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Abstract

Let Γ be chosen from the orthogonal group On according to Haar
measure, and let A be an n x n real matrix with non-random entries
satisfying TrAA* = n. We show that TrAΓ converges in distribution
to a standard normal random variable as n —> oo uniformly in A. This
extends a theorem of E. Borel. The result is applied to show that if
entries βi, ,βkn are selected from Γ where kn —• oo as n —• oo, then
J T~ Ί2\k=i^ A, 0 < ί < 1 converges to Brownian motion. Partial results
in this direction are obtained for the unitary and symplectic groups.

Keywords: Brownian motion; sign-symmetry; classical groups; random
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1 Introduction

Let On be the group of n x n orthogonal matrices, and let Γ be chosen from
the uniform distribution (Haar measure) on On. There are various senses in
which the elements of y/nT behave like independent standard Gaussian random
variables to good approximation when n is large.

To begin with, a classical theorem of Borel [6] shows that P{y/nΓu < x} —>

Φ(x) where Φ(x) = —i= f^ooe~^~ at. Theorems 2.1 and 2.2 below refine this,
showing that an arbitrary linear combination of the elements of Γ is approxi-
mately normal: as n —» oo,

sup |P{ J g f f i - < x} - Φ(χ) I - 0. (1.1)

Here A ranges over all non-zero n x n matrices and ||A|| = Tr(AAt); thus
the normal approximation result is uniform in A. Borel's theorem follows by
taking A to have a one in the one-one position and zeros elsewhere. When
A above is the identity matrix, Diaconis and Mallows (see [11]) proved that
TrT is approximately normal; this follows by taking A as the identity. As A
varies, it follows that linear combinations of elements of Γ are also approximately
normal. Interpolating between these facts and Borel's result, we prove that
linking appropriately normalized entries from Γ yields in the limit standard
Brownian motion. This is stated precisely in Theorem 3 below.

We give a little history. Borel's result is usually stated thus: Let X be
the first entry of a point randomly chosen from the n-dimensional unit sphere.
Then P{y/nX < x} —> Φ(x) as n tends to oo. Since the first row(or column)
of a uniformly chosen orthogonal matrix is uniformly distributed on the unit
sphere, Theorem 2.1 includes Borel's theorem. Borel, following earlier work by
Mehler [31] and Maxwell [28, 29], proved the result as a rigorous version of the
equivalence of ensembles in statistical mechanics. This says that features of the
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microcanonical ensemble (uniform on the sphere) are captured by the canon-
ical ensemble (product Gauss measure). These results are often mistakenly
attributed to Poincare. See [15] for a careful history, rates of convergence, and
applications to de Finetti type theorems for orthogonally invariant processes.
The present project may be seen in the same light: the conditional distribu-
tion of an n x n matrix M with independent standard Gaussian coordinates,
conditioned on MMT = / is Haar measure on the orthogonal group.

Borel also studied the joint distribution of several coordinates of y/n Γ.
His work was extended by Levy [24, 25, 26], Olshanski and Vershik [33] and
Diaconis-Eaton-Lauritzen [13]. These last authors show that any ns x ns block
of Λ/ΊIT converges to product Gauss measure in total variation. They also give
applications to versions of deFinettti's theorem suitable for regression and the
analysis of variance. Extensions by McKean to infinite dimensions are in [30];
he writes that "It is fruitful to think of Wiener space as an infinite-dimensional
sphere of radius -y/oo." Our Theorem 3 gives one rigorous version of this fantastic
statement. These ideas were developed by Hida [21]; see Kuo [23] for a recent
account.

The study of global functionals such as the trace is carried out in [14, 16,
33]. In particular, the joint limiting distribution of Γr(Γ),Γr(Γ2), ,Γr(Γfc)
is determined as that of independent normal variables. This turns out to be
equivalent to a celebrated theorem of Szego and allows further study of the
eigenvalues of Γ; see [7].

The eigenvalues of such random matrix models arise in dozens of situa-
tions and are currently being intensely studied. Mehta [32] gives a book length
treatment. The area is in active development; see [12] for a recent survey. In-
terestingly, the eigenvalues of a Gaussian matrix have very different behavior
from the eigenvalues of a random orthogonal matrix. In the first case they fill
out the inside of the unit circle with order y/n of them on the real axis [2, 17];
in the second case the eigenvalues lie on the unit circle.

Brownian limits for partial traces are established in [10] and by Rains [34].
This last paper does much more, establishing results for partial traces of random
matrices with law invariant under conjugation by On. This includes powers of
Haar distributed matrices. One recent global result of Jiang [22] shows that the
maximum entry of y/n Γ has the same limiting distribution as the maximum
of n2 standard normal variables. His method of proof gives an approximate
coupling between the first J columns of Γ and J columns of standard normals
for J of order n/(logn)2.

The uniform Gaussian limit for linear combinations of the entries of a random
orthogonal matrix is proved in Section 2. This is used to prove Brownian motion
limits in Section 3. The unitary and symplectic groups are treated in Sections
4 and 5. While we cannot prove completely parallel results, we can show that
the sequences of partial sums along the diagonal, suitably normalized, converge
to complex Brownian motions.

2 A Refinement of a Theorem of Borel

Our main tool will be obtained by extending a theorem of Borel [6]. A key to the
analysis is that a Haar distributed element of the orthogonal group has entries
that are invariant under the sign-change group. If Γ is an n x n orthogonal
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matrix and M is a random diagonal matrix with ± 1 chosen uniformly down
the diagonal, then the diagonal entries of MY are ± Γ ^ . Under mild conditions
on Γϋ, sums of such entries are close to Gaussian by classical theory. If Γ is
uniform on O n , then MY has the same law as Γ. The following result both
makes this precise and more general.

Theorem 2.1. For each positive integer n, choose any n x n real nonrandom
matrix A with \\A\\ = n (Here \\A\\ = TrAA* ) , and let Y be a random Haar
distributed n x n orthogonal matrix. Then TrAY converges in distribution to
7V(0,1) as n —> oo.

Remark. The matrix A above depends on n. We have suppressed this in
the notation. See Mallows [27] for further discussion of this method quantifying
joint convergence of a growing vector to a vector of independent normals.

Proof. By singular value decomposition [20], there are orthogonal nxn matrices
U and V such that UAV = W where W = Diag(a\,..., α n ) and a\ > a2 > ... >
an > 0. Now

TrAY = TrAVV~ιY = TrUiAVV-^U'1

= Tr(UAV){V-1YU~1). (2.2)

However, UAV is diagonal with non-negative, non-increasing entries and V~ιYU~ι

is random orthogonal by the invariance of Haar measure. We thus assume for the
rest of the proof that A is diagonal with nonincreasing entries a,j and \\A\\ = n.

If we write Xj for Γjj, then we have TrAY = Έ^ajXj which we may also
2

write as Sn. We will show that \E(eιrSn) — e~r^\ converges to 0. To do this,
it is enough to demonstrate that for each real r there is a constant L > 0 such
that, for each e in (0,1),

ϊ(eirS«-e~^)\ <Le. (2.3)
n—»oo

This last assertion will hold if, given any subsequence n/ of the positive integers,
• Q r2

there is a further subsequence n\u such that \E{eιr nιu) — e~"2")| is eventually
less than or equal to Le.

Given e > 0 , choose a positive integer m > ^ so that -̂ - < e2 for j > m.

This is possible since by induction one can show that α2 < j for all j and all

n (recall that α̂  is non-increasing in ϊ). Since α̂  < y/n, it is possible to choose

nιu which satisfies

3 —> (Xj as u —> oo for j = 1, , m. (2.4)

Here 0 < a3 < 1. We must consider E(eιrSnιu ) but shall henceforth replace ri£u

by n to simplify notation. Now \E(eτrSn) — e"2^-1 is less than or equal to the
sum of the following 3 terms:

\E(jrSn)-e-^ϊΣ?=™+ia*E(eirΣ?=iaiXj)\, (2.5)

| e - 4 £ Σ 7 = m + i α ? £ ( e " Σ Γ = i α ^

and

* Σ ? ? 4 Σ Γ ? £ (2.7)
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To bound (2.5) , first of all note that

n
x JJ e

i r α ' x ' ) (2.8)
j=m+l

(cos(rαjXj) + isinirdjXj))) (2.9)
j=m+l

cosirαjXj)). (2.10)

To pass from (2.9) to (2.10), one should keep in mind the sign-symmetry of the
Xj. In addition,

2

I J J cos(rαiXJ ) - β " Σ ? = - + 1 ^ " α ? £ ; ( ^ 2 ) | (2.11)
j=m+l

j=m+l

\e-^-2^j=m+iajXj _ e - τ L j = m + i α i ^ i ) | (2.12)

<r4 Σ 4 ^ + γl Σ <ή(XJ-E(X]))\. (2.13)
J =771+1 J=77l+1

To see that (2.12) is bounded above by (2.13), first take notice that for complex
numbers z\, , zni w\, - , wn of modulus less than or equal to 1, we have

n n

3 = 1

This is easily proved by induction. Also, it is not hard to show that

<t4

for all real numbers t. Finally, one observes that \e~a — e~b\ < \a — b\ for
non-negative α, b.

In view of (2.8)-(2.10), (2.5) is equal to

/
j=m+l

^ J ) e ^ Σ ^ i ^ i ) dP\
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(as we saw earlier that E(Xj) = £). Using (11)-(13), this is bounded by

j=m+l

Σ Φ t f ^ + ΐ / l Σ «j(Xf - E(X*))\ dP
=m+l J j=m+l

[ α)X]-E{ ± <ήx])\ dP
j=m+l J j=m+l

r4 Σ £<r4 Σ α4

jE(XJ) + j(Ve.v( £ αpφ)*. (2.14)

To obtain (2.14), which is our initial bound for (2.5), keep in mind that

ί \Y - EY\ dP < ( / \Y - EY\2 dP)% = (VarF)^

by Holder's inequality.
We will return to (14) but first we claim that (2.7) converges to zero. Since

- n ^ m

i V S2 = -(n-VS

2

j+l ' ".7=m+l j = l

1 m

n

which converges to 1 — ΣjLi α% o u r assertion is clear. It is also the case that
r^ 1 V-̂ n 2

(2.6) converges to zero. To see this, first note that since e~̂~™ ̂ j=™+iaj [s

bounded, it is enough to verify that E(eιrΣ?=i ajχj^ converges to e~^~ Σ?=i aj
But this immediately follows from the fact [13] that the entries of the block
matrix [V^ij)ι<i,j<m are in the limit independent, each with the standard
normal distribution.

From (2.14), and the previous paragraph, we have

r 4 Σ +— /_^ 3 ^ 3 ' 2 ^ — ' 3 3'' n

j=rn+l j=77i+l

where .Bn —> 0 as n —> oo. Since Xj2 has a beta distribution with parameters

1, n - 1 and thus E(Xf) = (n)^+ 2) - ^ a n ( ^ n Σ l + i a<j ^ ^ w e n a v e

1 V ^ A ^ ^TΏΛ-Λ 1 \ ~ ^ 0. ^ O./t\ 9. icy -j r\

J n n
jf=ra+l .7=m+l

Therefore
n r.

Σ 4 771/ v 4 \ ^-

j=m+l
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Furthermore,

Var( Y α2

ΊX
2

Ί) = V ,
j=m+l ra+1

n

Now

j=m-\-l

< 1 V α 4 - ^ -

< 2e2. (2.16)

To obtain (2.16) we can appeal to (2.15).
By expanding and taking expectations of both sides of

3=1 3=1

it follows that

Thus

n(n — 1) n(n — 1)

Therefore, for j Φ k,

1

1 1

n(n — 1) n 2 '

One then easily verifies that for n > 2

Thus

1 1 n 1 n O

- ( - Y α2Λ(- Y 4 ) < -
j—m-\-l k=m+l
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which converges to zero.

We have

\E(eirS") - e - £ | < r43e2 + ζ-(2e2 + - ) * + Bn

2 n

where Bn —>• 0 as n —> oo.

This yields (2.3) for some L depending on r, as desired, and we are done. D

Our next result shows that the convergence in Theorem 2.2 is uniform in A.
We only work with diagonal matrices A here but singular value decomposition
says that this suffices. We then find it convenient to think of A as a point of a
sphere of radius y/n.

Theorem 2.2. Let Γ, Xj = Tjj be as in Theorem 2.1 , and let An be the
surface of the sphere of radius y/n in W1. For v = (αi,..., an) G An, write Sn(v)
for Σ j = i ajXj' Then Sn converges in distribution to iV(0,1) uniformly on An,
i.e., as n —» oo,

sup \P(Sn{υ) <x)- Φ(x)| -+ 0.
χeR,veAn

Proof. We first verify that the family T = {Sn(v) : v G An, n = 1,2,...} is
tight. Corresponding to any sequence S of T, either there is a positive integer
Y such that S is contained in the family {SJ(VJ) : Vj G A^ 1 < j < Y} or
S has a sub-sequence Snι(vnι) where n/ -^ oo. In the first case, <S has a sub-
sequence of the form Sk(pku) where A: is a fixed positive integer, 1 < k < Y,
and pku — (αiuj •••? f̂cu) ^ -Afe for w = 1, 2,... . Choose a sub-sequence w/ of the
positive integers such that aruι —> br ϊor 1 < r < k. Plainly Sk{pkUι) => Sk(w)
where w = (&i,..., bk). In the second case, the argument of Theorem 1 shows
that 5 n ί (t; n i ) => iV(0,1). Thus T is tight.

It is easy to see that because of tightness, it suffices to show, as we now do,
that for any interval [α, b] C R

lim sup \P(Sn(υ) < x) - Φ(x)\ = 0.

If false, there exists an eo > 0, a sub-sequence nι —» oo, points xn z G [α, 6], and
elements i>nz G Anι such that

Now xn z has a non-increasing or non-decreasing sub-sequence xniu which con-
verges to x G [α, 6]. We assume without loss of generality that xniu is non-
decreasing. We henceforth work with mu but suppress the subsequence nota-
tion. Note that

P(Sn(vn) <x) = P(Sn(vn) < xn) + P(xn < Sn(vn) < x).

Since Sn(υn) => iV(0,1), it is clear that P(xn < Sn(vn) < x) -> 0 and hence
that P(Sn(υn) < xn) —> Φ(a ). Since Φ(xn) —> Φ(a ), we obtain a contradiction
which proves our claim. Π
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3 Orthogonal Matrices

We use the results of Section 2 to prove the main theorem of this section. This
shows that if any growing selection of entries of a random orthogonal matrix
are linked together in the classical way, a limiting standard Brownian motion
results. To set up our notation, let Γ = (r^-)^- = 1 be an n x n orthogonal
matrix distributed by Haar measure. Choose a subset of size kn from among
the entries of Γ. Suppose the entries are /?i,/?2> ,βkn with βj corresponding
to e.g. lexicographic order of Γ r s : (r, s) < (x, y) if r < x or if r = x and s < y.
To denote this ordering we write β\ ~ Γ n , β^ ~ Γ12, . . . , βn+i ~ Γ21, etc.

Theorem 3.1. Let /3χ, /?2, . . , βkn be entries of a Haar distributed random ma-
trix in On, as above. Assume that kn f 00. If for ί in {1, . . . , kn} and t in

[0,1],

then Xn ==> W, a standard Brownian motion, as n —> 00.

Proof. We first prove that the finite-dimensional distributions of Xn converge
to the corresponding distributions of W. For a single time point ί, we must
prove that

Xn(t) = > 7V(0, t) = Wt as n -> 00.

However, this is equivalent to

Vtny

For each n, let A = ( α ^ ) ^ = 1 be the n x n real matrix defined as follows :

— / J 1 if β- ~ Γ

αr.s =

Note that I IAN =n and

for some i, 1 < i < [knt]

otherwise

Tr(AΓ) = 4=-M*) + (n - %^)M[ifent]+iv t knt

which converges to iV(0,1) in distribution by Theorem 2.1. However, 0 <

n — *• £1 < £Γ7 and so, by [5], it suffices to show that \/γή;β[knt]+ι ~^ 0

in probability, which folows from kn —> 00 and the fact [13] that

We now consider two time points s and t with s < t. By the Cramer-Wold
device [5], it is enough to show that

aXn(s) + b(Xn(t) - Xn(s)) ==> aWs + b{Wt - Ws)
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for any (α, b) G R2. However, this is equivalent to showing that

where

This can be shown by choosing an appropriate sequence of matrices A, as follows,
and again applying Theorem 2.1.

First note that

[kns}α2 + {[knt] - [kns\)b2

> (kns - l)α 2 + {{knt - 1) - kns)b2

— knsα2 - α2 + kntb
2 - b2 - knsb2

= knC
2(s,t)-(α2 + b2)

Also observe that

[kns]α2 + ([knt] - [kns])b2

< knsα2 + kntb
2 - (kns - l)b2

= knsα2 + kntb
2 - knsb2 + b2

= knC
2{s,t)+b2

Combining these facts, we have

nb2

knC
2(s,t)

[kns]nα2 ([knt] - [kns})nb2,
< (ra-

n(o? + b2)

With these preliminaries, we define the matrix A in two cases. If n — l ^

{[knί~CHsί)nb2 ^ °> l θ t A = (αi,j)ij=l b e d e f i n e d a s follows :

if βi~Tυu,

for some i, 1 < i < [kns]

if βi ~ Γvu, for some

i , [kns] + l < i < [knt]

if β[knt]+i ~ Fvu

αΊIΊ, =

C(s,t) A/ h

Άs,t) V k,

knC
2(s,t)

otherwise
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On the other hand, if n - ^ f f i
we define A = (αij)fj=1 by :

C(s,t) V kn

C(s,t) A/ kn

[n-

([knt]-[kna])nb2

knC
2(s,t)

«[knt]-l)-[kns])nb2

knC
2(s,t)

if βi~Γυu,

for some i, 1 < i < [kns]

II Pi ~ 1 υ n ,

for some i, [kns] + 1 < i < ([knt] — 1)

if β[knt] ~ Γ υ n

otherwise

Note that in either case | |A|| = n and so Tr(AΓ)) =>• JV(O,1) by Theorem

2.1. However, it is plain that c?s t\S[knS] + c(s t) (S[knt] — S[fenS]) differs from

Tr(AT) by a quantity in absolute value bounded by ^cl^t) \ ΊΓ^ w n e r e 7 i s a n

entry of the random n x n random Γ. Thus, as before, what remains is to show

that s+/;)2 A/AΓΎ converges to zero in probability. Thus, given e > 0

which converges to 1 as n —• oo.

A similar argument shows that the higher order finite dimensional distribu-
tions behave properly.

We next show that Xn is tight. According to Theorem 15.6 of [5], it is
enough to show that for sufficiently large n

2 , ί i < ί < t 2 ) (3.17)

for K independent of n, ίχ91, and t^. The left member of the above expression
is

w h e r e [knt\] < i,j < [knt] a n d [knt] < k,l < [/cnί2] P u t [knt] - [knt\] = m\ a n d

[knh] — [knt] = ̂ 2- The left member of (3.17) is bounded from above by

where α and b are both less than or equal to πiιm2. Here we have used the
fact that for distinct entries ί, /?, α and σ of a random orthogonal matrix,
E(δ2βα) — 0 and E(δβασ) is non-positive. The first assertion uses the fact
that for any (nonrandom) diagonal sign matrix M, the random matrices TM
and MY are equidistributed with Γ; the second assertion uses that and also the
fact that £(711712721722) = - ( w -i)n(n+2) t 3 6 ]- However, both n2E{Y\1T\2)
and n2E'(Γ^Γ^) converge to 1 , and so for all n, both expectations are less
than ^μ for some positive constant L. Combining all of this information, we
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have that

E(\Xn(t) - Xn(h)\2 \Xn(t2) - Xn(t)\2)

. j 1 . r/mι + m 2 χ 2< Lmιm2— < L( f

If IT- < t2 - ί i , then m i + m 2 < 2(ί2 - *i) while if ^- > t2 - t u then either
Xn{t) — Xnifi) or Xn{h) — Xn(t) is zero. Thus our claim is established. D

4 Unitary Matrices

We first thought that obtaining unitary analogues of Theorems 1, 2, 3 would be
straightforward but then encountered difficulties in translating to the complex
case because of the lack of a singular value decomposition. This led us to
carefully redo the preliminaries. Our main results are Theorems 5 and 6 below.

For the proof of Theorem 6, it will be necessary to first establish Theorem 4,
which is the analogue of Theorem 15.1 of [5]. To this end, let 1Zk, V and E denote
respectively the Borel sets of Rfc, D and DxD, where D is the Skorokhod space
of right-continuous real-valued functions on [0,1] with left limits. For £χ, -,tk
in [0,1], define

τrtl>...jtfc : D -» R

by τrt1?...?ίfc(x) = (x(tι), -",x(tk)) for x G ΰ . Following Billingsley [5], sets of the
form πt~|... t f c(iJ) where H G ΊZk are subsets of D and called finite-dimensional
sets.

If To is a subset of [0,1], let TτQ be the collection of sets π^1... tk(H) w n e r e

k > l,ti G TQ, and H G ΊZk. Then Tτ0 is an algebra of sets, i.e., TτΌ is closed
under finite unions and finite intersections and the empty set 0 G FTO- See
Roy den [35] for more details. Obviously, ^[0,1] is the class of finite-dimensional
sets. Billingsley has shown (Theorem 14.5 of [5]) that if TQ contains 1 and is
dense in [0,1], then Tτ0 generates V.

Extending these ideas, for si, , Sk and £1, , tι in [0,1], define

by sending (x, y) to (x(sι), , x(sfc); 2/(£i), , y(U)) Subsets of D x D of the
form

where H eΊZk, K e1Zι are called finite-dimensional sets (of D x D).
If TQ and T\ are subsets of [0,1], let J-τQ,τλ be the class of sets

π;i]...,Sk;tu...M(H x K)

where s{ G To, tά G Tu k > 1, / > 1, H G Ίlk, and K G Ίlι. One can easily verify
that TTQ,TX is a semi-algebra of sets, i.e., the intersection of any two members
of ^τo,Ti is again in Fτo,Ti a n d the complement of any set in ^τo,Ti is a finite
disjoint union of elements of Tτo,τλ- If we let Λ be all finite disjoint unions
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of members of TTQ,TX-> then Λ is an algebra of sets in D x D (any semialgebra
generates an algebra in this way [35]).

Suppose To and T\ are both dense subsets of [0,1] and that 1 G To Π T\. Let
C be the σ-algebra of subsets of D x D generated by Tτ^,τγ Sets of the form

πSl,.,Sk(H) x D

where H is in !Zh and Si, , Sk £ To are in TTQ,TX and may be identified with
^To Since .Fτ0 generates £>, it is clear that G x D G £ for all open sets G of
D. Similarly D x L £ £ for all L open in D and so C contains all sets G x L
where G, L are open in D. It is now plain that 8 C £.

On the other hand, Billingsley has shown that

is a measurable mapping. In a completely analogous way, it can be shown that

π θ l , . . . ϊ β f c ; t l ϊ . . . | t I : (D x D,ε) - (Rk x Rι,πk x nι)

is also measurable (here ΊZk x ΊZι is the σ-algebra of subsets of Rfc x M1 generated
by "measurable rectangles" of the form H x K where H eΊZk, K e Uι). This
σ-algebra is precisely the σ-algebra of Borel sets of Rk x Rι (see [4]). It follows
that the finite-dimensional subsets of D x D lie in 8 by definition of measurable
mapping. Thus CCS and so we have C = S.

Suppose P and Q are two probability measures on (D x D,8) which agree
on J~τo,Tι Then they clearly agree on the σ-algebra Λ generated by TTQ,TX-
Since Λ generates S, it follows that P = Q on E by Theorem 3. 2 of [4]. In the
language of Billingsley [5], for Xb,Ti dense in [0,1] with 1 E To ΠTΊ, J-*τo,Ti is a

"determining class."
If P is a probability measure on (Z), Ί)\ let Tp be the set of all points t € [0,1]

such that πt is continuous except on a subset of D which has P-measure 0.
Billingsley [5] has shown that TP contains 0 and 1 and its complement in [0,1]
is at most countable. Now let P be a probability measure on (D x D,E) with
marginals R\ and it^ If si, ,Sfc G TRX and ίi, -,£/ G T R 2 , then τrSlj...)Sfc is
continuous except on a subset A of D of Jϋi-measure zero. Similarly TΓ^. . .^ is
continuous except on a subset B of D of it^-measure zero. Now ( i x D ) U ( D x 5 )
has P-measure 0 and off this set τrS l ?... ) S f c ;£1 Γ..^ is continuous. We will need the
following:

Theorem 4.1. Let Pn, n = 1, 2, •••, and P be probabilitymeasures on (D x D, £).
Suppose Rι and R2 are the marginal probability measures of P. If {Pn} is tight
and if Pn^71] -,sk;tli -,tι ̂  ^7Γs'u-,sk\tli-M holds whenever all the Si are in TRl

and all the tj are in TR2, then Pn => P.

Proof Since {Pn} is tight, each subsequence {Pn'} contains a further subse-
quence {Pn"} converging weakly to some limit Q. By Theorem 2 of [5], it
suffices to show that each such Q is equal to P.

Suppose Qι and Q2 are the marginals of Q. If s\, , Sk all lie in TRX Π TQX

and ί1? , tι all lie in TR2 Π Γ Q 2 , then
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by hypothesis. Also πSlr..j3k]tl,...,tι is continuous except on a subset o f D x D
of Q-measure zero by comments preceding the s tatement of the theorem. Since
Pn,, =-> Q, it follows by Theorem 5.1 of [5] t h a t

Thus

^βi.-.βfc ίi,-,*! = Φπβi, ,βfc;*i, ,ti

whenever each s* G T Λ l Π TQl and each ^ G TR2 Π T Q 2 . Let 7\ = Γ R l (Ί Γ Q l

and T2 = Γ R 2 Π Γ Q 2 . Each of Tλ and T2 is dense in [0,1] and 1 G 7\ Π Γ2 and so
as we have seen above, ^ΓTi,τ2 *

s a determining class. The above equality says
that P and Q agree on TτΎ,Ti a n < ^ w e a r e done. D

We are now in a position to establish the complex analogue of Theorem 2.1
(for diagonal A).

Theorem 4.2. Let A = Diαg{αχ, . ..,αn) and £? = Dίαg(bι, ...,6n) w/iere ai >
a 2 > ... > a n and 6χ > 62 > ... > bn and \\A\\ = \\B\\ = n, and let Δ = Γ + iλ
be an n x n unitary matrix distributed by Haar measure. Then (TrAΓ, TrBK)
=> -4=(Zi,Z2) as n —* oo? where Z\ and Z 2 are i.i.d. standard normal (i.e.,
TrAT + iTrBY converges in distribution to a complex standard normal distri-
bution).

Proof. By the Cramer-Wold device [5], it suffices to prove that

xTrAT + yTrBK => x—^Zλ + y—^Z2

for arbitrary (x,y) G M2. Write Xj for 7 ^ and l^ for λj j with 7^ , λ^ the entries
of Γ and Λ. We will show t h a t

converges to zero. We follow the proof of Theorem 2.1 and show that there is a
constant L > 0 such that, for each e > 0, the lim sup of (4.18) is less or equal

α 2 b2

Given e > 0, choose a positive integer m > ̂  so that -£ < e2 and -£ < e2

for j > m and all n. Given any subsequence n\ of the positive integers, choose
a subsequence n\a which satisfies

- ^ - α , - , -^-^βj, a s μ ^ o c for j = l,2,...m. (4.19)

As before, we will suppress the subsequence notation.
The quantity (4.18) is less than or equal to the sum of the following three

terms

(4.21)

=i^ 2 | ,

(4.22)
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Since
m^ n

— V^ a2, —> 1 - y ^ ou and
j=m+l j=l

n

k Σ ? -
j=m+l i=l

the term (4.22) converges to zero.
By a known result (see, e.g., Lemma 5.3 of [33]),

where the Z* are i.i.d. iV(0,1). Thus

(α1xX1,...,αrnxXπι,b1yY1,...,bmyYm)

(/nxX^/nxX ^

and so

and hence (4.21) converges to zero.
To bound (4.20), we first claim that

= £(e<™ΣΓ=i Λ e * τ / Σ ^ i W ΓJ coβίra αj JCj ) J J cos{rybjYj)).

To see this, let
G = e

i r x ΣΓ=i α j X i e ί r l / Σ ^ i 6^yi

and note that
n n

j=m-\-l j=m-\-l

plus a sum of products of the form G J where J is a product of sines and cosines
involving at least one sine term.

To establish our claim, it is enough to verify that the expectation of any such
GJ is zero. First suppose J contains the factor sin(rxαjXj) but not the factor
sin(rybjYj). Then E(GJ) = 0 by the sign-symmetry of the diagonal elements
of Δ. Next consider a product GJ containing a factor sm(rxa,jXj) sin(rybjYj).
The diagonal elements of Δ are also exchangeable, and so we can assume j =
m + 1. Write

GJ =

Xm+i + iYm+i = selΊ', and

GJdμn = I
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where Un is the unitary group and μn is Haar measure. For 0 € [0, 2π], let D(θ)
be the nx n diagonal matrix Diαg(l, 1,..., 1, eιθ, 1,..., 1) where eιθ is in position
771 + 1. By the invariance of Haar measure, D(Θ)A has the same distribution as
Δ, and so

/ Hsin(raαm+i(scos(7 + 0))) sΐn(rybm+ι(ssin(7 + 0))) dμn = I.

Thus

,2π ,

/ / iίsin(rxαm +i(scos(7 + 0))) sin(r2/6m+i(ssin(7 + 0))) dμn dθ = 2π/.

By Fubini's Theorem [35], we have

H sin(rxαm+i(scos(7 + θ))) sm(rybm+ι(ssin(7 + 0))) d0 dμn = 2π/.

Next let Z(0) = sin(rxαm+i(5cos0)) sin(ry6m+i(ssin0)). Now, / is periodic
with period 2π and shifting / by 7 units yields a functions whose integral over
[0, 2π] coincides with the integral of / over that same interval. Thus

f H ί l(θ) dθ dμn = 2π/.
Jun Jo

However, / is an odd function and so

r2π

ί l(θ) dθ = [ l(θ) dθ = 0.
JO J-7Γ

It follows that / = 0 and our claim is established.
Using this fact and arguing as we did in the proof of Theorem 2.1 , we have

that the expression in (4.20) does not exceed the value

L
n n

cos(rxdjXj) J J cos(rybjYj)
j=m+l

j=m+l .7=771+1

+rV
j=m-\-l j=m+l

We can bound this last expression as in the proof of Theorem 1, which leads us
to a proper choice of L and completes the proof of Theorem 4.2. D

It is natural to ask if Theorem 3.1 has complex and symplectic analogues.
We believe this is the case but thus far, like in the case of Theorem 2.1, we are
able to prove a result of this type only for elements of the diagonals of these
classes of matrices. In doing so, we obviously lean heavily on the preceding
theorem.
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Theorem 4.3. Let Ωn = Un be the unitary group of n x n complex matrices,
and let Δ = Γ + iλ be an element of Ωn distributed according to Haar measure.
Let dj = 7? ? + iλjjand let Su = Ύ^^—i dj. If

then Zn => W converges to W where W is standard complex-valued Brown-
ian motion (W = Wt + iW^ where W^ and W^ are independent one-
dimensional Brownian motions with drift 0 and diffusion coefficient \).

Proof We appeal to Theorem 5. One can easily adapt the argument for tight-
ness given in Theorem 3.1 to show that ReZn is tight. Here E{ηlλ) = ̂  and
EiΊrrΊssλuuKυ) = 0 for distinct r,s,u, and υ. Similarly, ImZn is tight and
hence Pn is tight where Pn is the law of (ReZn,ImZn).

By Theorem 4.1, it remains to show that

where P is the law of (W^ι\W^). We consider time points si,S2,£i, a n d 2̂
where s\ < S2 and t\ < ̂ 25 and one may easily verify that the general case can
be handled analogously.

Letting Xn = ReZn and Yn — ImZn, we wish to prove that

(xn(s1),xn(s2),γn(t1),γn(t2)) ^Ml]

However, this statement would follow if

converges in distribution to

Appealing as before to the Cramer-Wold device [5], it suffices to show that

aXn(Sl) + b{Xn{s2) - Xn{Sι)) + cYn{h) + d(Yn(t2) - Yn(h))

converges in distribution to

for any (α, 6, c, d) E l 4 . The remainder of the proof follows by applying Theo-
rem 4.2 in essentially the same way as Theorem 2.1 is applied in the proof of
Theorem 3.1. D

5 Symplectic matrices

Recall (see [8] ) that the group of symplectic matrices Sp(n) may be identified
with the subgroup of U(2ή) of the form

B ~A}€ t/(2n)' (5 24)
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where A, B are complex n x n matrices. The trace of random matrices from
this group is studied in [14, 16]. As shown there, if Θ is chosen according to
Haar measure in Sp(ή), then Γr(θ) , Γr(θ 2 ) , ... , Γr(θ f c) are asymptotically
independent normal random variables. We now study the extent to which the
diagonal entries of a random symplectic matrix generate Brownian motion.

Random matrices in Sp(n) can be generated in the following way. Fill the
real and imaginary entries of A and B in with real, standard normal i.i.d. ran-
dom variables. Apply the Gram-Schmidt process to the n complex column
vectors of dimension 2n which result. We now have a new A and B and we
complete the right half of our matrix by following the pattern of (5.24). The
matrix obtained in this way is distributed according to Haar measure in Sp(n).
To see this, one can adapt the argument given for the construction of a random
orthogonal matrix. See for example Proposition 7.2 of [17]. We now have

Theorem 5.1. Let Sp(ή) be the symplectic group of2n x 2n complex matrices
of the form (5.24) ? and let θ be an dement of Sp(ή) chosen according to Haar
measure μn. Let A = (dij)i'j=ι be the upper left n x n block of θ , and let
di = an, 1 < i < n , and let S% = ^ i = 1 d{. If

Zn(t,ω) = S[nt](ω), ί€[0, l ]

then Zn => -y^W where W is standard complex-valued Brownian motion.

Proof. We are working with complex matrices and so we can follow the ar-
guments of Theorems 4.2 and 4.3. We first need the symplectic analogue of
Theorem 4.2. To accomplish this, only one change in the proof of Theorem 4.2
is required. In place of the diagonal matrix D(θ), we use instead the 2n x 2n
diagonal matrix Dλ(θ) = Diag(l,..., l,eiθ, 1,..., 1, e~iθ, 1,..., 1) where eiθ and
e~τθ occur in positions number m + 1 and n + m + 1 respectively. The rest of
the arguments for the analogues of Theorems 4.2 and 4.3 are clear. D

It should be noted that we cannot link all 2n diagonal entries to obtain
Brownian motion. If we were to try, note that Zn{\) and Zn(l) — Zn{\) would
tend to limits which are complex conjugates of one another and hence dependent.
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