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Abstract

Sib-pairs are relatively easy to collect and use of extreme quantitative pheno-
types provide high statistical power. Thus, selected sib-pair (discordant, concor-
dant) study designs are among the most useful in quantitative genetic linkage anal-
ysis. Dudoit and Speed [5, 6] proposed a score test for linkage that allows analysis
of any sample, random or selected, by conditioning on phenotype and analyzing
genotype. Selected sampling strategies have largely focused on studies collecting
data on a single type of sib-pair. Using the score test statistic, we demonstrate that
sampling designs based on a mixture of sib-pair types are more cost efficient than
the traditional single selection scheme. In particular, there is no need to discard a
large fraction of screened individuals. Cost efficient designs are based on a mix-
ture of concordant and discordant sib-pairs, with the selection threshold of con-
cordant sib-pairs more stringent than that of discordant pairs. General guidelines
for the thresholds are given as a function of mode of inheritance, allele frequency,
and residual correlation, as well as the cost ratio of phenotyping to genotyping.
Since in many cases the mode of inheritance is not completely known, robustness
with respect to assumed genetic models is also addressed.
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1 Introduction

It is well known that quantitative genetic linkage analysis based on random sampling

of sib-pairs usually has low statistical power to detect non-Mendelian, quantitative, or

complex disease loci. For example, Blackwelder and Elston [3] showed in simula-

tions that even when heritability is moderate (30%) at a single locus, the power of the

Haseman-Elston [11] linkage test based on random sampling of sib-pairs is low. Signif-

icant improvement in power can be achieved when an unselected sibling is regressed on

the proportion (π) of alleles shared identical-by-descent (IBD) with a selected sibling

[4]. Eaves and Meyer [7] provide evidence of additional power increases depending on

the types of sib-pairs selected: discordant, with the sib-pair representing both tails of

the phenotypic distribution; or concordant high (low), where both siblings are selected

from the upper (lower) tail of the phenotypic distribution. However, see Allison et al.

[1] for some limitations on the general utility of selected sib-pairs. Risch and Zhang
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[13] also argue for selected sib-pair designs, but unlike previous authors they propose

conditioning on the sampled (observed) phenotypes to analyze IBD sharing among the

sib-pairs. Their discussion, however, is limited to study designs sampling a fixed type

of sib-pair.

Dudoit and Speed [5, 6] generalize the work of Risch of Zhang [13] in three re-

spects. First, although Dudoit and Speed also analyze IBD data, they specifically test

for linkage in the traditional sense of evaluating a null hypothesis involving a recom-

bination fraction (Ho : θ = 0.5), whereas Risch and Zhang evaluate a null hypothesis

involving average allele-sharing (Ho : π = 0.5). Second, Dudoit and Speed condition on

observed phenotypes, while Risch and Zhang condition on phenotypic deciles. Lastly,

the mean IBD statistic of Risch and Zhang is interpretable only for a fixed sib-pair type

(e.g., all discordant sib-pairs using a fixed threshold); the Dudoit and Speed score test

statistic is not restricted to a fixed sampling scheme. By definition, both approaches

reflect the actual sampling (conditioning on phenotype) and stochastic nature of the

outcome (allele-sharing). In this sense they depart from making assumptions that are

clearly violated under methods that model or analyze the phenotype, while viewing

allele-sharing as "fixed" design variables. Both approaches are seemingly limited by

having to specify knowledge of the gene action underlying the phenotype-genotype as-

sociation. Robustness studies by Risch and Zhang [13], Zhao, Zhang, and Rotter [15],

and Goldstein, Dudoit, and Speed [8], however, show that various characteristics of the

approaches are fairly insensitive to misspecifying the mode of inheritance.

One drawback of selected study designs is that a large number of sib-pairs usually

need to be screened in order to obtain the minimum sample size (number of sib-pairs)

for the desired power. The more stringent the selection thresholds, the more screening

that has to be done. Zhao et al [15] evaluate cost efficiency across extremely discordant

(ED), concordant high (CH), and concordant low (CL) sib-pair study designs. Consid-

ering the three types of designs separately, they conclude that ED sib-pair studies are

the most cost efficient and robust against incorrect mode of inheritance and allele fre-

quencies. They note, however, that more cost efficient studies may be possible by using

all three types of selected sib-pairs.

Gu et al. [10] and Gu and Rao [9] report increased power over ED designs by

combining all three types of sib-pairs into a single test statistic. In addition, they show

that using all three types of sib-pairs is more cost effective than using just ED pairs.

One issue that has yet to be fully addressed, in these and other investigations, is that

the three types of sib-pairs may not be equally available in the population. Indeed, their

prevalence is highly dependent on the underlying mode of inheritance. Ignoring this

fact may lead to inefficient study designs, especially at screening where a lot of time and

resources may be required to obtain certain extreme phenotypes that are relatively rare

under the true gene action. Related to this idea is that better power and cost efficiency

may be achieved by allowing different thresholds for the various sib-pair types.

In summary, there are not yet available general optimal sampling designs, defined

by power or cost efficiency, for genetic linkage studies using selected sib-pairs. In this
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paper we use the score test of Dudoit and Speed [5, 6] to develop such optimal sampling

strategies.

2 Methods

Following standard major locus models {e.g., Haseman and Elston [11]; Amos and

Guerra [2]), we assume a locus A with two alleles, A\ and A^ with population allele

frequencies p,q(=l -p)9 respectively. Letxu andx2, be the sib-pair phenotypic values

of sib-pair /. The sib-pair phenotypes are modeled as:

x\i =

*2i =

where μ is an overall mean of x; gβ is the genetic effect due to trait locus A; eμ rep-

resents combined residual genetic and environmental contributions with variance o2

e.

The genetic effect gβ equals a, d, and — a according to genotypes A\A\, A\Aι, and

A2A2, respectively. To account for residual genetic and environmental correlations, we

assume that the sib-pair model error {eu.eii) is distributed as a bivariate normal distri-

bution with zero mean vector and correlation coefficient p. The additive and dominant

components of genetic variation at locus A are defined as σ^ = 2pq[a — d(p — q)]2 and

ad = (2pqd)2. The heritability due to locus A is defined as H = σ^/(σ^ + σ^), where

5
Under the null hypothesis of no linkage between a marker locus and trait locus, the

proportion of genes shared IBD at the marker locus is expected to be 1/2 regardless

of the type of sib-pairs collected. When linkage is present mean IBD sharing among

ED (CH/CL) pairs is expected to be less (more) than 1/2. The test statistic used by

Risch and Zhang [13] is the sample average for IBD sharing; it has an (asymptotic)

null Gaussian distribution with mean zero and variance 1/8. The Gaussian distribution

under the alternative hypothesis of linkage depends on the selection scheme.

Gu et al. [10] proposed the extremely discordant and concordant (EDAC) test statis-

tic, which combines ED, CH, and CL sib-pairs. It is defined as

τ=

where h and / are indices of high and low tail thresholds [e.g. (10%,10%)=(10,10)],

respectively; n0 is the number of CL pairs, n\ the number of ED pairs, and ^2 the

number of CH pairs. Xu is the number of alleles shared IBD from the father and X21

is the number of alleles shared IBD from the mother. Consequently, Xu +^21 is the

number of allele shared IBD from the parents. The test statistic is thus a difference
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between average proportion IBD-sharing among concordant sib-pairs and that among

discordant sib-pairs. Under the null hypothesis, T is asymptotically distributed as a

Gaussian random variable with mean 0 and variance σ 2 (Γ) = (n\ + nι 4- no)/(Sn\ (nι +

wo)). A one-sided test statistic is given by T/c(T). Formulas for calculating sample

size for ED pairs (and therefore for CH and CL pairs) are provided in Gu eί al [10].

In general, when a (test) statistic is formed through a linear combination of several

available statistics, the number of observations entering each individual statistic and the

weights in the combination typically have practical meaning and interpretation. In the

present context, both factors may be motivated by mode of inheritance considerations.

Risch and Zhang [13], for example, note that ED pairs are universally most useful

among all possible types of sib-pairs; whereas CH or CL pairs are useful depending

on mode of inheritance and allele frequency, when only a single type of sib-pair is

used. Risch and Zhang [13, 14] and Zhao et al [15] also discuss appropriate thresholds

for selection sampling. Consider, for example, sampling top 10% and bottom 10%

discordant sib-pairs. Under moderate to high positive residual correlation these extreme

discordant pairs are relatively more difficult to find than concordant sib-pairs. It is

possible to take advantage of the positive correlation by requiring a more stringent

selection threshold tσ recruit more informative concordant pairs. Continuing with our

example, we might set a threshold of (10,10) for ED pairs, while selecting top 5% CH

pairs and bottom 5% for CL pairs. This flexibility may allow for increased statistical

power and better cost efficiency by better selecting more informative sib-pairs. The

score test of Dudoit and Speed allows for a broad range of selection strategies.

Dudoit and Speed [5, 6] proposed a score test for evaluating a null hypothesis of no

linkage, Ho : θ = 1/2, against an alternative, H\ : 0 ^ θ < 1/2. The test can be used

with the major gene model defined above. The statistic is

where v represents genetic parameters, such as values of a, d, p, al, p, and mode of

inheritance (recessive, dominant, additive); %2i is the conditional probability that the

ith sib-pair shares 2 genes IBD at the trait locus, given sib-pair phenotype (3CI, ,JC2I);

πo; is similarly defined as the probability of sharing 0 genes IBD at the trait locus. Nβ

is an indicator variable, equal to 1 if sib-pair i shares j (j — Qorΐ) genes IBD and 0

otherwise.

Under the null hypothesis, S is asymptotically normal with mean 0 and variance

c2{S) = \Σί=\(π2i-πθi)2 The null hypothesis is rejected at level α when S/a(S) > z α .

Under the alternative hypothesis, S is asymptotically distributed as a normal random

variable, N{μA,G
2

A), where

n

MA = Σ (π2; ~ πo/) (τ2/ - τo, ),
ι = l

n

G2A = Σ (π2< ~ πo>-)2 (τ2«τ2i + τo, τo, + 2τ o ,τ 2 i )
( = 1
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12/ is the conditional probability that the ith sib-pair shares 2 genes IBD at the marker

locus, given sib-pair phenotype (JCIZ ,JC2, ) ; TO/ is similarly defined as the probability of

sharing 0 genes IBD at the marker locus; τ = 1 - τ.

The conditional asymptotic power of 5, given the phenotypes, is denoted as

Γ(θ,v;X) = 1 -Φ I —Vi _ , (l)

where X is a n x 2 matrix representing the n sib-pair phenotypes, and Φ is standard

normal cumulative distribution function such that Φ(zα) = 1 — α. The unconditional

power may be estimated by the average of a set of conditional powers generated under

the same model.

The score test is derived through an approximation of the maximum likelihood

ratio test and is locally most powerful [5,6]. One criticism of the test is that it requires

specification of a mode of inheritance model for the weights (π) to be determined. (The

observed data are the counts, N.) As has been noted, however, the test appears to be

sufficiently robust with respect to mode of inheritance assumptions (Goldstein, Dudoit

and Speed [8]). The important feature of the test is that it faithfully reflects the non-

random sampling that is typical of most genetic epidemiologic studies. We refer readers

to the original papers for more technical details.

3 Sample Size Approximation

Although "randomly selected" sib-pairs may be of some utility - and would likely be

available through the screening process - in this article we focus on using only ED,

CH, and CL sib-pairs. Since the score test is conditional on observed data, there are

no closed-form formulas for sample size calculations associated with the unconditional

power based on (1); however, it is possible to approximate the power function for a

given sampling selection. Under the assumption that the trait and marker loci are in

complete linkage (θ = 0), we have π y / = τ ; / and expression (1) becomes

( ZaJ\μA-μA

with

n

MA = Σ ( π 2 / - π o , )2, (3)
ι = l

n
CA = Σ (π2ί ~ πoί)2 (π2ίϋ2ι + πo,-πoι + 2πo,π2, ). (4)
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To determine the sample sizes, the probability parameters (π) need to be estimated. To

this end, define selection schemes (5), TxBy, TxTx, BxBx, where T and B indicate "top"

(upper) and "bottom" (lower) tails of the phenotypic distribution, x and y tail areas. For

example, the selection scheme Γ10510 requires sib-pair phenotype {x\,x-i) to satisfy

max(x\ ,*2) > P90 and min(x\, X2) < p\o, where ph is the hth percentile of the (marginal)

phenotypic distribution.

By definition, π 2 = P(sib-pair shares 2 trait genes IBD | x\ ,JC2). Under a given se-

lection scheme (5), π 2 can be estimated by

= / / Kπ 2

This is equivalent to the estimation of Dι in equation (1) of Risch and Zhang [13].

Similarly, ίfco can also be used to estimate πo

Let n be the total selected sample size, n = n£D + "CH + "CL, where Π££>, ncH and

na are the sample sizes of selected ED, CH and CL sib-pairs, respectively. For a

specified genetic model and selection scheme, let PED, PCH> and PQL be the probability

of randomly selecting an ED, CH, and CL sib-pair from the phenotype distribution;

define YED ~ PEDI {PED + Pen + PCL)> the proportion of ED pairs in the population

of ED, CH, and CL sib-pairs. Proportions ΓCH and rci are similarly defined. Lastly,

let iίEDi and HE DO be estimates (as defined above) of π 2 and πo, respectively, for ED

sib-pairs. Denote similar estimates for CH and CL sib-pairs.

The mean (//̂ ) of the estimated score statistic can thus be estimated as

Πfrn ncH nCL

\2
ED CH CL

MA = X (π2, - πO z )
2 + X (π2, - π 0 / ) 2 + £ (π2l- - π0i)

2

1=1

~ K>CHθ)2 + ^ED{^CL2 ~ KCLθ)

1=1 1=1 1=1

) 2

( ^ £ D 2 - ft£ZX)) •+• rai{πCH2 ~ KCHθ) + ^ED^CLl ~ KCLθ) }

d^ nW.

In a similar way, the variance (σ^) of the test statistic can be estimated, say nU.

Substituting parameter estimates in the conditional power function (2) we obtain

Power = 1 - β = f 1 - Φ
nU

and the corresponding sample size n is given by

Z*\l\W-Z^y/O
n —

W

The sample sizes for ED, CH, and CL sib-pairs are then calculated as

respectively.
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We emphasize that when the selection schemes are determined, the number of ED,

CH and CL sib-pairs to be selected are calculated according to their selection prob-

ability under an assumed genetic model. This method of selection makes use of the

extreme sib-pairs relatively readily available in the population and minimizes wasting

resources attempting to find sib-pairs that may be difficult to collect under the genetic

model. Although the sample size calculation is an approximate one, simulations show

that the observed power is always at least as great as the nominal power; see below.

Since the score test weights ED, CH and CL sib-pairs according to a working ge-

netic model, it may be more powerful than the EDAC test whereby the three types of

sib-pairs are treated equally. Therefore, for fixed power and type I error probability, the

score test may require smaller sample sizes than the EDAC approach.

Example 1

Table 1 shows sample sizes corresponding to H = 0.3, 1 — β = 0.8 and α = 0.001

under a T\0B 10 selection scheme for ED, T5T5 for CH, and B5B5 for CL sib-pairs.

Under all parameter configurations considered (p = 0.2, 0.4; p — 0.1, . . . ,0.9; reces-

sive, dominant, and additive models), the two tests indicate the same qualitative pattern

of sample size requirements. For example, when p = 0.4 and p — 0.3 under a recessive

model, both tests require ΠED ^ nci ^ ^CH- However, the score test always requires

smaller sample sizes in terms of the total (n) and specific sib-pairs (nED, «c// or na

Table 2 gives the average percent reduction in total sample size of the score test relative

to the EDAC test. Higher reductions are obtained in the presence of higher residual cor-

relation. The smallest average reduction (10%) is observed under additive gene action

with lower residual correlation. Table 1 shows that ED sib-pairs are less informative

when the sib-pairs have a relatively higher degree of (positive) residual correlation;

compare nED sample sizes at p = 0.2 to p = 0.4 under each test. This makes sense

since a higher degree of (positive) correlation would tend to make the phenotypes more

similar. Indeed, both the score test and EDAC test have ncH and ncL each larger than

nED when p = 0.4. The score test is also less sensitive then EDAC with respect to

the given increase in residual correlation. Associated with an increase from p = 0.2 to

p = 0.4 under the recessive model, the average (across p) percent increase in total sam-

ple size (n) for the score test is 28%; under the dominant model the average increase

is 24% and under the additive it is 20%. The corresponding results for the EDAC test

are 74%, 49%, and 50% under recessive, dominant, and additive models, respectively.

Relatively larger sample sizes for extreme discordant sib-pairs are generally observed

under a dominant model with lower residual correlation (p = 0.2), and nEβ ~ nCH > HCL

under an additive model with p = 0.2. In most other cases concordant sib-pairs are re-

quired more so that discordant pairs. The observed pattern of overall results remained

the same when other selection schemes were considered (data not shown). •
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Table 1: Sample sizes requirements for score test and EDAC test. H = 0.3, power = .8
and α = 0.001, with selection scheme Tl OB 10 for ED, T5T5 for CH and B5B5 for CL
sib-pairs. Number of ED, CH and CL sib-pairs denoted by ne£j, nch and ncu respectively;

P
0.1
0.3

Rec 0.5
0.7
0.9
0.1
0.3

Dom 0.5
0.7
0.9
0.1
0.3

Add 0.5
0.7
0.9

Score Test
p = 0.2

229(99,75,55)
60(19,27,14)
128(38,51,39)
165(46,60,59)
111(29,32,50)
103(36,41,26)
138(52,43,43)
117(45,31,41)
63(24,13,26)
231(101,55,75)
90(30,38,22)
105(34,39,32)
112(34,39,39)
112(31,36,45)
94(24,25,45)

EDAC Test

p = 0.2

580(251,190,139)
102(32,46,24)
146(44,58,44)
165(46,60,59)
139(36,40,63)
116(41,46,29)
143(54,44,45)
131(50,35,46)
93(35,20,38)
578(253,137,188)
108(36,46,26)
109(35,41,33)
112(34,39,39)
119(33,38,48)
126(32,34,60)

Score Test
p = 0.4

329(52,145,132)
64(10,31,23)
160(18,74,68)
241(22,110,109)
134(13,54,67)
118(18,55,45)
194(28,83,83)
141(23,56,62)
64(14,22,28)
330(57,130,143)
100(14,49,37)
128(16,59,53)
139(15,62,62)
139(14,60,65)
110(11,43,56)

EDAC Test

p = 0.4

1036(165,456,415)
152(23,73,56)
257(28,120,109)
311(29,141,141)
245(23,99,123)
164(25,77,62)
211(31,90,90)
183(30,73,80)
118(25,40,53)
970(168,382,420)
148(21,72,55)
155(19,71,65)
166(18,74,74)
184(18,79,87)
209(20,82,107)

4 Relative Importance of ED, CH, CL Sib-pairs

It is well known [13,6] that extreme discordant sib-pairs are generally most powerful

when a single selection scheme is used. Gu et al [10] argue that concordant sib-

pairs available in the screening pool provide an important additional source of linkage

information and should be included in the selected sample. However, several practical

questions remain unanswered, including the following. What are the relative merits

of the various sib-pair types in a given study design? More specifically, how are the

individual sample sizes {ΠED^CH^CL) related to linkage information. For a given

level of power, are studies carried out with ED pairs alone more or less cost efficient

than those that include mixtures of concordant and discordant sib-pairs? How should

the thresholds for the different sib-pair types be chosen?

Example 2

As a motivating example, consider an additive model with heritability H = 0.3,

allele 041) frequency p = 0.2, and sib-pair residual correlation p = 0.4. Under this

model a selection scheme of T15B15 for ED, T10T10 for CH, and B10B10 for CL pairs
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Table 2: Percent decrease in score test total sample size (w) relative to EDAC test. Model
parameters as in Table 1.

P
.1
.3
.5
.7
.9

Ave

Recessive

p = 0.2

61
41
12
0

20
27

p = 0.4

78
58
38
23
45
48

Dominant

p = 0.2

11
3
11
32
60
23

p = 0.4

28
8

23
46
66
34

Additive

p = 0.2

17
4
0
6

25
10

p = 0.4

32
17
16
25
47
27

corresponds to selection probabilities P(ED) = 0.0103,P{CH) = 0.030, and P{CL) =

0.027. At 80% power and type I error probability α = 0.001, the required sample sizes

are n£D = 28, ncu = 81, and na = 73. Figure 1 shows the relative importance of each

kind of pair. In plot (a) the number of ED pairs is fixed at 28, and numbers of CH

and CL pairs vary from zero to the require sample size. When both ncH and ncL are

zero, the power is 38%. The power gradually increases as more CH pairs are added,

but the CL pairs do not affect power very much. Plot (b) clearly shows the importance

of ED pairs with ncH fixed at 81. Using the required 81 CH pairs alone yields a power

of 26%. The relative importance of both ED and CH pairs is jointly exhibited in plot

(c) where there are 73 concordant low pairs. Under this particular model, ED pairs

affect power the most; CH pairs contribute as well, but the usefulness of CL pairs is

very limited (73 CL pairs alone has power of nearly zero). As shown in plot (d), the

sample size needed to achieve power of 0.8 using only ED pairs is 52. The expected

number of randomly screened sib-pairs to obtain 52 ED pairs is 52/(0.0103) = 5048;

the expected number of randomly screened sib-pairs to obtain the mixed sample is

182/(0.0103 + 0.03 + 0.027) = 2704. Note that the last calculation is not based on an

optimal selection scheme, which may further reduce the screening size. •

Example 2 makes evident that adding more sib-pairs (concordant or discordant) in

the sample provides an increase in the power of the test, albeit possibly small. This is

generally true for the score test regardless of the mode of inheritance, allele frequency

and residual correlation. The EDAC test, however, occasionally loses power when CH

pairs are combined with ED pairs.

Example 3

In Example 2, the CL sib-pairs were least important in their contribution to the

power of test, but this is not always the case. Consider a dominant model with H = 0.3,

allele (^i) frequency p = 0.8, and p = 0.4. The selection scheme is as in Example 2,
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(a) (b)

o o 0 0

(c) (d)

30 55

Figure 1: Power of score test for various combinations of sample sizes under selection scheme
T15B15 for ED, T10T10 for CH and B10B10 for CL pairs. Nominal power = 0.8 and α =
0.001. True genetic parameters include H=0.3, p=0.2, p = 0.4, additive gene action, (a)
Power of test for fixed number of ED pairs, ned = 28. (b) Power of test for fixed number of
CH pairs, nch = 81. (c) Power of test for fixed number of CL pairs, nc\ — 73. (d) Power of
test using only ED pairs.

Π5515 for ED, Π 0 Π 0 for CH and 510510 for CL pairs. Under this dominant model

the selection probabilities for ED, CH and CL pairs are 0.0146, 0.0265, and 0.0295,

respectively. At 80% power with α = 0.001, the sample sizes for ED, CH and CL pairs

are 43, 78, and 87, respectively. Contrary to the results of the previous example, the CL

pairs are the most important in terms of power contribution, whereas both ED and CH

pairs have a limited role; see plots (a), (b) and (c) of Figure 2. Using CL sib-pairs alone

the test has moderate power at 68%. As shown in plot (d), a study with only T15515 ED

sib-pairs requires approximately 225 pairs to achieve the desired power of 80%. The

expected number of sib-pairs screened for this ED-only study is 223/0.0146 = 15273,

compared with 208/(0.0146 + 0.0265 + 0.0295) = 2946 for a mixture study. •
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The examples illustrate the potential savings in screening by using mixed sib-pair
types in the score test. We also see that some sib-pair types are less useful than others
in determining the power of the test.

5 Optimal Mixture of Sib-pairs

In this section we address the issue of optimal selection thresholds for ED, CH and CL
sib-pairs in the selected sample in order to minimize the total cost of phenotyping and
genotyping. Given a desired power and type I error probability, our goal is to find the
optimal selection scheme for the score test such that the cost of the test is minimized.

We assume that sib-pairs are randomly chosen from the population and that the
ratio (R) of phenotyping-to-genotyping cost ranges as 0.02, 0.1, 1, 10, 50. Eight selec-
tion thresholds for ED sib-pairs are considered: T10B10, T10B20, T10B25, T15B15,
T15B25, T20B20, T25B25 and T30B70. Since moderate to high (positive) residual
correlation makes it difficult to find an ED sib-pair, more stringent thresholds for this
type of sib-pair are not considered here. Among these selection schemes, some are
symmetric (e.g., T10B10) and some are asymmetric (e.g., T10B25). We consider seven
symmetric selection schemes for CH (CL) pairs: T1T1, T3T3, T5T5, T10T10, T15T15,
T20T20, T25T25 (B1B1, B3B3, B5B5, B10B10, B15B15, B20B20, B25B25). For now
we assume equivalent tail areas for CH and CL sib-pairs (e.g., T5T5 and B5B5). The
more stringent thresholds for concordant pairs are chosen since they are relatively eas-
ier to recruit than ED pairs under positive residual correlation. Thus, the total number
of selection schemes considered is 56 (8 x 7). This seems to be wide enough coverage
to be practically useful. Heritability H is fixed at 0.1 or 0.3, allele frequency p ranges
from 0.1 to 0.9 (by 0.2), residual correlation (p) takes values 0.1 or 0.4. The total num-
ber of genetic models considered is 2 x 2 x 5 x 3 = 60 (heritability x correlation x p
x gene action).

The total cost of interest is the sum of the cost for phenotyping all screened sib-
pairs required to obtain the total sample size and the cost of genotyping the selected
sib-pairs. The total cost (TC) is calculated as TC = 2RN+2n (Zhao et al. [15]), where
n — n£D + KCH + ncL N is the expected total number of screened sib-pairs calculated as
n/[P(ED) +P(CH) + P(CL)]; R the cost ratio of phenotyping to genotyping. Without
loss of generality, the cost of genotyping one individual is assumed to be 1 unit in the
calculation of total cost. For each of the 60 genetic models, the optimal (minimum
cost) sampling is obtained by searching all 56 stated selection schemes for a fixed cost
ratio (R) of phenotyping to genotyping. For purposes of comparison with what might
be considered accepted convention, we also report results for ED-only study designs;
minimum cost is found among the eight ED selection schemes.
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Figure 2: Power of score test for various combinations of sample sizes under selection scheme
T15B15 for ED, T10T10 for CH and B10B10 for CL pairs. Nominal power = 0.8 and α =
0.001. True genetic parameters include H=0.3, p=0.8, p = 0.4, dominant gene action, (a)
Power of test for fixed number of ED pairs, ned = 43. (b) Power of test for fixed number of
CH pairs, nch = 78. (c) Power of test for fixed number of CL pairs, ncι = 87. (d) Power of
test using only ED pairs.
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Example 4

We first consider the case where phenotyping cost is very low compared to the cost of
genotyping, R = 0.02, and H = 0.3. Optimal selection schemes with corresponding
sample sizes and total costs (in thousand units) are listed in Table 3. Analogous results
for an ED-only study are given in the right part of the table. Column 3 shows the optimal
selection scheme for the given parameters; since both types of concordant pairs have
equal tail areas their selection schemes are summarized as Tx/Bx. Column 4 shows
the required sample sizes for the optimal sampling; column 5, the total cost (thousand
units) when mixed (m) sib-pairs are used. Columns 6 - 8 show results for ED-only
optimal studies. The dominant case is not reported since it is equivalent to a recessive
case with upper and lower thresholds switched and p replaced by 1 — p.

We first consider the recessive model. Here mixed samples require smaller total
sample sizes and are generally more cost efficient than ED-only samples. At lower
allele frequencies (approximately 0.3 or less), mixed samples are much more cost ef-
ficient than ED-only samples, independent of residual correlation. At the higher allele
frequencies, discordant sib-paifs are generally more informative than are concordant
pairs in that the ED pairs constitute the majority of the total sample size. Concordant
high pairs are slightly more (less) informative than concordant low pairs at the lower
(higher) allele frequencies; they are equally informative at p « 0.5. At higher residual
correlation (p = 0.4), the optimal thresholds for discordant pairs become less stringent
with increasing allele frequency. This relationship holds less so under weaker resid-
ual correlation (p = 0.1). This is what we might expect, since at higher degrees of
(positive) residual correlation, ED pairs are observed as such because of linkage effects
overriding the residual correlation. On the other hand, with higher residual correlation
it is less clear whether concordant pairs are phenotypically similar because of genes
or residual factors, which may or may not reflect genetic factors. Thus, ED pairs are
relatively more important and the relaxing thresholds under p = 0.4 reflect the need to
collect them. Conversely, the concordant thresholds are relatively more extreme in or-
der to distinguish the genetic signal from the "noise" in the residual correlation. Under
the additive case, the mixed and ED-only samples are about equally cost efficient, with
the exception at very high allele frequencies (0.9 or higher). And, as in the recessive
case, a higher degree of residual correlation is associated with less (more) stringent op-
timal thresholds for discordant (concordant) sib-pairs. The recessive and additive cases
also share in common the fact that in most cases the concordant pairs represent a small
fraction of the total sample size. •

Example 5

When phenotyping and genotyping costs are about the same (R « 1, Table 4), the total
costs increase compared to the case R < 1 not only because of higher costs per individ-
ual, but also because the total sample sizes increase as well. Characteristics of study
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Table 3: Optimal selection schemes found from all 56 possible selection combinations for
recessive (top) and additive (bottom) model with H = 0.3. The cost ratio of phenotype-to-
genotype is R = 0.02. Power = 0.8, α = 0.001.

Recessive Model

P

0.1

0.4

P
0.1
0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

ED, CH/CL

T10B10,Tl/Bl
T10B10.T5/B5

T10B25, T5/B5

T15B15.T1/B1

T15B15,T5/B5

T10B10.T1/B1

T10B25, T5/B5

T15B25.T1/B1

T25B25,T1/B1

T20B80, T3/B3

n(ned,nch,ncϊ)

53(43,9,1)

63(26,26,1)

125(85,23,17)

113(109,2,2)

134(84,17,33)

24(12,9,3)

68(25,24,19)

86(78,4,4)

114(108,3,3)

105(68,16,21)

COST

0.234

0.237

0.412

0.477

0.444

0.172

0.216

0.353

0.357

0.359

ED

T10B25

T10B25

T10B25

T15B15

T15B15

T10B20

T10B25

T15B25

T25B25

T20B20

n

8604

163

113

111

138

1004

76

82

110

91

COST

26.4

0.58

0.441

0.476

0.565

5.92

0.387

0.355

0.352

0.38

Additive Model
P

0.1

0.4

P
0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

ED,CHCL

T10B25,T3B3

T10B20/Γ3B3

T15B15J3B3

T15B15/Γ5B5

T10B10/Γ5B5

T10B25.T1B1

T15B25,T1B1

T20B20/ΠB1

T20B20J1B1

T15B15,T3B3

n(ned,nc/,,ncι)

95(79,11,5)

100(81,11,8)

114(95,9,10)

126(80,19,27)

92(33,19,40)

50(43,4,3)

69(63,3,3)
75(68,3,4)

77(69,4,4)

77(33,18,26)

COST

0.307

0.367

0.413

0.423

0.374

0.229

0.263
0.284

0.307

0.236

ED

T10B25

T10B20

T15B15

T15B15

T15B15

T10B25
T15B25

T20B20

T20B20

T20B20

n

106
96

108

112
153

50
67

71

74

97

COST

0.366

0.389

0.425

0.464

0.617

0.251
0.264

0.283

0.312

0.404

design and costs when R = 1, compared to R = 0.02, include a more prominent role

of concordant sib-pairs, less stringent optimal thresholds, and higher gains in sample

sizes and costs by the mixed sampling scheme. By relaxing the thresholds, we are able

to recruit the desired number of sib-pair types without the need to screen prohibitively

large numbers of sib-pairs. •

The impact of residual correlation on the optimal mixture selection scheme is sum-

marized in Table 5. The selection schemes for ED sib-pairs are listed in column 1 from

most stringent (top) to least stringent (bottom); selection schemes for CH and CL are

given in the first row from most stringent (left) least stringent(right). The top (bottom)

panel gives results for p = 0.1 (p = 0.4). The entry is the frequency of the intersecting

combination of ED and CHCL pairs defining an optimal design among 56 choices. For
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Table 4: Optimal selection schemes found from all 56

recessive (top) and additive (bottom) models with H =

genotype is R = 1. Power = 0.8, α = 0.001.

Recessive Model

possible selection combinations for

0.3. The cost ratio of phenorype-to-

P

0.1

0.4

P
0.1

0.3
0.5
0.7
0.9

0.1

0.3
0.5

0.7

0.9

ED,CHCL

T10B10.T1B1

T10B25,T10B10

T15B25.T20B20

T30B30/Γ25B25

T25B25/Π5B15

T10B20/ΠB1

T15B25/Π0B10

T30B30/Π5B15
T30B30.T25B25

T30B30/Π5B15

n(ned,nch,ncι)

53(43,9,1)

105(42,40,23)
311(73,129,109)

492(178,157,157)

308(150,64,94)

43(31,9,3)
134(38,52,44)

300(120,93,87)

450(95,178,177)

308(118,89,101)

COST

6.44

3.5

4.78

4.67

4.9

6.27

3.64

4.18
4.11

4.22

ED
T10B25

T10B25

T30B30

T30B30

T25B25

T10B25

T15B25

T30B30

T30B30

T30B30

n

8604

163

445

306
352

1255

125
208
157

229

COST

475

13

9.03

6.92

10.7

177

11.3

6.63

5.58
7.44

Additive Model

P

0.1

0.4

P
0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

ED,CHCL

T10B25/Π5B15

T25B25,T20B20

T25B25,T20B20

T25B25,T20B20

T25B25/Π5B15

T15B25/Π0B10

T30B30J15B15

T30B30,T15B15

T30B30/Π5B15

T30B30,T15B15

n(ned,nch,ncι)

197(53,85,59)

380(153,118,109)

379(144,117,117)

394(141,121,132)

337(166,71,100)

151(43,58,50)

285(122,84,79)
287(116,85,86)

301(114,92,95)

338(131,97,110)

COST

4.28

4.64

4.77

5.1

5.31

3.97

3.72

3.88

4.2

4.6

ED
T10B25

T30B30

T30B30

T30B30

T25B25

T15B25

T30B30

T30B30

T30B30

T30B30

n

106

381

468

381

405

75

176

170

176

259

COST

7.87

6.99

7.32

8.16

12.1

6.51

4.91

5.18

5.18

8.28

example, among the 150 parameter configurations defining a genetic model, there were

16 that had as an optimal design T10B10 ED, T1T1 CH and B1B1 CL sib-pair types.

When residual correlation increases (decreases), the marginal counts of discordant pairs

shift toward less (more) stringent thresholds. This general pattern corroborates the

specific results seen in Tables 3 and 4. Considering discordant and concordant selection

jointly, we observe that the majority of counts occur along the diagonal at p = 0.1,

while most of the counts are located below the diagonal at p = 0.4. Consequently, in

the presence of positive residual correlation we should not plan studies that combine

extreme discordant pairs with less extreme concordant sib-pairs.

Similar summary counts in Table 6 are stratified by low (R = 0.02,0.1) and high

(R = 1,10,50) phenotype-to-genotype costs . When phenotyping cost is relatively low,
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Table 5: Counts of optimal mixture selection schemes among all 150 possible selection
combinations when residual correlation p = 0.1 (top) and p = 0.4 (bottom). Other param-
eters are H = 0.1,0.3, /? = 0.1,0.3,0.5,0.7, 0.9, the cost ratio of phenotype-to-genotype
R — 0.02,0.1,1,10,50, under recessive, dominant, and additive gene action. Power = 0.8,
α is 0.001. Under CHCL is shown the selection scheme for CH and CL pairs; for example,
Tl 0B10 means T10T10 for CH pairs, and Bl 0B10 for CL pairs.

ED
T10B10
T10B20
T10B25
T15B15
T15B25
T20B20
T25B25
T30B30
Sum

ED
T10B10
T10B20
T10B25
T15B15
T15B25
T20B20
T25B25
T30B30
Sum

T1B1
16
0
4
2
0
0
0
0

22

T1B1
14
1

11
1
2
8
2
0

39

T3B3
0
1
1
1
0
0
0
0
3

T3B3
0
0
1
4
0
1
0
1
7

T5B5
14
2
2
3
0
1
0
0

22

T5B5
1
0
3
1
6
3
10
0

24

p = 0.1
CHCL

T10B10
2
0
14
11
2
5
3
0

37

p = 0.4
CHCL

T10B10
0
0
0
0
5
3
3
6
17

T15B15
0
0
1
0
5
0
5
1

12

T15B15
0
0
0
0
0
0
1

27

28

T20B20

0
0
0
0
8
0
11
5

24

T20B20
0
0
0
0
0
0
0
12

12

T25B25

0
0
0
0
0
0
0

30
30

T25B25
0
0
0
0
0
0
0

23
23

Sum
32

3
22
17
15
6

19
36

150

Sum
15

1
15
6

13
15
16
69

150

fairly stringent discordant and concordant sib-pairs (upper left region) should be col-

lected. Conversely, when phenotyping cost is relatively high, less stringent conditions

are indicated. Of course, these observations are general guidelines; more specific de-

signs are possible with more information other than just the phenotype-to-genotype cost

ratio. However, in cases when very little is known about the underlying genetic factors,

one may not know more than the costs involved.

Lastly, we summarize the comparison of costs between the optimal mixed sam-

ple and optimal ED-only sample; Figure 3 gives an overview. The y-axis represents

ED mixed cost ratio, and the x-axis indexes an ordered set of parameters as given be-

low:

for £=(0.02, 0.1, 1, 10,50)
for #=(0.1,0.3)
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Table 6: Counts of optimal mixture selection schemes among all 150 possible selection com-
binations when phenotype-to-genotype cost ratio R = 0.02, 0.1 (top) and R = 1, 10, 50 (bot-
tom). Other parameters are H = 0.1, 0.3; p = 0.1, 0.3, 0.5, 0.7, 0.9; p = 0.2, 0.4; recessive,
dominant, and additive gene action. Nominal power = 0.8 and α = 0.001. Under CHCL is
shown the selection scheme for CH and CL pairs; for example, T10B10 means T10T10 for
CH pairs, and Bl 0B10 for CL pairs.

ED

T10B10
T10B20
T10B25
T15B15
T15B25
T20B20
T25B25
T30B30

Sum

ED

T10B10
T10B20
T10B25
T15B15
T15B25
T20B20
T25B25
T30B30
Sum

T1B1

16
0
6
3
2
8
2
0

37

T1B1

14
1
9
0
0
0
0
0

24

T3B3

0
1
2
5
0
1
0
1

10

T3B3

0
0
0
0
0
0
0
0

0

T5B5

15
2
5
4
6
4
10
0

46

T5B5

0
0
0
0
0
0
0
0

0

R = 0.02,0.1

CHCL
T10B10

2
0
8
8
2
4
3
0

27

R= 1,10,50

CHCL
T10B10

0
0
6
3
5
4
3
6

27

T15B15

0
0
0
0
0
0
0
0

0

T15B15

0
0
1
0
5
0
6

28

40

T20B20

0
0
0
0
0
0
0
0

0

T20B20

0
0
0
0
8
0
11
17

36

T25B25
0
0
0
0
0
0
0
0

0

T25B25

0
0
0
0
0
0
0

53
53

Sum
33

3
21
20
10
17
15

1

120

Sum

14
1

16
3

18
4

23
104

180

for Mode=(recessive, additive)

for p=(0.1,0.3)
for/HO.1,0.3,0.5,0.7,0.9)

For example, the first 5 points correspond to R=0.02, i/=0.1, recessive gene action,

p=0.1 and p=0Λ, 0.3, 0.5, 0.7 or 0.9; the next 5 points correspond to R=0.02, i/=0.1,

recessive gene action, p=0.3 and p=0Λ, 0.3, 0.5, 0.7 or 0.9, and so on. Although the

costs for both designs increase as R increases, the ratio ED mixed is generally between

1 and 2. In plot (a), the 10 pairs of high-low peaks correspond to the 20 combinations

of R, mode-of-inheritance, and p. Within each pair the decrease reflects increases in

p; across pairs the peak magnitudes reflect changes in mode-of-inheritance. When the

model is recessive with infrequent allele (1 — /?), the optimal cost from the test with
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Figure 3: The ratio of lowest cost from the test using ED sib-pairs alone to the lowest cost
of the mixture test. The lowest cost is chosen from all possible selection schemes under each
genetic models: H = 0.1,0.3, recessive, additive, p = 0.1,0.4, and/? = 0.1, 0.3, 0.5, 0.7, 0.9.
Power = 0.8 and α = 0.001. (a) Plot of ratios of all available data, (b) Plot of ratios below
10.

ED pairs alone can attain 20 - 100-fold increases over the mixed sample. A similar

conclusion holds for a dominant model with frequent allele (/?). More information

about the low ratios is shown in plot (b), where the high ratios (greater than 10) are not

shown. In some cases the ratios are close to 1, especially when R = 0.02 or R = 0.1.

6 Discussion

Extremely discordant and extremely concordant (high or low) sib-pairs are among the

most useful sib-pairs in genetic linkage analysis of quantitative trait loci (Risch and
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Zhang [13]). Essentially, selecting sib-pairs mimics a designed experiment whereby

known genotypes are typically compared by phenotypic averages {e.g., analysis of

variance). Comparing averages (first moments) is much more powerful than analyz-

ing variances (second moments), as is the basis of the Haseman and Elston [11] robust

sib-pair method for linkage. By selecting extreme discordant or concordant sib-pairs

we are enriching the sample with individuals that are more likely to be in the tails of

the phenotypic distribution because of genotype rather than chance.

Gu et al [10] extended the mean IBD test of Risch and Zhang to incorporate the

three types of pairs into a single test (EDAC). In this paper, we show the advantages of

the score test for linkage, developed by Dudoit and Speed [5,6], when multiple selec-

tion schemes are possible. Under the mixed selection strategy, the score test provides

more power than the EDAC test by weighting each kind of sib-pair according to its

linkage information under an assumed genetic model. As the basis for inclusion is the

underlying biological mechanisms, it is not surprising that the score test performs better

than an alternative that combines test statistics largely on the basis of statistical princi-

ples, although the latter has been shown to significantly increase power over unselected

sib-pairs.

Compared with the ED-only selection scheme, the mixture selection scheme not

only makes better use of the screening process it is also more cost efficient. Con-

siderable savings in cost are seen under recessive and dominant modes of inheritance.

Residual correlation between sib-pairs plays a key role in the optimal design of selected

samples. At higher degrees of correlation (perhaps larger than 0.3-0.4) discordant pairs

become increasingly difficult to obtain. Therefore, the threshold for ED pairs should be

accordingly relaxed. Conversely, the threshold for concordant pairs may be more strin-

gent. The results shown in Tables 3, 4 and 5 provide some useful guidelines when the

cost ratio (R) of phenotype-to-genotype is known. More specific guidelines are possible

when there is knowledge of residual correlation.

We have assumed that the trait locus and marker locus are in complete linkage, but

this is not an unrealistic assumption as more and more genetic markers are available for

many organisms. Also, we have set a conservative type I error probability of α = 0.001,

as discussed Lander and Kruglyak [12], to more closely resemble a "search" for trait

loci, whether by a scan or a relatively large panel of candidate genes. An error rate

of α = 0.01 or α = 0.0001 gives the same basic patterns in optimal designs as dis-

cussed in the text. The IBD mean test of Risch and Zhang and more general methods as

developed by Dudoit and Speed are needed to more faithfully reflect the reality of ge-

netic epidemiology studies. Analyzing genotypes conditional on phenotypes provides

a realistic framework under which to study genetic traits. The specific assumptions un-

derlying the Dudoit-Speed score test allow one to evaluate the appropriate use of the

method in any given situation. This is an important step when assessing the validity of

study results, especially in observational studies.
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Dedication

This paper is dedicated to Terry Speed. As thesis advisor he provided unending support
and motivation; learning from him was truly inspirational. At this particular time in the
development of statistical methods for statistical genetics and bioinformatics we are
indeed fortunate to have Terry play a major role in shaping the field. As an occasional
lone voice in the desert, he reminds us that we are trying to solve real problems that
more often than not require thinking outside the box. This is perhaps the most important
thing I learned from him - solve the problem. I am privileged to have his attention as
friend, colleague, and advisor. - Rudy Guerra

Rudy Guerra, Program in Biostatistics, Department of Statistics, Rice University, Hous-
ton rguerra@rice.edu

Man Han, Biostatistics, PPD, Inc., Austin j i an . han@austin. ppdi . com

References

[1] D. B. Allison, M. Heo, N. J. Schork, S-L Wong, and R. C. Elston. Extreme
selection strategies in gene mapping studies of oligogenic traits do not always
increase power. Human Heredity, 48:97-107, 1998.

[2] C. I. Amos and R. Guerra. Statistics in human genetics. In S. Kotz, D. Banks, and
C. Read, editors, Encyclopedia of Statistical Science, Update, volume 3, pages
334-346. Wiley, New York, 1998.

[3] W. C. Blackwelder and R. C. Elston. A comparison of sib-pair linkage tests for
disease suscpetibility loci. Genetic Epidemiology, 2:85-97, 1985.

[4] G. Carey and J. A. Williamson. Linkage analysis of quantitative trait: increased
power by using selected samples. American Journal of Human Genetics, 49:786-
796, 1991.

[5] S. Dudoit and T. P. Speed. A score test for linkage using identity by descent data
from sibships. Annals of Statistics, 27:943-986, 1999.

[6] S. Dudoit and T. P. Speed. A score test for the linkage analysis of quantitative and
qualitative traits based on identity by descent data from sib-pairs. Biostatistics,
1:1-26,2000.

[7] L. Eaves and J. Meyer. Locating human quantitative trait loci: Guidelines for the
selection of sibling pairs for genotyping. Behavior Genetics, 24:443-455, 1994.



Cost Efficiency Using Mixtures of Sib-pairs 341

[8] D. R. Goldstein, S. Dudoit, and T. P. Speed. Power and robustness of a score
test for linkage analysis of quantitative traits using identity by descent data on sib
pairs. Genetic Epidemiology, 20:415^431, 2001.

[9] C. Gu and D. C. Rao. Linkage strategy for detection of human quantitative-trait
loci, ii optimization of study design based on extreme sib pairs and generalized
relative risk ratios. American Journal of Human Genetics, 61:211—222, 1997.

[10] C. Gu, A. Todorov, and D. C. Rao. Combining extremely concordant sibpairs with
extremely discordant sibpairs provides a cost effective way to linkage analysis of
quantitative trait loci. Genetic Epidemiology, 13:513-533, 1996.

[11] J. K. Haseman and R. C. Elston. The investigation of linkage between a quantita-
tive trait and a marker locus. Behavior Genetics, 2:3-19, 1972.

[12] E. Lander and L. Kruglyak. Genetic dissection of complex traits: Guidlines for
interpreting and reporting linkage results. Nature Genetics, 11:241-247, 1995.

[13] N. Risch and H. Zhang. Extreme discordant sib pairs for mapping quantitative
trait loci in humans. Science, 268:1584-1589, 1995.

[14] N. Risch and H. Zhang. Mapping quantitative trait loci with extreme discor-
dant sib pairs: sampling considerations. American Journal of Human Genetics,
58:836-843, 1996.

[15] H. Zhao, H. Zhang, and J. Rotter. Cost-effective sib-pair designs in the mapping
of quantitative-trait loci. American Journal of Human Genetics, 60:1211-1221,
1997.






