportion of continous data Proportion of continous di

Figure 1 Coverage probabilities of two-sided 95% confidence intervals. Solid
and dotted lines show coverages of non-Studentised and Studentised intervals,
respectively, for the mean of a mixture of a discrete Bernoulli distribution and
a chi-squared or a normal distribution.
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racy (PTWS); (b) the interval calculated using our bootstrap method (BOOT);
and (c) the unsmoothed interval (UNSM). Except when u = 0 the coverage
for the interval BOOT lies between its counterparts for PTWS and UNSM. In
almost every case it is substantially closer to 0.95 than the coverages of either
of the other two intervals. In our calculations we employed the distribution
version of the Epanechnikov kernel, denned by L(u) — (3/4)κ, - (1/A)u3 + (1/2)
for |ί| < 1, L(u) = 0 if t < - 1 and L(u) = 1 if t > 1.

Method

BOOT
PTWS
UNSM

u =
n=20
0.955
0.990
0.971

= 0.0
n=50
0.942
0.983
0.918

u = 0.75
n=20
0.941
0.987
0.945

n=50
0.948
0.986
0.925

u =
n=20
0.933
0.965
0.766

1.5
n-50
0.954
0.980
0.858

N(0,l): the standard normal distribution.
Methods: BOOT, the interval using our bootstrap method;
PTWS, the confidence interval using the bandwidth h = HMSE
that produces optimal pointwise accuracy;
UNSM, the unsmoothed interval.

Table 1: Coverages of different confidence intervals for F(u). The distribu-
tion is standard normal, u denotes the argument at which F is estimated, and
rows headed PTWS, BOOT and UNSM represent intervals using the pointwise-
optimal bandwidth, the bandwidth ha suggested in section 3.2, and h = 0,
respectively.

5 Technical Details

5.1 Mixture of discrete and continuous distribution

Let Y be a random variable with the property that its characteristic function
ψ(t) = E(eιtγ) satisfies Cramer's condition:

limsup |^( ί ) | < 1. (5.1)
|t|-κx>

In particular, (5.1) holds if the distribution of Y is absolutely continuous. Let
Z denote a random variable independent of Y and having any nondegenerate
distribution, and let the distribution of X be a mixture of those of Y and Z in
proportions p : 1 — p. We shall take p to be a function of sample size, since this
allows us to explore the case where X — Z with very high probability. Thus,

X = ίY w i t h P r o b a b i l i tyP = p(n)
I Z with probability 1 — p.
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Given this distribution of X, define the formal Edgeworth expansion Qk as
at (2.2), and put μ = E(X) and σ2 = var(X). Note that all moments of X
depend on n, through p(n).

Theorem 5.1. Assume the distribution ofY satisfies (5.1), and that the dis-
tribution of X is given by (5.2). Suppose too that the distribution of Z is non-
degenerate, that

E(\Y\ + |Z | ) f c + 2 < oo (5.3)

where k > 1, and that

p(n) —> 0 and lim np(n)/(\ogn) = oo (5.4)

as n —> oo. Then

P{nx'2(X - μ)/σ <x}= Qk(x) + o ( n " f e / 2 ) (5.5)

uniformly in x.

Note particularly that (5.4) requires only a very small proportion, not much
larger than O(n~1 log n), of the X^s to be equal to the smoothly distributed Y^s.
Furthermore, the Edgeworth expansion at (5.5) involves no continuity-correction
term. Therefore, "a small amount of smoothness goes a long way" in removing
any effects of discreteness of the distribution of the sample mean.

5.2 Bootstrap form of Theorem 5.1

Let X* = {Xι,..., X*} denote a resample drawn by sampling randomly, with
replacement, from X = {X\,... ,Xn} Let S2 be the variance of X (defined
using divisor n rather than n — 1), let X* denote the mean of X*, and let Qk
be the empirical form of Qk, in which each population moment is replaced by
its sample counterpart.

Theorem 5.2. Assume the conditions of Theorem 5.1. Then

P{n1/2(X* - X)/S < x\X) = Qk{x) + op(n~fc/2) , (5.6)

uniformly in x.

The first term in Qk, of size n" 1 / 2 , depends on only the first three moments of
the distribution of X. Provided £^(|X| + | y | ) 6 < oo, these three moments differ
from their sample counterparts only by order n~λl2. Therefore, taking k > 2
and subtracting (5.5) and (5.6), we deduce that

P{n1/2(X* - X)/S < x\X} - P{n1/2{X - μ)/σ < x) = O^n'1) ,

uniformly in x. This is the analogue of second-order correctness in the present
setting: the bootstrap approximation to the distribution of the sample mean is
accurate to order n " 1 , not simply n~1/2 (as in a conventional normal approx-
imation). Note particularly that this has been achieved through only a small
amount of smoothing, by mixing a virtually arbitrary Z distribution with only a
little more than proportion (^(n"1 logn) of the relatively smooth Y distribution.
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5.3 Variant of Theorem 5.1 for distribution smoothing

Let Y and Z be independent variables, as discussed in section 5.1, and in place
of (5.2) put X = Y + eZ where e = e(n) is nonrandom. For this definition of X
let Qk be the formal Edgeworth expansion as at (2.2).

Theorem 5.3. Assume the distributions of Y and Z satisfy (5.3), that X =
Y + c(n) Z, and that (5.4) holds with p(n) there replaced by e(n). Then (5.5)
holds.

5.4 Application to first and second problems

Application to the first problem is straightforward, provided the distribution of
Z is nondegenerate. If the distribution is degenerate and the condition

p(ή) is bounded away from 0 (5.7)

fails, then σ = σ(n) is not bounded away from 0, and this causes difficulties
even in interpreting (5.5). In particular, if (5.7) fails then a formal Edgeworth
expansion in powers of n" 1 / 2 is no longer appropriate; it should instead be in
powers of /

However, it is straightforward to show that if (5.7) holds then Theorems 5.1
and 5.2 remain valid when the condition that Z has a nondegenerate distribution
is removed. Claims made in section 3.1, about properties of confidence intervals
and bootstrap methods in the case of the "first problem" (see section 1.2),
now follow directly from Theorems 5.1 and 5.2 and their counterparts for the
Studentised mean, discussed in section 5.5.

Next we consider allowing the distributions of Y and Z, and hence X, to vary
with n. Theorems 5.1 and 5.2 continue to hold in this case, provided (a) the
moment condition (5.3) is strengthened to

for some e > 0, limsup E{\Y{n)\ + |Z(n) | }* + 2 + e < oo , (5.8)
n—> oo

(b) the variance of Z is bounded away from 0 in the limit, i.e.

liminf var{Z(n)} > 0 , (5.9)
n—KX)

and (c) the smoothness condition (5.1) holds in a uniform sense, i.e.

limsup sup|JE[exp{zίy(n)}]| < 1. (5.10)
|t|—KX) π > l

(The analogue of (5.9) for Y follows from (5.10).)

Claims made in section 3.2, about performance of bootstrap methods in the case
of the "second problem" (see sections 1.3 and 3.2), follow from Theorems 5.1
and 5.2 under these more general conditions. To appreciate why, note that
if the kernel K whose integral equals L is compactly supported, and if the
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distribution of the random variable U has a continuous density, then we may
interpret X — L{{x — U)/h} as being of the form (5.2). In that representation,
Y has the distribution of L{(x — U)/h} conditional on x — h<U<x + h, and
Z has a Bernoulli distribution with

P(Z = 1) = P{U <x-h\U (£(x-h,x + h)}, P{Z = 0) = 1 - P(Z = 1 ) .

(Here we have assumed, without loss of generality, that the support of K equals
[—1,1].) If in addition K is bounded and the distribution of U has a bounded
density then (5.8)-(5.10) hold, and (5.4) is equivalent to (3.2).

5.5 Further generalisations and extensions

The theorems also apply to the case of the Studentised mean. There we should:
(a) alter (5.5) to

^ - μ)/S <x}= Rk{x) + o(n~ f c/2) ,

where Rk is the formal Edgeworth expansion corresponding to the Studentised
mean; (b) strengthen the moment condition (5.3) to

oc; (5.11)

and (c) change the smoothness assumption (5.1) to

limsup \E{exp(itY + istY2)}\ < 1. (5.12)

|t| + | |

Alternatively, the original moment condition can be retained but a more re-
strictive smoothness assumption imposed; compare Hall (1987b). To clarify the
differences between the formal Edgeworth expansions Qk and Rk we note that
Rk also admits a formula like (2.2), but with different polynomials π^. In par-
ticular the polynomial πi now equals | β (2x2 + 1), instead of | β (1 - x2). See
Hall (1992, Chapter 2) for discussion of these issues.

Likewise, Theorems 5.1 and 5.2 can be extended to the so-called "smooth func-
tion model", where X is replaced by a smooth function of an r-vector of means.
In this case the r-variate versions of (5.11) and (5.12) are sufficient. In each
generalisation, condition (5.4) on the mixing proportion may be retained.

Theorems 5.1 and 5.2 also continue to hold if, instead of defining X by (5.2),
we take X{ = Y{ for 1 < i < (np), and Xi = Zι for (np) < i < n, where
Yί, Y2 5 and Z\, Z2,... denote independent sequences of independent copies
of Y and Z, respectively, where (np) denotes the integer part of np. None
of the other assumptions needs to be altered; in particular, condition (5.4) on
p = p(n) may be retained. However, these variants of the theorems appear to
have relatively few statistical applications.

5.6 Outline proof of Theorem 5.1

The derivation is based on characteristic functions and Fourier inversion. It
is similar to that in traditional cases (e.g. Petrov, 1975, Chapter 5), with
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the exception of the method for bounding the difference, δ say, between the
characteristic functions of the left-hand side of (5.5) and of the term Qk on
the right-hand side. Using standard arguments one may obtain the bound
\t~λδ(t)\ < £n~k/2 exp(-ηt2) for \t\ < ζn1/2, where ξ > 0 can be arbitrarily
small and 77, ζ > 0 depend on ξ but not on n. For \t\ > ζn1/2 one may establish
the bound C 2(l - C 3 ) n ^ n ) , where C2 > 0 and C3 E (0,1) depend on ζ but not
on n. Assuming p satisfies (5.4) we may deduce from these bounds, by taking
ξ arbitrarily small, that the integral of \t~λδ(t)\ over the interval ( - n C 4 , n C 4 ) ,
for any C4 > 0, equals o(n~k/2), as has to be shown in order to complete the
proof.

The proof of Theorem 5.2 is similar, and may be based on arguments of Hall (1992,
section 5.2). D

Peter Hall and Xiao-Hua Zhou Xiao-Hua Zhou
Centre for Mathematics and its Applications Division of Biostatistics
Australian National University Department of Medicine
Canberra, ACT 0200, Australia Indiana University School of Medicine

RG/4th Floor
Regenstrief Health Center

1050 Wishard Boulevard
Indianapolis, IN 46202, USA

Bibliography

[1] Altman, N. and Leger, C. (1995). Bandwidth selection for kernel distribu-
tion function estimation. J. Statist. Plan. Infer. 46, 195-214.

[2] Azzalini, A. (1981). A note on the estimation of a distribution function and
quantiles by a kernel method. Biometrika 68, 326-328.

[3] Azzalini, A. and Hall, P. (2000). Reducing variability using bootstrap meth-
ods with qualitative constraints. Biometrika, to appear.

[4] Bhattacharya, R.N. (1967). Berry-Esseen bounds for the multi-dimensional
central limit theorem. PhD Dissertation, University of Chicago.

[5] Bhattacharya, R.N. (1968). Berry-Esseen bounds for the multi-dimensional
central limit theorem. Bull. Amer. Math. Soc. 74, 285-287.

[6] Bhattacharya, R.N. (1970). Rates of weak convergence for the multidimen-
sional central limit theorem. Teor. Verojatnost. i Primenen 15, 69-85.

[7] Bhattacharya, R.N. and Ghosh, J. K. (1978). On the validity of the formal
Edgeworth expansion. Ann. Statist. 6, 434-451.

[8] Bhattacharya, R.N. and Rao, R. Ranga (1976). Normal Approximation and
Asymptotic Expansions. Wiley, New York.

[9] Bowman, A.W., Hall, P. and Prvan, T. (1998). Cross-validation for the
smoothing of distribution functions. Biometrika 85, 799-808.



Peter Hall and Xiao-Hua Zhou 185

[10] Clark, L.A., Cleveland, W.S., Denby, L. and Liu, C. (1997). Modeling
customer survey data. Manuscript.

[11] Cox, D.R. and Snell, E.J. (1979). On sampling and the estimation of rare
errors. Biometrika 66, 125-132. Correction ibid 69 (1982), 491.

[12] Falk, M. (1983). Relative efficiency and deficiency of kernel type estimators
of smooth distribution functions. Statist. Neer. 37, 73-83.

[13] Garcίa-Soidan, P.H., Gonzalez-Manteiga, W. and Prada-Sanchez, J.M.
(1997). Edgeworth expansions for nonparametric distribution estimation
with applications. J. Statist. Plann. Inf. 65, 213-231.

[14] Hall, P. (1982). Improving the normal approximation when construct-
ing one-sided confidence intervals for binomial or Poisson parameters.
Biometrika 69, 647-652.

[15] Hall, P. (1987a). On the bootstrap and continuity correction. J. Roy.
Statist. Soc. Ser. B 49, 82-89.

[16] Hall, P. (1987b). Edgeworth expansion for Student's ί-statistic under min-
imal moment conditions. Ann. Probab. 15, 920-931.

[17] Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New
York.

[18] Mielniczuk, J., Sarda, P. and Vieu, P. (1989). Local data-driven bandwidth
choice for density estimation. J. Statist. Plan. Infer. 23, 53-69.

[19] Petrov, V.V. (1975). Sums of Independent Random Variables. Springer,
Berlin.

[20] Reiss, R.-D. (1981). Nonparametric estimation of smooth distribution func-
tions. Scand. J. Statist. 8, 116-119.

[21] Sarda, P. (1993). Smoothing parameter selection for smooth distribution
functions. J. Statist. Plan. Infer. 35, 65-75.

[22] Singh, K. (1981). On the asymptotic accuracy of Efron's bootstrap. Ann.
Statist. 9, 1187-1195.

[23] Zhou, X.H., Melfi, A. and Hui, S.L. (1997). Methods for comparison of cost
data. Ann. Internal Med. 127, 752-756.



186 Effects of Smoothing on Distribution Approximations




