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Abstract

In this paper, we present a rapid Bayesian variable selection technique which
can be used when the number of variables is much greater than the number of
samples. The method can handle tens of thousands of variables, such as might
be measured using biological array technologies. A general formulation is first
given, followed by specific details for the class of generalised linear models.

Keywords: Bayesian; Jeffreys hyperprior; posterior; variable selection; EM algo-
rithm; generalised linear models; survival analysis

1 Introduction

Traditional methods of variable selection for statistical models include backward and
forward stepwise procedures, and all subsets calculations using branch and bound al-
gorithms, see for example [19]. Typically some criterion such as LAIC or BICE is used
to guide the selection process. These stepwise methods have also been implemented in
software packages such as R and Splus for more general models than linear regression,
e.g. generalised linear models.

These traditional methods were implicitly designed for situations where the number
of variables is less than the number of observations, and the number of variables was
at most of the order of hundreds. Unfortunately, these methods do not cope well with
large numbers of variables, say of the order of ten thousand, or when the number of
observations is less than the number of variables. In these circumstance they either fail
completely, or, even if they can be modified to work, require such a huge computational
effort that they are impractical to use.

More recently, Bayesian variable selection methods based on Markov chain Monte
Carlo methods have been developed, see for example [4, 13, 21, 22]. These have some
attractive properties; however, aside from other issues, these methods are computation-
ally intensive and do not scale up well to problems with ten thousand variables or more.

With the advent of microarray technologies, variable selection problems with ten
thousand variables and hundreds of observations are becoming quite common, with the
likelihood that the problem sizes will scale up at least one order of magnitude in the
near future. Clearly, new methods are required to handle these large problems.
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With this background in mind, we present here an automated method for elimi-

nating redundant parameters from statistical models. The general method is presented

first, followed by the special case when parameter elimination corresponds to variable

selection in generalised linear models. This method can be applied when the number

of parameters is much greater than the number of observations as well as in the usual

case when the number of parameters is less than the number of observations.

In Section 2 we describe the general algorithm for the situation when there are

two sets of parameters β and φ. In this case there is a prior expectation that many

components of β are zero but not those of φ. For example, the β might be a large set

of parameters such as might occur in a matrix factorisation and the φ might be a scale

parameter or a shape parameter.

In Section 3 we consider an important special case of the algorithm, namely gener-

alised linear models, in which a response, discrete or continuous, is explained by a set

of covariates. In this case, eliminating (setting to zero) components of β corresponds to

selecting relevant covariates or components and discarding the rest.

One application is to biological array data, where each biological array has a re-

sponse associated with it, such as disease class or a continuous measurement of re-

sponse to treatment. We seek to find (a small number of) components of the biological

array data which explain or predict the response. Another application area is in spec-

troscopy, where spectra are measured over a large number of wavelengths and it is

desired to predict sample properties of interest from the observed spectrum.

In the following, N denotes the number of samples, and vectors such as y, z and

μ have components y, , z, and μ2 for / = 1,... , JV. Vector multiplication and division is

defined component-wise and Δ( ) denotes a diagonal matrix whose diagonals are equal

to the argument. We also use | | | | to denote Euclidean norm.

2 General algorithm for parameter selection

Consider a likelihood for some data y which is a function of a p x 1 parameter vector

β, many components of which are a priori expected to be zero, and a ? x l vector of

parameters φ (not expected to be zero); note that q could be zero. We want a sparse

model representation with as many components of β zero as possible.

The work of Figueiredo [10, 11] can be extended to handle this general problem.

Basically, Figueiredo formulated a hierarchical prior for the regression parameters in

the standard regression model as well as for the probit regression model for binary data.

This prior had a Jeffreys hyperprior and strongly favoured regression parameters being

zero. By using the trick of introducing a latent variable, he was able to construct an

efficient EM algorithm for maximising the "posterior" distribution of the regression pa-

rameters. This posterior had discontinuous derivatives at any point where a component

of beta was zero and would have caused problems in maximising the posterior directly.

A natural by product of the maximisation was the elimination of redundant variables.

Following Figueiredo, we specify a prior for the parameters β by introducing a p x 1
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vector of hyperparameters v2. This prior is of the form

(1)

where p (β|v 2) is N(θ,diag{v2}) and p(v2) ~ nf=ι i / v

2 is a Jeffreys prior for v2,

[16]. We choose an uninformative prior for φ, although the following can be easily

modified to include an informative prior. Writing i(y |βφ) for the likelihood function,

in this Bayesian framework the posterior distribution of β, φ and v given y is

By treating v 2 as a vector of missing data, the EM algorithm [6] may be used to

maximise (2) to produce maximum a posteriori estimates of β and φ. The prior above

is such that the maximum a posteriori estimates will tend to be sparse; i.e. if a large

number of parameters are redundant, many components of β will be zero. The algo-

rithm is stated below.

2.1 EM algorithm for the general problem

To implement the EM Algorithm, we need to perform the so-called E step and M step.

In the following, we start by initialising the algorithm, then perform the E step, which

provides a function to maximise in the M step. Newton-Raphson iterations are used

to carry out the M step, see [17]. After the M step, current values of φ are updated.

Parameter values which fall below a threshold during the iterations are eliminated from

the model, i.e. are fixed at zero.

1. Set n = 0, So = {1,2,... ,/?}, initialise φ(°) , β* and put ε = 1(Γ5 (say)

2. Define

10 otherwise,

and at iteration n, define Pn to be a matrix of zeroes and ones defined from the

identity matrix of the same dimension as β by deleting columns corresponding to

components of β which are zero. It is easy to see that

where the nonzero elements of β ^ are
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3. Perform the E step by calculating

β(β|βW,φW) = £{log^(β,φ,vb)b,β ( π ),φW}

= X(y|β,φW)-0.5(||β/βW||2),

where L is the log likelihood function of y. The expectation is over v2. Using
β = Pny and βM = P*γ(π), Equation (4) can be written as

ρ(γ|γW,φ(«)) = L(y\Pny,φW)-0.5(\\yrfnψ). (5)

4. Perform the M step, which involves finding the maximum of (5) over γ. This
can be done with Newton-Raphson iterations as follows. Set γo = γM and for
r = 0,1,2,..., γ r +i = yr + α r δ r , where ar is chosen by a line search algorithm to
ensure that ^ Y r + i h ^ W ^ ) > Q{yr\ψn)Mn)), and

.Δ(y-))gΔ(γί-)) 4 - / ] ( Δ ( ^ ) ) | - ̂ ) , (6)

where dL/dyr = P*ndL/d$r, d
2L/d2yr = /^a2I/32βrP« = ̂ 32L/a2β rPM. Equa-

tion (6) is simply the Newton-Raphson algorithm involving the first and second
derivatives of (5) with respect to γ after some algebraic manipulation. Note the
regularisation of the second derivative matrix induced by the prior.

5. Maximise (5) as a function of φ given the current estimate of β. Let γ* be the
value of yr when some convergence criterion is satisfied, e.g. \ \yr - γr+i 11 < ε (for
example 10~5). Define β* =Pnf, 5 n + ] = {ί: |β*| > max, (|β*-|εi)} where εi is a
small constant, say 10~5. The set 5π+i identifies variables which are still in the
model. Now set n = n + 1 and choose φ( π + 1 ' = φW + κn(φ* - φ ^ ) , where φ*
is a (local) maximum which satisfies 3/9φZ(y|Pπγ*,φ) = 0 and κn is a damping
factor such that 0 < κn < 1.

6. Check convergence. If ||γ* — γ^H < £>i where Zι is suitably small, then stop;
otherwise, go to step 2 above.

For the general case, modifications are required if the regularised matrix in (6) is in-
definite. The term d2L/d2yr in step 4 above can also be replaced by its expectation
E[d2L/d2yr]; we do this in Section 3 below.

2.2 Variable selection in generalised linear models

An important special case of the model and algorithm described above is generalised
linear models (GLMs, see [20]). In the notation in the 1985 GLIM System Release
manual, a GLM has likelihood function
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J
(7)

where y = (yi,. . ,yn)
T and α;((p) = <p/w, , with the w, being a fixed set of known

weights and φ a single scale parameter. We also have

(8)

(9)Var{yί}=&"(θί)α(φ) = τ?αί(

Each observation has a set of covariates JC, and a linear predictor η, = xfβ. The

relationship between the mean of the ith observation μz and its linear predictor is given

by the link function η z = g{μt) = g(£'(θ, )). The inverse of the link is denoted by h,

i.e. μι — b'(θi) = h(τ]i). In summary, in addition to the scale parameter, a GLM can be

specified by four components:

• the likelihood or (scaled) deviance function

• the link function

• the derivative of the link function

• the variance function.

Some common and well known examples of GLMs are given in table 1.

Table 1: Some examples of common GLMs
Distribution

Gaussian

Binomial

Poisson

Gamma

Inverse Gaussian

Link function

S(M)

μ

logWO-μ))
lθg(μ)

I/A

1 / /

Derivative

of link

function

1

1/M1-/0)
i/μ
-l/μ'

-2/μ*

Variance

function

1

μ(l-μ)/n

μ

μZ

μ5

Scale

parame-

ter

yes

no

no

yes

yes

For generalised linear models, it can be shown that

anJU(φ)
(10)
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where X is the Nby p matrix with ith row xf and

E\ > = - £ < >. (11)

This can be written as

^=XTV-1A(y-u) (12)

where V = A{ai{φ)τ}{to\i/dμi)
2).

3 EM algorithm for variable selection in GLMs

A description of the EM algorithm follows for the special case of generalized linear
models. The algorithm is of the same form as in Section 2, however we give more de-
tails regarding the choice of initial value and the calculation of first and second deriva-
tives.

1. Set n = 0,5b = {1,2,...,/?}, φ(°) , and ε = 10~5 (say). If p < N compute initial
values of β* by

O (14)

if instead p> N, then compute initial values of β* by

β* = i ( / - ^ ( J ^ J f + λi)-1)Jffg(y + ξ) ϊ (15)

where the ridge parameter λ satisfies 0 < λ < 1 (say) and ζ is small and chosen
so that the link function is well-defined at>> + ζ. Cross-validation [14] could be
used to estimate λ.

2. Define

p

1̂ 0 otherwise

and let Pn be a matrix of zeroes and ones such that the nonzero elements y^ of
βM satisfy
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3. Perform the E step by calculating

ρ(β|βW,φ ( n )) = £{log/7(β,φ,v|y)ly,βM,φW}

= JL(y|β,φW)-0.5(||β/βW||2),

where Z, is the GLM log likelihood function of y. Since β = PΛγand βW = Pn^
n\

Equation (16) can be written as

ny,φW) -0.5(| |γ/γW||2) (17)

4. Perform the M ste/?. This can be done with Newton-Raphson iterations as fol-
lows. Set γ0 = γW; for r = 0,1,2,..., γr+i = γr + α r δ r , where α r is chosen by
a line search algorithm to ensure β(γ r+i |γM,φM) > β ( γ Γ | ^ , φ ^ ) . For/? < N,
use

(y/F- z, - ^ ) , (is)

where

Yτ =

and the subscript r denotes that these quantities are evaluated atμ r = h(XPnyr).
For p> N, use

with Vr and zr defined as before.

5. Let γ* be the value of γ r when some convergence criterion is satisfied, for example
| |Yr-Yr+i| |<e(e.g. 10"5). Define β* =Pnf,Sn+] = {/: |β*| > maxy (|β;.|εi),
where εi is a small constant, say 10~5. Set n = n + 1 and choose φ Λ + 1 = φn +
κn(φ* — φ"), where φ* satisfies d/dφL(y\Pny*,φ) = 0 and κn is a damping factor
such that 0 < κM < 1. In some cases the scale parameter may be known, or this
equation can be solved explicitly to get an updating equation for φ.

6. Check convergence. If | |γ* — γW 11 < 62 for 62 suitably small, then stop; otherwise,
go to step 2 above.
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4 Remarks

1. The algorithm can be implemented to be <9(min(N3,/?3)). Differentiation of (5) with

respect to γ gives

(20)
θγ dy (γM) 2 '

By the definition of the algorithm in Section 2, γ ( n + I ' is defined so that the left hand

side of (20) is zero. Hence, if the sequence (γ("> , φ(")) converges, then from

31

we can see that redundant parameters which are still in the model but have yet to cross

the threshold for omission approach zero at a quadratic rate. This observation is due to

Dr. Frank De Hoog (personal communication) and is mirrored in the observed perfor-

mance of the algorithm.

2. The selection of initial values is important, as values too close to zero can result in

the solution β = 0. It also appears that multiple local maxima exist. The initial value is

chosen so as to get a perfect fit to the training data if possible. The algorithm can then

be viewed as sequentially throwing out variables which do not affect the fit, or cause

the least degradation to the fit.

3. Integrating the prior in (2) over v we obtain

Π

Hence, if the likelihood evaluated at β = 0 is positive, the posterior will be improper.

Use of Markov chain Monte Carlo (MCMC) to simulate from such a posterior requires

caution, see for example [12].

4. Figueiredo [11] shows that replacing the Jeffreys prior in (1) by the prior

P(v?|γ)=exp(-v?/γ)/γ

gives

which is the prior used in the Lasso technique [23]. The algorithms described above

have a simple modification to implement this model. Instead of using
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X

v 2

Figure 1: Graphical representation of factorisation of joint density in GLMs

in the E step at (4) and (16), use

The modifications to the Q functions in (4) and (15) should be clear. This requires the

specification of a hyperparameter γ, something which is not required for the Jeffreys

prior on v. It is possible to give a general class of proper priors which includes as a

special case the Lasso prior and as a limiting case the model (1) (in preparation).

5. The joint density for the GLMs can be represented graphically as in Figure 1. The E

step in the EM algorithms described above does not involve^ because of the conditional

independence of v 2 andy given β. This means that the algorithm can be applied for a

wide variety of different likelihoods.

Another variation is to treat β as missing. With appropriate choice of hyperprior

and likelihoods, this treatment gives algorithms for relevance vector machines, see [24].

However, approximations are usually required to do the E step since this now depends

on y.

6. The algorithm in Section 3 can also be used for quasi-likelihood methods as de-

scribed in [26] and [18].

7. The matrix X of covariates can be replaced by a matrix K with ijth element ktj

and kij = K(JΓ, — Xj) for some kernel function K. This matrix can also be augmented
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with a vector of ones. Some possible kernels, including radial basis function kernels,

are described in [9]. This treatment opens the possibility of fitting general smooth, as

opposed to merely linear, functions of the covariates.

8. Our experience with the algorithm suggests that it is sometimes a little over-enthusiastic

in throwing out variables. It is useful to keep a history of variables included in the model

as iterations proceed, and to consider sets of variables one or two sets back from the

final solution as well. The algorithm can also be used to perform an initial screening

of variables for some other procedure by stopping iterations when some subset size is

approached e.g. 50 variables or when the initial "perfect" fit degrades significantly.

9. By projecting variables not chosen onto the space spanned by a set of chosen vari-

ables and then clustering, equivalence classes of important variables can be identified.

Alternative solutions can be explored by using a sequence of runs in which the variables

chosen in the previous run and those equivalent to them are omitted from consideration

in the next run.

5 Examples

In this section, we present examples of the use of these algorithms for some common

GLMs and for survival analysis. In each case, we use the version of the algorithm in

Section 3.1 with Jeffreys hyperprior (no hyperparameters required). Execution time

was typically less than one minute when run in R on a computer with a Pentium III 500

MHz processor and 256 Mb of RAM.

5.1 Standard linear regression model

The algorithm for linear regression is described in [11]. We include it here as an exam-

ple of a generalised linear model. Consider the sugars data analysed in [3]. The data

consist of 125 training observations, where each observation consists of a (transformed)

spectrum measured at 700 wavelengths. There is a validation set of 21 observations.

The "responses" to be predicted are the percentage composition of three sugars, su-

crose, glucose and fructose, in water. We analyse each sugar separately for illustrative

purposes here.

The standard regression model is well-known to be a generalised linear model with

• Link function: g(μ) = μ

• Derivative of link function: ψ = 1

• Variance function: τ 2 = 1

• Scale parameter φ = σ 2

• Deviance (likelihood function): - f log(σ2) - 0.5 Σ ^ 0/ -μΐ ) 2
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Updating formula for σ 2 given by

N

where μ* is the mean evaluated at β* in step 5 of the algorithm.

For the linear regression model, we substitute the deviance function defined above

for L in (16). Using the above, we can evaluate the terms in (18) as

zr = (y-μr)

(21)

The iterations (21) are basically ridge regressions. An expression for the case when p

is greater than N, which involves inversion of a smaller matrix, can be obtained from

(19).

For sucrose and glucose, the algorithm in Section 3.1 selected 9 variables (wave-

lengths), including a constant term. For fructose, the algorithm selected 5 wavelengths

with no constant term. The chosen wavelengths in nanometres are given below.

Sucrose 1896 1904 1908 1960 1968 2248 2250 2284

Glucose 1882 1908 1950 1958 1968 2008 2280 2332

Fructose 1908 2082 2254 2256 2330

Results for mean square error (MSE) are given in Table 2.

Table 2: Results on training and validation data

Sugar

Sucrose

Glucose

Fructose

Training MSE

0.10

0.09

0.13

Validation MSE

2.34

0.36

0.38

The mean square error for sucrose on the validation set is much larger than that of the

other two sugars. A look at the data suggests that there is a bias in the validation set in

the water absorption region of the spectrum as compared to the training data. Deleting
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the corresponding wavelengths (1748 to 2498 inclusive) and re-running the algorithm

for sucrose reduced the mean square error on the validation set to 1.11 and produced

a model with 5 wavelengths, namely 1406, 1756, 1772, 1792, and 2316. Although

the validation mean square errors are somewhat larger than those reported in [3], the

predictions are quite good and make use of smaller sets of wavelengths than those

chosen by the selection method in [3].

5.2 Logistic regression example

We illustrate logistic regression with the data set of [2]. There are p = 4026 genes and

N = 36 samples. In the following, DLBCL refers to diffuse large B-cell lymphoma. The

samples have been classified into two disease types: GC B-like DLBCL (21 samples)

and Activated B-like DLBCL (15 samples). We use this set to illustrate how the above

methodology may be used for rapidly identifying genes which are potentially diagnos-

tic of different disease types. The data have been used to define the classes, see [2];

however, we simply use the data set to illustrate the method here.

Logistic regression is a generalised linear model with response y here being the

disease class labelled 0 or 1. We also have

• Link function: g(μ) = log(μ/(l -μ))

• Derivative of link function: \/{μ{\—μ))

• Variance function: μ{\ — μ)

• Scale parameter φ = 1

• Deviance (likelihood function): Y^-\{yΛog{μi) + (1 — >>z )log(l — μ, )}

• No updating formula is required for the scale parameter.

For the logistic regression model, we substitute the Deviance function defined above

for L in (16). Using the above, we can evaluate the terms in (18) as

zr=μr\l-μr)-*(y-μr)

and

δr = Δ(γW)[r/Δ(Ml -IhWn +I\-\Yl(y-μr) - ^y) . (22)

The iterations (22) are once again basically ridge regressions. The algorithm iden-

tified 3 relevant genes. The classification accuracy on the training data is given below.

This is a much smaller set of genes than the set used by Alizadeh et al [2] to construct

the classes.
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Table 3: Classification accuracy for the 3 gene logistic regression model

True class 1
True class 2

Predicted class 1
20
2

Predicted class 2
1

13

5.3 Another logistic regression example

The dataset for this example [15] is available from http://www-genome.wi.mit.
edu/MPR/data_set_ALL_AML .html. The training data consist of 38 observations with
7129 variables (genes). The validation set contains 34 observations. The response
variable is the leukemia class: acute myeloid leukemia (AML) or acute lymphoblastic
leukemia (ALL). The data set available over the web includes more genes than those
used in the original analysis of [15]. The dataset contains some controls; however, to
test the algorithm we include all the data in the data set.

The algorithm retains 4 genes out of the 7129 considered. These are

• 1763 Thymosin beta-4 mRNA

• 1779MPOMyeloperoxidase

• 2402 Azurocidin gene

• 6201 Interleukin-8 precursor.

This set of genes gives perfect separation of the classes in the training data. An analysis
of equivalent sets suggests that gene 6201 can be interchanged with gene 6200, namely
Interleukin 8 (IL8) gene. These genes are biologically meaningful in this context.

Table 4 shows results for the selected model applied to the validation set.

Table 4: Validation accuracy for the logistic regression model with 4 selected genes

True ALL
True AML

Predicted ALL
20
3

Predicted AML
0
11

We also performed an analysis similar to [7] whereby the data was randomly di-
vided into training and test sets in the ratio 2:1. For comparison purposes, we used the
3157 genes used in [7]. The variable selection was run for each training set, and pre-
dictions were made for the corresponding test set in a total of 150 runs. All 3157 genes
were considered in each run, there was no preselection of genes. The median number
of misclassifications observed was 2 with a maximum of 5 and minimum of 0. When
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we used a more general prior somewhat between the lasso and (1), the median number
of misclassifications was 1.5 with maximum 3 and minimum 0. The mean number of
variables chosen was 3. For details see [8].

5.4 Poisson regression example

We use the data set in Section 5.2 to also illustrate gene selection in Poisson regression.
We artificially created a new gene (gene number 1) and a Poisson response for each

array with mean given by the expression value of gene 1. This new gene was added to
the previous data matrix. Hence, there are 4027 "genes" and 36 samples in this case.
The response has a Poisson distribution.

Poisson regression is a generalised linear model with

• Link function: g(μ) = log{μ)

• Derivative of link function: l/μ

• Variance function: τ 2 = μ

• Scale parameter φ= 1

• Deviance (likelihood function): X^j{^z log(///)-//,}

• No updating formula is required for the scale parameter.

The algorithm required 5 iterations to correctly identify "gene" 1 as the relevant
gene.

5.5 Cox proportional hazards model

We apply a version of the general algorithm in Section 2 to the survival data of Al-
izadeh et al [2] (available at http://llmpp.nih.gov/lymphoma/data.shtml). A
parametric version of this can also be fitted as a GLM using a Poisson model, see [1].
In this application, two observations (patients DLCL-0051 and DLCL-0052) are omit-
ted because there is no survival information available for them. The data consist of
cDNA microarray measurements on 4026 genes from 40 patients, survival times for
each patient and a censoring indicator.

A Cox proportional hazards model [5] is fitted with an initial 4026 explanatory
variables {i.e. genes) that are rapidly whittled down by the algorithm to just three
explanatory genes. The explanatory genes identified by the algorithm are GENE3797X,
GENE3302X and GENE356X. These are

• Immunoglobulin heavy chain V(H)5 pseudogene L2-9 transcript

• adenosine deaminase - this is a target for some drugs used to treat lymphoma

• AIM2 - involved with interferon induction and cell fate.
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The selected genes are biologically meaningful. More details about this analysis
and a simple prognostic indicator can be found in [25].

6 Conclusion

The algorithms described above seem promising in situations where there is little prior
knowledge concerning the relationship of a large number of variables to a response of
interest. They are fast and can be scaled up to handle large numbers of variables. They
can also provide a useful screening tool to weed out apparently unimportant parameters
or variables prior to an analysis by some other method.

A concern in this context is the production of results which are purely artifacts
due to the large number of variables to choose from. Another concern is the influence
of individual high dimensional observations when the number of samples is relatively
small. As regards the former, permutation tests and the use of validation data sets
have confirmed that the results so far are unlikely to be artifacts. In limited testing to
date with biological arrays, the algorithms have produced biologically meaningful and
apparently new results. A key feature is the consistent identification of smaller sets
of variables with performance similar to the larger sets reported by other analyses. A
similar statement can be made for spectroscopic data. Concerning the stability of the
models selected, leave one out cross-validation calculations have so far demonstrated a
high degree of stability in the chosen models. However, more work is required to test
these ideas.

We are currently exploring other applications, such as logistic multi-class classifi-
cation models.

The algorithms and analysis methods described here are protected by patents which
are owned by CSIRO.
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