Brownian Motion and the Classical Groups

Anthony D’Aristotile Persi Diaconis
SUNY at Plattsburgh Stanford University
Charles M. Newman
Courant Inst. of Math. Sciences

Abstract

Let I' be chosen from the orthogonal group O, according to Haar
measure, and let A be an n X n real matrix with non-random entries
satisfying TrAA* = n. We show that TrAT converges in distribution
to a standard normal random variable as n — oo uniformly in A. This
extends a theorem of E. Borel. The result is applied to show that if
entries f1,- - -, Bk, are selected from I" where k, — 00 as n — oo, then

E[k“t] B;,0 <t <1 converges to Brownian motion. Partial results

in thls direction are obtained for the unitary and symplectic groups.
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matrix; Haar measure

1 Introduction

Let O,, be the group of n x n orthogonal matrices, and let I" be chosen from
the uniform distribution (Haar measure) on O,,. There are various senses in
which the elements of y/nI" behave like independent standard Gaussian random
variables to good approximation when n is large.

To begin with, a classical theorem of Borel [6] shows that P{y/nl'1; < z} —

&(x) where ®(z) = \/—— I e=% dt. Theorems 2.1 and 2.2 below refine this,

showing that an arbitrary hnear combination of the elements of T' is approxi-
mately normal: as n — oo,

Tr(AT)

sup IP{ <z}-%®(x)|—0. (1.1)
A0 VIIAll/vn
Here A ranges over all non-zero n X n matrices and ||A|| = Tr(AA?); thus

the normal approximation result is uniform in A. Borel’s theorem follows by
taking A to have a one in the one-one position and zeros elsewhere. When
A above is the identity matrix, Diaconis and Mallows (see [11]) proved that
TrI is approximately normal; this follows by taking A as the identity. As A
varies, it follows that linear combinations of elements of I" are also approximately
normal. Interpolating between these facts and Borel’s result, we prove that
linking appropriately normalized entries from I' yields in the limit standard
Brownian motion. This is stated precisely in Theorem 3 below.

We give a little history. Borel’s result is usually stated thus: Let X be
the first entry of a point randomly chosen from the n-dimensional unit sphere.
Then P{y/nX < x} — ®(z) as n tends to co. Since the first row(or column)
of a uniformly chosen orthogonal matrix is uniformly distributed on the unit
sphere, Theorem 2.1 includes Borel’s theorem. Borel, following earlier work by
Mehler [31] and Maxwell [28, 29], proved the result as a rigorous version of the
equivalence of ensembles in statistical mechanics. This says that features of the
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98 Brownian Motion and the Classical Groups

microcanonical ensemble (uniform on the sphere) are captured by the canon-
ical ensemble (product Gauss measure). These results are often mistakenly
attributed to Poincaré. See [15] for a careful history, rates of convergence, and
applications to de Finetti type theorems for orthogonally invariant processes.
The present project may be seen in the same light: the conditional distribu-
tion of an m X n matrix M with independent standard Gaussian coordinates,
conditioned on MM7T = I is Haar measure on the orthogonal group.

Borel also studied the joint distribution of several coordinates of \/n T
His work was extended by Levy [24, 25, 26], Olshanski and Vershik [33] and
Diaconis-Eaton-Lauritzen [13]. These last authors show that any 73 x n3 block
of \/nI’ converges to product Gauss measure in total variation. They also give
applications to versions of deFinettti’s theorem suitable for regression and the
analysis of variance. Extensions by McKean to infinite dimensions are in [30];
he writes that “It is fruitful to think of Wiener space as an infinite-dimensional
sphere of radius 1/00.” Our Theorem 3 gives one rigorous version of this fantastic
statement. These ideas were developed by Hida [21]; see Kuo [23] for a recent
account.

The study of global functionals such as the trace is carried out in [14, 16,
33]. In particular, the joint limiting distribution of Tr(T"), Tr(I'2),- - -, Tr(T'*)
is determined as that of independent normal variables. This turns out to be
equivalent to a celebrated theorem of Szego and allows further study of the
eigenvalues of T'; see [7].

The eigenvalues of such random matrix models arise in dozens of situa-
tions and are currently being intensely studied. Mehta [32] gives a book length
treatment. The area is in active development; see [12] for a recent survey. In-
terestingly, the eigenvalues of a Gaussian matrix have very different behavior
from the eigenvalues of a random orthogonal matrix. In the first case they fill
out the inside of the unit circle with order v/n of them on the real axis [2, 17];
in the second case the eigenvalues lie on the unit circle.

Brownian limits for partial traces are established in [10] and by Rains [34].
This last paper does much more, establishing results for partial traces of random
matrices with law invariant under conjugation by O,,. This includes powers of
Haar distributed matrices. One recent global result of Jiang [22] shows that the
maximum entry of v/n T’ has the same limiting distribution as the maximum
of n? standard normal variables. His method of proof gives an approximate
coupling between the first J columns of I and J columns of standard normals
for J of order n/(logn)?.

The uniform Gaussian limit for linear combinations of the entries of a random
orthogonal matrix is proved in Section 2. This is used to prove Brownian motion
limits in Section 3. The unitary and symplectic groups are treated in Sections
4 and 5. While we cannot prove completely parallel results, we can show that
the sequences of partial sums along the diagonal, suitably normalized, converge
to complex Brownian motions.

2 A Refinement of a Theorem of Borel

Our main tool will be obtained by extending a theorem of Borel [6]. A key to the
analysis is that a Haar distributed element of the orthogonal group has entries
that are invariant under the sign-change group. If I' is an n x n orthogonal
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matrix and M is a random diagonal matrix with +1 chosen uniformly down
the diagonal, then the diagonal entries of MT are +I';;. Under mild conditions
on I';;, sums of such entries are close to Gaussian by classical theory. If T is
uniform on Oy, then MT has the same law as I'. The following result both
makes this precise and more general.

Theorem 2.1. For each positive integer n, choose any n X n real nonrandom
matriz A with ||A|| = n (Here ||A]| = TrAA! ), and let T be a random Haar
distributed n x n orthogonal matriz. Then TrAT converges in distribution to
N(0,1) as n — oo.

Remark. The matrix A above depends on n. We have suppressed this in
the notation. See Mallows [27] for further discussion of this method quantifying
joint convergence of a growing vector to a vector of independent normals.

Proof. By singular value decomposition [20], there are orthogonal n x n matrices
U and V such that UAV = W where W = Diag(as,...,a,) and a; > ag > ... >
a, > 0. Now

TrAT = TrAVV'T'=TrUAVVIT)U !
= Tr(UAV)(VTITU™Y). (2.2)

However, U AV is diagonal with non-negative, non-increasing entries and V"1T'U !

is random orthogonal by the invariance of Haar measure. We thus assume for the

rest of the proof that A is diagonal with nonincreasing entries a; and ||A|| = n.
If we write X; for I';;, then we have TrAI' = ¥7a;X; which we may also

. ,,,2
write as S,,. We will show that |E(e"5") — e~ 7| converges to 0. To do this,
it is enough to demonstrate that for each real r there is a constant L > 0 such
that, for each ¢ in (0, 1),

lim sup | E(e'™ — e_é)l < Le. (2.3)

n—00

This last assertion will hold if, given any subsequence n; of the positive integers,
irS

r2
there is a further subsequence n;, such that |E(e" ") — e~ 7 )| is eventually

less than or equal to Le.
2
Given € > 0, choose a positive integer m > glg so that %’— < € for j > m.
This is possible since by induction one can show that af < ? for all j and all
n (recall that a; is non-increasing in 7). Since a; < /n, it is possible to choose
ny, which satisfies

aj

—a; asu—ooforj=1,---,m. (2.4)
Ty

u

Here 0 < a; < 1. We must consider E (e"s"lu ) but shall henceforth replace ng,
. 2

by n to simplify notation. Now |E(e"9») — e~ | is less than or equal to the

sum of the following 3 terms:

2

|E(eiTS") _ 6_%% P a?E(eir i U«ij)I, (2.5)

N

r

2 2 . 1 2 2 2
Ie’%% 3 emt1 5 E(e"” hD anj) — e Znm Y1 @5 6_% ity l, (2,6)

and
2

e T A Diemn 6= S0 _ o) (2.7)
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To bound (2.5) , first of all note that

E(eirsn) — E(eiTE;-n:l a; X H ei"ajxj) (2.8)
j=m+1
= E(e'm Xi=1 %% H (cos(ra; X;) + isin(ra; X;))) (2.9)
j=m+1
= B(e'm Xi=1%%s H cos(ra; X;)). (2.10)
j=m+1

To pass from (2.9) to (2.10), one should keep in mind the sign-symmetry of the
X;. In addition,

n
H cos(ra; X;) — e~ S T B X2)| (2.11)
j=m+1

2
H cos(ra; X;) — e~ T Ti=mi1 45 X7| 4

j=m+1
|€—T2 Z] m+1 O'JXJ2 —e T ZJ mt+l a]E(X )| (212)
" Z X4 + _| Z 2(X? — E(X))|. (2.13)
j=m+1 Jj=m+1

To see that (2.12) is bounded above by (2.13), first take notice that for complex
numbers z1, - - -, 2, W1, - * -, W, of modulus less than or equal to 1, we have

n n n
Tz - TTwil <D 1z —wl.
j=1 j=1 =1
This is easily proved by induction. Also, it is not hard to show that

2
|cos(t) — e*tT| <ttt

for all real numbers t. Finally, one observes that e~ — e™%| < |a — b| for
non-negative a, b.

In view of (2.8)-(2.10), (2.5) is equal to

[/ (e 251 4% H cos(ra; X

j=m+1

—e 2z 5 Z] =m+1 _‘IE “'ZJ 105X )dP'
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(as we saw earlier that F(X?) = 1) Using (11)-(13), this is bounded by
/| H cos(ra;j X;) —e™ T F 5 3B X2)| aP
j=m+1
<r / Z aj X} dP+—/| E(X?))| dP
j=m+1 j=m+1
=7t Z /| a;X:—E( Y dX7)|dP
j—m+1 Jj=m+1 j=m+1
r Z —(Var( Z a?X2))%. (2.14)
j=m+1 j=m+1

To obtain (2.14), which is our initial bound for (2.5), keep in mind that

/IY —EY|dP < (/ [Y — EY|? dP)? = (VarY)?
by Hélder’s inequality.

We will return to (14) but first we claim that (2.7) converges to zero. Since

:lr—'
3 3
:.H +M

which converges to 1 — Z;’;l o, our assertion is clear. It is also the case that

n

2
(2.6) converges to zero. To see this, first note that since e~ 7w Zimi1 % s
bounded, it is enough to verify that E(e® 25219 Xi) converges to e~ T Dy o
But this immediately follows from the fact [13] that the entries of the block
matrix [\/nlij]i<ij<m are in the limit independent, each with the standard
normal distribution.

From (2.14), and the previous paragraph, we have
. -2
B % |

n
<rt > aEX))+

j=m+1

n

1“2 1
o (Var( D ajX7))*

j=m+1

+ B,

where B,, — 0 as n — o0. Since X has a beta distribution with parameters
1,n —1 and thus E(X}) = (n)( T <% and 23" a? <1, we have

(2.15)

Therefore
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Furthermore,
n n
Var( Z a?X]?) = Z a?Var(X?)
j=m+1 m—+1
+ Z a 2 Cov( X2 , X3).
Jyk=m+1
7k
Now
n n 1
> ajVar(X?) = a(B(X}) - —).
m+1 =m+1
n 1 n
_ 4p
=2 GEX) -7 2 4
j=m+1 j=m+
3 = 4 1 <
S 2 G 29
Jj=m+1 j=m+1
2 n
_ 4
2 Z aj
j=m+1
< 262 (2.16)
To obtain (2.16) we can appeal to (2.15).
By expanding and taking expectations of both sides of
Z I3 Z I3
it follows that
1=nE(},T5) +n(n—1)E(T]T5,).
Thus 5
n(n —1) n(n —1)

Therefore, for j # k,

Cov(X?, X2) = E(X;X}) — —
_t _t
“nn-1) n?
One then easily verifies that for n > 2
Cov(X7, X7) < %
Thus

Z a 2 Cov( X2 , X3?)
Jik=m+1

ik
11 "
<G 2 @) CIRLEE
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which converges to zero.
We have

irS -z 42 T2, 201
[E(e™) —e™ 7| < r%3e +3(2e +;)2+Bn

where B,, — 0 as n — oc.
This yields (2.3) for some L depending on r, as desired, and we are done. O

Our next result shows that the convergence in Theorem 2.2 is uniform in A.
We only work with diagonal matrices A here but singular value decomposition
says that this suffices. We then find it convenient to think of A as a point of a
sphere of radius /n.

Theorem 2.2. Let I', X; = I'j; be as in Theorem 2.1 , and let A, be the
surface of the sphere of radius \/n in R™. For v = (ai,...,a,) € Ay, write S, (v)
for Z;;l a; X;. Then S, converges in distribution to N(0,1) uniformly on Ay,
i.e., asn — 0o,

sup |P(Sp(v) <z)— ®(z)| — 0.
T€ER,vEA,

Proof. We first verify that the family F = {S,(v) : v € A,, n=1,2,..} is
tight. Corresponding to any sequence S of F, either there is a positive integer
Y such that S is contained in the family {S;(v;) : v; € 4;,1 < j <Y} or
S has a sub-sequence Sy, (v,,) where n; — co. In the first case, S has a sub-
sequence of the form Si(pk,) where k is a fixed positive integer, 1 < k <Y,
and pry = (@14, ..., Gku) € A for u=1,2,... . Choose a sub-sequence u; of the
positive integers such that a,,, — b, for 1 < r < k. Plainly Sk(pgy,) = Sk(w)
where w = (by,...,b;). In the second case, the argument of Theorem 1 shows
that Sy, (v,,) = N(0,1). Thus F is tight.

It is easy to see that because of tightness, it suffices to show, as we now do,
that for any interval [a,b] C R

lim sup  |P(Sp(v) <z)—®(z)| =0.

n—=0 gela,b],vEA,

If false, there exists an ey > 0, a sub-sequence n; — oo, points z,, € [a,b], and
elements v, € A,, such that

|P(Sn, (vn) < @ny) — @(20,)| > €0-

Now z,, has a non-increasing or non-decreasing sub-sequence x,, which con-
verges to x € [a,b]. We assume without loss of generality that z,, is non-
decreasing. We henceforth work with n;, but suppress the subsequence nota-
tion. Note that

Since S,(v,) = N(0,1), it is clear that P(z, < Sn(v,) < x) — 0 and hence

that P(S,(v,) < x,) — ®(x). Since ®(z,) — ®(x), we obtain a contradiction
which proves our claim. O
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3 Orthogonal Matrices

We use the results of Section 2 to prove the main theorem of this section. This
shows that if any growing selection of entries of a random orthogonal matrix
are linked together in the classical way, a limiting standard Brownian motion
results. To set up our notation, let I' = (T';;)7';_; be an n x n orthogonal
matrix distributed by Haar measure. Choose a subset of size k, from among
the entries of I'. Suppose the entries are 31, 02, ..., Bk, With §; corresponding
to e.g. lexicographic order of Iy : (r,8) < (z,y) if r <z orif r =z and s < y.
To denote this ordering we write 81 ~ I'11, B2 ~ T'12, ..., Bnt1 ~ a1, etc.

Theorem 3.1. Let 31,02, ..., 0k, be entries of a Haar distributed random ma-
triz in Oy, as above. Assume that k, / oco. If for £ in {1,...,k,} and t in
[0,1],

SV == B, Xalt) =83,

then X,, = W, a standard Brownian motion, as n — oo.

Proof. We first prove that the finite-dimensional distributions of X,, converge
to the corresponding distributions of W. For a single time point ¢, we must
prove that

Xn(t) = N(0,t) =W, asn— oo.

However, this is equivalent to
1
Vit
For each n, let A = (a;;)7’;—; be the n x n real matrix defined as follows :

%\/ﬁ ifﬁi'\’rsm

for some 7,1 < i < [kpt]

if Bk, )41 ~ Csr
otherwise

Xa(t) = N(0,1).

Ars = n
(n— Lty
0

Nl

Note that ||A|| = n and

1 kn, 1
TH(AT) = = Xa(t) + (0= B2 gy

which converges to N(0,1) in distribution by Theorem 2.1. However, 0 <
n — [k,;ﬂ" < klnt and so, by [5], it suffices to show that «/k_:?B[kntHl — 0
in probability, which folows from k,, — oo and the fact [13] that

\/Eﬂ[knt]+1 = N(0,1).

We now consider two time points s and ¢ with s < t. By the Cramer-Wold
device [5], it is enough to show that

aXn(5) + b(Xn(t) — Xp(s)) = aW, + b(W; — W)
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for any (a,b) € R2. However, this is equivalent to showing that

a

C(s,t) Stens) +

b
C(s t)(S[knt] S[k S]) = N(0,1)
where

C(s,t) = (a®s + b*(t — 5))3.

This can be shown by choosing an appropriate sequence of matrices A, as follows,
and again applying Theorem 2.1.
First note that

[knsla® + ([knt] — [kns])b?

> (kns — 1)a® 4 ((knt — 1) — kp5)b?
= knpsa® — a? + kntb? — b% — k, sb?
= knC?%(s,t) — (a® + b?)

Also observe that

[kns)a® + ([knt] — [kns])b?

< kpsa® + kntd? — (kns — 1)b?
= knsa® + ktb* — k,sb® + b*
= k,C%(s,t) + b?

Combining these facts, we have

nb?
 knC2(s,t)
<(n- [knslna®  ([knt] — [kns])nb2)
S NeZIPE) 5 C2(s,1)
n(a? + b?)
S 5C2(50)

2
With these preliminaries, we define the matrix A in two cases. If n— ,C[’:"CSJ?S‘;) -

(rnt—llnshnb® > ) et A = (a;;)7,_, be defined as follows :

knC?(s,t)
—C(Z,t) A/ % if ﬁz ~ Tyu,

for some 4,1 < ¢ < [kp,3]
Qo = C(l; 1/ = if B; ~ T'yy, for some
- i, [kns] +1 <4 < [knt]

if ﬂ[knt]-H ~ Tyu
otherwise

kns]na? ([knt]=[kns])nb® \ 1
(n— k[ncsz](s,t) -4 le{Z(:t)n )2
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On the other hand, if n — ,ii’gz,]?saj) — ([k",:i_c[f&fg"bz <0,

we define A = (a;;)};—; by :

C—((;,_t)\,ﬁ lfﬂzNFvum

for some 4,1 < i < [ky,s]

b .
Ayy = C(s,b) V Fnr‘z if ,8, ~ Fm“

for some i, [k,s] +1 <4

2 1 2 X
(n - ,&:Eszlzzt) - (([knt}cngz(&:)s])nb )% if ,B[knt] ~ Fvu

otherwise

Note that in either case ||A|| = n and so Tr(Al')) = N(0,1) by Theorem
2.1. However, it is plain that ﬁS[kns] + ﬁ(g‘{)‘(s[knt] — Sik,s)) differs from

Tr(AT) by a quantity in absolute value bounded by Vc?;;rtlf \ /kﬂn—v where « is an

entry of the random n X n random I'. Thus, as before, what remains is to show

that Vc?(s*t'; \ /ﬁ—’y converges to zero in probability. Thus, given € > 0

V“2+b2fv|<e P(lvin] < S8 fe>

which converges to 1 as n — oo.

A similar argument shows that the higher order finite dimensional distribu-
tions behave properly.

We next show that X, is tight. According to Theorem 15.6 of [5], it is
enough to show that for sufficiently large n

E(|Xn(t) = Xn(t1)*|Xn(t2) = Xa(t)]?) < K(t2 —t1)*, t1 <t <ts, (3.17)

for K independent of n,t;,t, and to. The left member of the above expression
is

n?
w2 O E(B:i5;54/5)

where [k,t1] < 4,j < [knt] and [knt] < k,1 < [knt2]. Put [k,t] — [knt1] = mq and
[knt2] — [knt] = ma. The left member of (3.17) is bounded from above by

n2

B2 —(aB(T}T3,) + bE(T'T3,))

where a and b are both less than or equal to m;m,. Here we have used the
fact that for distinct entries 6,3,a and o of a random orthogonal matrix,
E(8%Ba) = 0 and E(5Bac) is non-positive. The first assertion uses the fact
that for any (nonrandom) diagonal sign matrix M, the random matrices T M
and MT are equidistributed with I'; the second assertion uses that and also the
fact that E(yi1712721722) = ‘(sz [36]. However, both n?E(I'?,T'%,)
and n?E(?,T'2,) converge to 1 , and so for all n, both expectations are less
than % for some positive constant L. Combining all of this information, we

S ([knt] - 1)
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have that
E(1Xn(t) = Xn(t1)]? | Xn(t2) — Xn(8)?)
< Lmims é < L(%@)z
< L(knt2 (kn i1 — 1))2 < Lity—t + _kl:)z
If /% < t — t1, then mlkﬂl < 2(t2 — t1) while if &~ > ¢ — t;, then either

Xal(i)

Xn(t1) or Xp(t2) — X, (t) is zero. Thus our clalm is established. O

4 Unitary Matrices

We first thought that obtaining unitary analogues of Theorems 1, 2, 3 would be
straightforward but then encountered difficulties in translating to the complex
case because of the lack of a singular value decomposition. This led us to
carefully redo the preliminaries. Our main results are Theorems 5 and 6 below.

For the proof of Theorem 6, it will be necessary to first establish Theorem 4,
which is the analogue of Theorem 15.1 of [5]. To this end, let R*, D and £ denote
respectively the Borel sets of R¥, D and D x D, where D is the Skorokhod space
of right-continuous real-valued functions on [0, 1] with left limits. For t,- - -t
in [0,1], define

Tty,eeetp - D — Rk

by 7y, (2) = (2(t1), -+, 2(tx)) for x € D. Following Billingsley [5], sets of the
form 7, 1 (H) where H € R* are subsets of D and called finite-dimensional
sets.

If Tj is a subset of [0,1], let Fr, be the collection of sets 7", (H) where
k>1,t; € Ty, and H € R¥. Then Fr, is an algebra of sets, i.e., Fr, is closed
under finite unions and finite intersections and the empty set ) € Fr,. See
Royden [35] for more details. Obviously, Fo 1] is the class of finite-dimensional
sets. Billingsley has shown (Theorem 14.5 of [5]) that if Ty contains 1 and is
dense in [0,1], then Fr, generates D.

Extending these ideas, for s1,- - -, sy and t1,- - -,t; in [0,1], define

73

Toyimmspitronty - D X D — RF x R!

by sending (z,y) to (z(s1),- - -, z(sx); y(t1), - -, y(t1)). Subsets of D x D of the
form
7t (H x K)

S1,8k3t1, 5t

where H € R, K € R! are called finite-dimensional sets (of D x D).

If Ty and T; are subsets of [0,1], let Fr, 7, be the class of sets
W;%'"ssk;tlw",tl(H X K)

where s; € Ty, t; € T1, k> 1, 1> 1, H € R, and K € R'. One can easily verify

that Fr, 1, is a semi-algebra of sets, i.e., the intersection of any two members

of Fr, 1, is again in Fr, r, and the complement of any set in Fr, 7, is a finite

disjoint union of elements of Fr, 1,. If we let A be all finite disjoint unions
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of members of Fr, 1,, then A is an algebra of sets in D x D (any semialgebra
generates an algebra in this way [35]).

Suppose Ty and Ty are both dense subsets of [0,1] and that 1 € ToNT;. Let
L be the o-algebra of subsets of D x D generated by Fr, 1. Sets of the form

Ty o8 (H) X D

where H is in R and s1,- - -, s, € Tp are in Fr, 1, and may be identified with
Fr,. Since Fr, generates D, it is clear that G x D € L for all open sets G of
D. Similarly D x L € L for all L open in D and so £ contains all sets G x L
where G, L are open in D. It is now plain that £ C L.

On the other hand, Billingsley has shown that

Tyt (D, D) = (R*, RF)
is a measurable mapping. In a completely analogous way, it can be shown that
Tsyomsnitiionty * (D X D,E) — (RF x RLRF x RY)

is also measurable (here R¥ x R! is the o-algebra of subsets of R* x R! generated
by "measurable rectangles” of the form H x K where H € R*, K € R'). This
o-algebra is precisely the o-algebra of Borel sets of R¥ x R! (see [4]). It follows
that the finite-dimensional subsets of D x D lie in £ by definition of measurable
mapping. Thus £ C £ and so we have L = €&.

Suppose P and @ are two probability measures on (D x D, ) which agree
on Fg, 1,- Then they clearly agree on the o-algebra A generated by Fr, 7.
Since A generates &, it follows that P = Q on £ by Theorem 3. 2 of [4]. In the
language of Billingsley [5], for Tp, T1 dense in [0,1] with 1 € To N T4, Fry1y is a
“determining class.”

If P is a probability measure on (D, D), let T be the set of all points ¢ € [0, 1]
such that 7; is continuous except on a subset of D which has P-measure 0.
Billingsley [5] has shown that Tp contains 0 and 1 and its complement in [0,1]
is at most countable. Now let P be a probablhty measure on (D x D, & ) with
marginals R; and Ry. If s1,--,s, € Tg, and t1,- - -, t; € Tg,, then 7, .. is
continuous except on a subset A of D of R;-measure zero. Similarly 7rt1, Lt 1S
continuous except on a subset B of D of Ry-measure zero. Now (Ax D)U(D x B)
has P-measure 0 and off this set 7, ... 5,:¢, ....t, is continuous. We will need the
following;:

Theorem 4.1. Let P, n = 1,2,---, and P be probability measures on (Dx D, ).
Suppose Ry and Ry are the marginal probability measures of P. If {P,} is tight
and if Pnﬁ;f,“’smh,,,’tl = Pw;f_,,’s,c;th,,,’tl holds whenever all the s; are in Tg,

and all the t; are in Tg,, then P, = P.

Proof. Since {P,} is tight, each subsequence {P, } contains a further subse-
quence {P,~} converging weakly to some limit (). By Theorem 2 of [5], it
suffices to show that each such @ is equal to P.
Suppose Q; and Q3 are the marginals of Q. If s1,- - -, 5% all lie in Tg, N Ty,
and t1,- - -, ¢; all lie in T, N Tg,, then
P, ;1

oSkt

y, = Pm

81, Skt
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by hypothesis. Also 7, ... s,:t,,.-.,t, IS continuous except on a subset of D x D
of ()-measure zero by comments preceding the statement of the theorem. Since
P, = Q, it follows by Theorem 5.1 of [5] that

Pyum, 1 = Q7T

81,08kt 0t S1,00 Skt et

Thus

P7r8_11,"~,sk;t1wwil = W;%"',Sk;tl,'",tl
whenever each s; € Tp, N Ty, and each t; € Tr, NTg,. Let Ty = Tk, N Ty,
and Ty = Tgr, NTg,. Each of T} and T is dense in [0,1] and 1 € T} N T3 and so
as we have seen above, Fr, 1, is a determining class. The above equality says
that P and Q agree on Fr, 1, and we are done. a

We are now in a position to establish the complex analogue of Theorem 2.1
(for diagonal A).
Theorem 4.2. Let A = Diag(a,...,an) and B = Diag(by,...,b,) where a; >
ag > ...>ap and by > by > ... > b, and ||A|| = ||B|| = n, and let A =T +iA
be an n x n unitary matriz distributed by Haar measure. Then (I'rAl',TrBA)
= %(Zl,Zg) as n — oo, where Zy and Zy are i.i.d. standard normal (i.e.,
TrATl + iTrBTU converges in distribution to a complex standard normal distri-
bution,).

Proof. By the Cramer-Wold device [5], it suffices to prove that

1
x2TrATl + yTrBA = x—
V2 f

for arbitrary (z,y) € R2. Write X; for v;; and Y; for \;; with 7,5, A;; the entries
of I' and A. We will show that

IE(eir(zz;;lanj+yE}‘=1ij) PSS L )| (4.18)

Zl +y Zg

converges to zero. We follow the proof of Theorem 2.1 and show that there is a
constant L > 0 such that, for each € > 0, the lim sup of (4.18) is less or equal
to Le. ) )

Given € > 0, choose a positive integer m > % so that Eni- < €2 and Eni <€
for 7 > m and all n. Given any subsequence n; of the positive integers, choose
a subsequence n;, which satisfies

a; b;

J — aj7 _J
n, VAL
As before, we will suppress the subsequence notation.

The quantity (4.18) is less than or equal to the sum of the following three
terms

— B, aspu—oo forj=1,2,..m. (4.19)

) 2
|E(6'LT(I Z?:l a; Xj+y Z;‘L:I b;Y;) _ e*Lz" Eli(mz

B(ei@®Xim e Xty 2= 0¥y

Semt1 @Y i J)) (4.20)

2 ) m

Ie_Tﬁ(zg zJ m+1 aJ+y 2] m+1 bJ)E( ir(x JT'n:l anj+yZ]-=1 bjyj)) (421)
2 1 2 a2 r2 2 21,2 2 m 2

_e_%ﬁz }’ m+1% e~ T X J e—%ﬁy Xiemt1 b] e T y Ej=lﬁj|,
2

2, o 2 9 2 1,25 2
lei%ﬂx Z?:m+laj e_’Tz 105 o~ Ty > emy1 b5 (4.22)
2
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Since
1 n m
— Z a2.—>1—2a2 and
n g J
j=m+1 j=1
1 n m
2 2
DRI o
j=m+1 J=1

the term (4.22) converges to zero.
By a known result (see, e.g., Lemma 5.3 of [33]

(\/ﬁXla ey \/ﬁXma \/7_1'}/17 ceey \/ﬁYm) = ;—(Zla Z27 seey ZQm)

where the Z; are i.i.d. N(0,1). Thus
(a12 X1, oy X, b1y Y1, o by Yom)

a a b
= (ﬁﬁxxl, 7’%\/535)(,”, \/—lﬁ\/ﬁyYh

1
= —‘(Ollwzl, 0TZ3, ooy 0T Ly 1YLyt ooy ﬁmyzmn)

V2

and so

2 2 2
E( ir(z 3070, a; X;+y 3000 by Y))_}e—‘lm T o e 4y 20k B;

and hence (4.21) converges to zero.
To bound (4.20), we first claim that

E(ei'r(m Sry e Xty X, ijj))

; m . i N m N .
= B(e L= 99X oty 2t biYs H cos(rza; X; H cos(ryb,Y;)).
j=mt1 j=m+1

To see this, let
G = eira: i aX; ei'r‘y 2o bY;

and note that

e'l:T(Iijl anj+ij=1 b])/] — H cos Ta';aj H cos Tyb Y ))
j=m+1 j=m+1

plus a sum of products of the form GJ where J is a product of sines and cosines
involving at least one sine term.

To establish our claim, it is enough to verify that the expectation of any such
GJ is zero. First suppose J contains the factor sin(rza;X;) but not the factor
sin(ryb;Y;). Then E(GJ) = 0 by the sign-symmetry of the diagonal elements
of A. Next consider a product GJ containing a factor sin(rza; X;) sin(ryb;Y;).
The diagonal elements of A are also exchangeable, and so we can assume j =
m + 1. Write

GJ = H sin(raam+1 Xm+1) sin(rybm41Ym1),
Xons1 + Y1 = s, and

/ GJ dy, =1
Un
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where U, is the unitary group and p,, is Haar measure. For 6 € [0, 2n], let D(6)
be the n x n diagonal matrix Diag(1,1,...,1,e% 1, ..., 1) where € is in position
m + 1. By the invariance of Haar measure, D(0)A has the same distribution as
A, and so

Hsin(rzam+1(scos(y +6))) sin(rybmi1(ssin(y +0))) du, = I.
Un

Thus

2m
/ / Hsin(rzam,y1(scos(y + 0))) sin(rybm41(ssin(y +6))) du, df = 2nl.
o Ju,

By Fubini’s Theorem [35], we have

2w
/ H/ sin(rzam+1(scos(y + 0))) sin(rybm+1(ssin(y +6))) db du, = 2n1.
v, Jo

Next let {(0) = sin(rzam1(scosf)) sin(ryby,+1(ssiné)). Now, [ is periodic
with period 27 and shifting [ by  units yields a functions whose integral over
[0, 27] coincides with the integral of [ over that same interval. Thus

27
/ H/ 1(0) db du,, = 2xI.
v, Jo

However, [ is an odd function and so

27 T
/ 1(0) df = 1(0) d6 = 0.
0 -7
It follows that I = 0 and our claim is established.

Using this fact and arguing as we did in the proof of Theorem 2.1 , we have
that the expression in (4.20) does not exceed the value

/ | H cos(rza; X;) H cos(ryb;Y;)
Un

j=m+1 j=m+1
_ r2g2 n 2

2 242 2 2
—e~ T Tiemi1 GEXG) o= X B E(Y; )| dity,

< ript Z a;*E(Xf)+T(Var( Z a?X?))?

j=m+1 Jj=m+l
4,4 - 4 o, Y SN
iyt Y biE(Y;!) + ——(Var( > B

j=m+1 j=m+1

We can bound this last expression as in the proof of Theorem 1, which leads us
to a proper choice of L and completes the proof of Theorem 4.2. O

It is natural to ask if Theorem 3.1 has complex and symplectic analogues.
We believe this is the case but thus far, like in the case of Theorem 2.1, we are
able to prove a result of this type only for elements of the diagonals of these
classes of matrices. In doing so, we obviously lean heavily on the preceding
theorem.
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Theorem 4.3. Let 2, = U, be the unitary group of n X n complex matrices,
and let A =T +iA be an element of Q,, distributed according to Haar measure.
Let dj = ;5 +i)j;and let S} = Z 14 If

Zn(t7w) = S[nt](w)’ te [07 1]7

then Z, = W converges to W where W is standard complez-valued Brown-
ian motion (W = W + W where W) and W® are independent one-
dimensional Brownian motions with drift 0 and diffusion coefficient % ).

Proof. We appeal to Theorem 5. One can easily adapt the argument for tight—
ness given in Theorem 3.1 to show that ReZ, is tight. Here E(y?)) = —n and
E(YrrYssAuuAvw) = 0 for distinct 7, s,u, and v. Similarly, ImZ, is tight and
hence P, is tight where P, is the law of (ReZ,,ImZ,).

By Theorem 4.1, it remains to show that

Pt = Pr, (4.23)

»Skit1,st 51, Skt eyt

where P is the law of (W(l), W(z)). We consider time points sq, 89, t1, and to
where s; < s and t; < t3, and one may easily verify that the general case can
be handled analogously.

Letting X,, = ReZ,, and Y,, = ImZ,,, we wish to prove that

(Xn(s1), Xn(82), Yu(t1), Ya(ta)) = WO, WD w® wP).

82 )

However, this statement would follow if

(Xn(sl)v Xn(s2) — Xn(s1), Ya(t1), Yo(t2) — Ya(th))

converges in distribution to

(W(l) W(l) Ws(ll)7Wt(12),Wt(22) _ Wt(f)).

51
Appealing as before to the Cramer-Wold device [5], it suffices to show that
aXn(s1) + b(Xn(s2) — Xn(s1)) + cYu(t1) + d(Yn(t2) — Ya(t1))
converges in distribution to
aW P + bW -~ wh) + WP +aw? - w2

for any (a,b,c,d) € R* The remainder of the proof follows by applying Theo-
rem 4.2 in essentially the same way as Theorem 2.1 is applied in the proof of
Theorem 3.1. O

5 Symplectic matrices
Recall (see [8] ) that the group of symplectic matrices Sp(n) may be identified
with the subgroup of U(2n) of the form

[ g _g ] € U(2n), (5.24)
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where A, B are complex n X n matrices. The trace of random matrices from
this group is studied in [14, 16]. As shown there, if © is chosen according to
Haar measure in Sp(n), then Tr(0) , Tr(0?) , ... , Tr(6*) are asymptotically
independent normal random variables. We now study the extent to which the
diagonal entries of a random symplectic matrix generate Brownian motion.

Random matrices in Sp(n) can be generated in the following way. Fill the
real and imaginary entries of A and B in with real, standard normal i.i.d. ran-
dom variables. Apply the Gram-Schmidt process to the n complex column
vectors of dimension 2n which result. We now have a new A and B and we
complete the right half of our matrix by following the pattern of (5.24). The
matrix obtained in this way is distributed according to Haar measure in Sp(n).
To see this, one can adapt the argument given for the construction of a random
orthogonal matrix. See for example Proposition 7.2 of [17]. We now have

Theorem 5.1. Let Sp(n) be the symplectic group of 2n X 2n complex matrices
of the form (5.24) , and let © be an element of Sp(n) chosen according to Haar
measure pn. Let A = (a;;);;—; be the upper left n x n block of ©, and let

di=au, 1<i<n,andlet Sp =% d,. If
Zn(t,w) = S[m] (w), te [0, 1]
then Z, = \%W where W is standard complez-valued Brownian motion.

Proof. We are working with complex matrices and so we can follow the ar-
guments of Theorems 4.2 and 4.3. We first need the symplectic analogue of
Theorem 4.2. To accomplish this, only one change in the proof of Theorem 4.2
is required. In place of the diagonal matrix D(6), we use instead the 2n x 2n
diagonal matrix D;(0) = Diag(1,...,1,e¥ 1,...,1,e7% 1,...,1) where e* and
e~* occur in positions number m + 1 and n 4+ m + 1 respectively. The rest of
the arguments for the analogues of Theorems 4.2 and 4.3 are clear. O

It should be noted that we cannot link all 2n diagonal entries to obtain
Brownian motion. If we were to try, note that Z,(1) and Z,(1) — Z,(3) would
tend to limits which are complex conjugates of one another and hence dependent.
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