Chapter 6

Lecture 19

The vector-valued score function and information in the multiparameter case

Now we have an experiment $(S, \mathcal{A}, P_{\theta}), \theta = (\theta_1, \dots, \theta_p) \in \Theta$ with Θ an open set in \mathbb{R}^p and a smooth function $g : \Theta \to \mathbb{R}^1$. We assume that $dP_{\theta}(s) = \ell_{\theta}(s)d\mu(s)$ as before, and define $\ell(\theta \mid s) := \ell_{\theta}(s)$. Assume that ℓ is smooth in θ and let $g_i(\theta) = \frac{\partial}{\partial \theta_i}g(\theta)$, $\ell_i(\theta \mid s) = \frac{\partial}{\partial \theta_i}\ell(\theta \mid s)$ and $\ell_{ij}(\theta \mid s) = \frac{\partial^2}{\partial \theta_i \partial \theta_j}\ell(\theta \mid s)$ for $1 \le i, j \le p$. There are two approaches to the present topic in this situation:

Approach 1. Generalize the previous one-dimensional discussion: Suppose that t is unbiased for g – that is to say,

$$\int_{S} t(s)\ell(\delta \mid s)d\mu(s) = E_{\delta}(t) = g(\delta)$$

for all $\delta \in \Theta$. Then

$$E_{\theta}(t(s)\ell_i(\theta \mid s)/\ell(\theta \mid s)) = \int_S t(s)\ell_i(\theta \mid s)d\mu(s) = g_i(\theta)$$

for i = 1, ..., p and hence every $t \in U_g$ has the same projection on $\text{Span}\{1, L_1, ..., L_p\}$, where $L(\theta \mid s) = L_{\theta}(s)$ and

$$L_i(\theta \mid s) = \frac{\partial}{\partial \theta_i} L(\theta \mid s) = \frac{\ell_i(\theta \mid s)}{\ell(\theta \mid s)}.$$

This approach is useful for studies of conditions which ensure that L_1, L_2, \ldots, L_p are in $W_{\theta} = \text{Span}\{\Omega_{\delta,\theta} : \delta \in \Theta\}.$

Approach 2. Use the result for the θ -real case: Fix $\theta \in \Theta$ and a vector $c = (c_1, \ldots, c_p) \neq 0$, and suppose that δ is restricted to the line passing through θ and $\theta + c$ – in other words, that we consider only $\delta = \theta + \xi c$ for some scalar ξ . (Note that, since Θ is

open, if ξ is sufficiently small then $\theta + \xi c \in \Theta$.) Then g becomes a function of ξ for which t remains unbiased. By (12),

 $\operatorname{Var}_{\theta}(t) \geq [\text{Fisher information in } s \text{ for } g \text{ at } \theta \text{ in the restricted problem}]^{-1}$

$$= \left(\frac{dg}{d\xi}\Big|_{\xi=0}\right)^2 / [\text{Fisher information for } \xi \text{ in } s \text{ for estimating } g]$$

Now, since $\delta = \theta + \xi c$,

$$\frac{dg}{d\xi}\Big|_{\xi=0} = \sum_{i=1}^{p} \frac{\partial g}{\partial \delta_i}\Big|_{\delta=\theta} c_i = \sum_{i=1}^{p} c_i g_i(\theta).$$

The information in the denominator is $E_{\theta}(dL/d\xi)^2$, and

$$\left. \frac{dL}{d\xi} \right|_{\xi=0} = \sum_{i=1}^p c_i L_i(\theta \mid s),$$

so that the information may be expressed explicitly as

$$E_{\theta}\left(\frac{dL}{d\xi}\right)^{2} = \sum_{i=1}^{p} \sum_{j=1}^{p} c_{i}c_{j}E_{\theta}\left(L_{i}(\theta \mid s)L_{j}(\theta \mid s)\right) = \sum_{i,j} c_{i}c_{j}I_{ij},$$

where I_{ij} is the (i, j)th entry of the Fisher information matrix

$$I(\theta) = \left\{ \operatorname{Cov}_{\theta}(L_i(\theta \mid s), L_j(\theta \mid s)) \right\}_{p \times p}$$

(where the sample space is S). Let

$$L_{ij} = \frac{\partial L_i}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \left[\frac{\ell_i}{\ell} \right] = \frac{\ell_{ij}}{\ell} - \frac{\ell_i \ell_j}{\ell^2};$$

then

$$E_{\theta}(L_{ij}) = \int \ell_{ij}(\theta \mid s) d\mu(s) - E_{\theta}(L_i L_j) = -E_{\theta}(L_i L_j)$$

and hence we have the p-dimensional analogue of (13):

13^{*p*}. $I(\theta) = \{-E_{\theta}(L_{ij}(\theta \mid s))\}.$

The above lower bound for $\operatorname{Var}_{\theta}(t)$ can now be written as

$$\left[\sum_{i} c_{i} g_{i}(\theta)\right]^{2} / \left(\sum_{i,j} c_{i} c_{j} I_{ij}\right)$$

Let us assume that I is positive definite. It will be shown below that

$$\sup_{c} \{\text{the bound above}\} = \sum_{i,j} g_i(\theta) I^{ij}(\theta) g_j(\theta), \qquad (*)$$

where $\{I^{ij}(\theta)\} = I^{-1}(\theta)$; and the supremum is achieved when c is a multiple of $h(\theta)I^{-1}(\theta)$, where $h(\theta) = (g_1(\theta), \ldots, g_p(\theta)) = \nabla g(\theta)$.

Thus we have the p-dimensional analogue of (12):

12^{*p*}. If $t \in U_g$, then $\operatorname{Var}_{\theta}(t) \ge h(\theta)I^{-1}(\theta)h(\theta)'$.

Assume that this bound is attained, at least approximately; then, for the estimation of g, there exists a one-dimensional problem (namely, the one obtained by restricting δ to $\{\theta + \xi c^* : \xi \in \mathbb{R}\}$, where $c^* = h(\theta)I^{-1}(\theta)$) which is as difficult as the *p*-dimensional problem.

Proof of (*). For $u = (u_1, \ldots, u_p)$ and $v = (v_1, \ldots, v_p)$ in \mathbb{R}^p , let $(u|v) := \sum_{i=1}^p u_i v_i = uv'$ and $||u|| := (u|u)^{1/2}$. Let I be a (fixed) positive definite symmetric $p \times p$ matrix and set $(u|v)_* := \sum_{i,j} u_i I_{ij} v_j = uIv'$ and $||u||_* := (u|u)_*^{1/2}$. Let $g = (g_1, \ldots, g_p)$ be a fixed point in \mathbb{R}^p . Consider the maximization over $\underline{a} = (a_1, \ldots, a_p) \in \mathbb{R}^p$ of

$$\frac{(\sum_{i=1}^{p} a_{i}g_{i})^{2}}{\sum_{i,j} a_{i}I_{ij}a_{j}} = \frac{(\underline{a}g')^{2}}{||\underline{a}||_{*}^{2}} = \frac{(\underline{a}I|gI^{-1})^{2}}{||\underline{a}||_{*}^{2}} = \frac{(\underline{a}|gI^{-1})^{2}_{*}}{||\underline{a}||_{*}^{2}} = \left(\frac{a}{||a||_{*}} \left|gI^{-1}\right)^{2}_{*}\right)^{2}_{*}$$

The unique (up to scalar multiples) maximizing value is given by $\underline{a} = gI^{-1}$ and the maximum value is

$$\left(\frac{gI^{-1}}{||gI^{-1}||_{*}} \left| gI^{-1} \right)_{*}^{2} = \left[\frac{(gI^{-1})I(gI^{-1})'}{||gI^{-1}||_{*}}\right]^{2} = ||gI^{-1}||_{*}^{2} = gI^{-1}g'.$$

Lecture 20

We have seen that, with $\theta = (\theta_1, \ldots, \theta_p)$ and fixed g, the "most difficult" onedimensional problem is with $\delta \in \Theta$ unknown but restricted to

$$\{\theta + \xi c^* : |\xi| \text{ is sufficiently small}\},$$

where $c^* = c^*(\theta) = h(\theta)I^{-1}(\theta)$ and $h(\theta) = \operatorname{grad} g(\theta) = (g_1(\theta), \dots, g_p(\theta)), \ g_i = \frac{\partial g}{\partial \theta_i};$
i.e.,
 $t \in U_g \Rightarrow \operatorname{Var}_{\theta}(t) \ge \operatorname{Var}_{\theta}(\tilde{t}) \ge \operatorname{Var}_{\theta}(t^*_{\theta,1}) = h(\theta)I^{-1}(\theta)h'(\theta),$

where
$$\tilde{t}$$
 is the projection (of any $t \in U_g$) to W_{θ} and $t_{\theta,1}^*$ is the projection (again, of any $t \in U_g$) to $\text{Span}\{1, dL/d\xi|_{\xi=0}\}$. Now (remembering that $\delta = \theta + \xi c^*$)

$$\left. \frac{dL}{d\xi} \right|_{\xi=0} = \sum_{i=1}^p c_i^* L_i(\theta \mid s) =: L'$$

and, under P_{θ} (i.e., for $\xi = 0$) $1 \perp L'$, so $\{1, L'/||L'||\}$ is an orthonormal basis for Span $\{1, L'\}$ and

$$\begin{split} t^*_{\theta,1} &= g(\theta) \cdot 1 + \left(t, \frac{L'}{||L'||}\right) \cdot \frac{L'}{||L'||} = g(\theta) + \frac{1}{||L'||} \frac{dg}{d\xi} \Big|_{\xi=0} \frac{L'}{||L'||} \\ &= g(\theta) + \left(\sum_{i=1}^p c^*_i L_i(\theta \mid s)\right) \frac{\sum_i c^*_i g_i(\theta)}{\sum_{i,j} c^*_i I_{ij}(\theta) c^*_j} = g(\theta) + \left(\sum_{i=1}^p c^*_i L_i(\theta \mid s)\right) \frac{c^* h'}{c^* I c^{*'}}. \end{split}$$

Note that $c^{*'} = I^{-1}h$, so $c^*Ic^{*'} = hI^{-1}h' = c^*h'$ and so the above formula becomes

$$t_{\theta,1}^* = g(\theta) + \sum_{i=1}^p c_i^* L_i.$$

We have

$$\operatorname{Var}_{\theta}(t^*_{\theta,1}) = \frac{(\sum c^*_i g_i(\theta))^2}{(\sum_{i,j} c^*_i I_{ij}(\theta) c^*_j)} = \frac{(hI^{-1}h')^2}{(hI^{-1})I(hI^{-1})'} = hI^{-1}h'$$

More heuristic (as in the one-dimensional parameter case)

"ML estimates are nearly unbiased and nearly attain the bound in 12^{p} ."

We assume that the ML estimate $\hat{\theta}$ of θ exists. Since Θ is open and $L(\cdot \mid s)$ is continuously differentiable, we have that

$$L_i(\hat{\theta}) = \frac{\partial L(\theta \mid s)}{\partial \theta_i}\Big|_{\theta=\hat{\theta}} = 0.$$

Choose and fix $\theta \in \Theta$, and regard it as the actual parameter value. If we assume that $\hat{\theta}$ is close to θ , then

$$L_i(\hat{\theta}) \approx L_i(\theta) + \sum_{j=1}^p (\hat{\theta}_j - \theta_j) L_{ji}(\theta), \quad i = 1, \dots, p.$$

Assume that the sample is highly informative, i.e., that

$$L_{ji}(\theta \mid s) \approx -I_{ij}(\theta).$$

(We know that $E_{\theta}(L_{ji}(\theta \mid s)) = -I_{ji}(\theta)$. We are thus assuming that

$$\{L_{ji}\} = \{-I_{ji}(1+\varepsilon_{ji})\},\$$

where $\varepsilon_{ji}(\theta, s) \to 0$ in probability. This happens typically when the data is highly informative.) From this it follows that

$$L_i(\theta) \approx \sum_{j=1}^p (\hat{\theta}_j - \theta_j) I_{ji}(\theta), \quad i = 1, \dots, p$$

- i.e., $(\hat{\theta} - \theta)I = (L_1, \dots, L_p).$

Definition. $L^{(1)}(\theta \mid s) := (L_1(\theta \mid s), \dots, L_p(\theta \mid s))$ is the SCORE VECTOR.

Thus the ML estimate of a given g is

$$\begin{split} \hat{t}(s) &= g(\hat{\theta}(s)) \approx g(\theta) + \sum_{j=1}^{p} (\hat{\theta}_{j}(s) - \theta_{j}) g_{j}(\theta) = g(\theta) + (\hat{\theta}(s) - \theta) h'(\theta) \\ &\approx g(\theta) + L^{(1)}(\theta \mid s) I^{-1}(\theta) h'(\theta) = t_{\theta,1}^{*} \end{split}$$

under P_{θ} . Since $E_{\theta}(L^{(1)}(\theta \mid s)) = 0$, we have $E_{\theta}(\hat{t}) \approx g(\theta)$. Since θ is arbitrary, \hat{t} is approximately unbiased for g, i.e., $\hat{t} \in U_g$. Since

$$\hat{t}(s) \approx g(\theta) + L^{(1)}(\theta \mid s)I^{-1}(\theta)h'(\theta) = g(\theta) + c^* \left(L^{(1)}(\theta \mid s)\right)'$$

under P_{θ} , we know that $\hat{t} \in \text{Span}\{1, L_1, \dots, L_p\}$, so that $\hat{t} \approx t_{\theta,1}^*$ under P_{θ} and

$$\operatorname{Var}_{\theta}(\hat{t}) \approx \operatorname{Var}_{\theta}(t^*_{\theta,1}) = h(\theta)I^{-1}(\theta)h'(\theta).$$

This is, if true, remarkable, for it happens for every g and every $\theta \in \Theta$.

Example 3. Suppose that the X_i are iid $N(\mu, \sigma^2)$ and $\theta = (\theta_1, \theta_2) = (\mu, \sigma^2)$. Some functions g which may be of interest are $g(\theta) = \mu$, $g(\theta) = \sigma^2$ (or $g(\theta) = \sigma$), $g(\theta) = \mu/\sigma$ (or $g(\theta) = \sigma/\mu$, if $\mu \neq 0$) and $g(\theta)$ = the real number c such that $P_{\theta}(X_i < c) = \alpha$ (for some fixed $0 < \alpha < 1$) – i.e., $g(\theta) = \mu + z_\alpha \sigma$, where z_α is the normal α fractile.

Let us compute I. Since s consists of n iid parts, $I(\theta)$ for s is simply $nI_1(\theta)$, where $I_1(\theta)$ is I for X_1 . If X_1 is the entire data, then

$$L = C - \frac{1}{2}\log \tau - \frac{1}{2\tau}(X_1 - \mu)^2,$$

where C is a constant and $\tau := \sigma^2 = \theta_2$; thus

$$L_1 = \frac{X_1 - \mu}{\tau}$$
 and $L_2 = -\frac{1}{2\tau} + \frac{1}{2\tau^2}(X_1 - \mu)^2$.

Homework 4

3. Check that

$$I_1(\theta) = \left(\begin{array}{cc} 1/\tau & 0 \\ 0 & 1/2\tau^2 \end{array}
ight).$$

Lecture 21

Example 3 (continued). We return to the situation $s = (X_1, \ldots, X_n)$; then

$$I(s) = n \left(egin{array}{cc} 1/ au & 0 \ 0 & 1/2 au^2 \end{array}
ight) \qquad ext{and} \qquad I^{-1}(s) = \left(egin{array}{cc} au/n & 0 \ 0 & 2 au^2/n \end{array}
ight).$$

Consider $g(\theta) = \mu = \theta_1$; then the most difficult one-dimensional problem is



This one-dimensional problem is in a one-parameter exponential family with sufficient statistic \overline{X} , and \overline{X} is a UMVUE in this one-dimensional problem which attains the C-R bound – i.e., \overline{X} is unbiased and $\operatorname{Var}_{\theta}(\overline{X}) = h(\theta)I^{-1}(\theta)h'(\theta)$, where h = (1,0); thus

$$\operatorname{Var}_{\theta}(\overline{X}) = \tau/n \; \forall \theta \in \Theta.$$

The following are some gs (and their corresponding C-R bounds) for which the C-R bound is *not* attained:

- i. $g(\theta) = \sigma^2$; the C-R bound is $\frac{2\tau^2}{n}$.
- ii. $g(\theta) = \sigma$; the C-R bound is $\frac{\tau}{2n}$.
- iii. $g(\theta) = \mu + z_{\alpha}\sigma, h = (1, z_{\alpha}/2\sqrt{\tau});$ the C-R bound is $\frac{\tau}{n} + \tau \frac{z_{\alpha}^2}{2n}$.

To see this, it is enough to check case (i), since the reasoning for the other cases is similar. Here

$$\ell(\theta \mid s) = C\tau^{-n/2} e^{-\frac{1}{2\tau}[n(\overline{X}-\mu)^2 + nv]},$$

where C is a constant and $v = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$;

$$L(\theta \mid s) = C' - \frac{n}{2}\log\tau - \frac{1}{2\tau} \left[n(\overline{X} - \mu)^2 + nv \right],$$

where $C' = \log C$; $L_1(\theta \mid s) = \frac{n}{\tau} (\overline{X} - \mu)$ and

$$L_{2}(\theta \mid s) = -\frac{n}{2\tau} + \frac{1}{2\tau^{2}} [n(\overline{X} - \mu)^{2} + nv].$$

Let $\delta = (\mu_*, \tau_*)$; then

$$E_{\delta}(L_1(\theta \mid s)) = \frac{n}{\tau}(\mu_* - \mu)$$

and

$$E_{\delta}(L_{2}(\theta \mid s)) = -\frac{n}{2\tau} + \frac{1}{2\tau^{2}} \left[\tau_{*}(n-1) + n\frac{\tau_{*}}{n} + n(\mu_{*} - \mu)^{2} \right]$$
$$= -\frac{n}{2\tau} + \frac{1}{2\tau^{2}} \left[n\tau_{*} + n(\mu_{*} - \mu)^{2} \right].$$

From these equations it is easily seen that there do not exist constants $a(\theta)$, $b(\theta)$ and $c(\theta)$ such that

$$E_{\delta}[a(\theta) + b(\theta)L_1(\theta \mid s) + c(\theta)L_2(\theta \mid s)] = \tau_*$$

for all $\delta = (\mu_*, \tau_*)$ – i.e., there is no unbiased estimate of τ_* in $\operatorname{Span}\{1, L_1(\theta \mid \cdot), L_2(\theta \mid \cdot)\}$, so that the C-R bound is not attainable for $g(\theta) = \tau$.

On the other hand, $\overline{X} = \mu + \frac{\tau}{n}L_1(\theta \mid s)$ is in Span $\{1, L_1, L_2\}$ and is unbiased for μ , and so attains the C-R bound for μ . It is easy to check that the ML estimate is $\hat{\theta} = (\overline{X}, v)$, so the MLE for μ is \overline{X} ; it is exactly unbiased, and its variation is

the C-R bound. The MLE for $\tau = \sigma^2$ is $v = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$; we have that $E_{\theta}(v) = \frac{n-1}{n}\tau = \tau - \frac{\tau}{n}$ (note that $\frac{\tau}{n}$ is small when I is "large"),

$$\operatorname{Var}_{\theta}(v) = \frac{\tau^2}{n^2} \operatorname{Var}_{\theta}(X_{n-1}^2) = \frac{2(n-1)}{n^2} \tau^2,$$

which is *less* than the C-R bound $\frac{2\tau^2}{n}$ for τ (so v is *not* unbiased), and

$$MSE_{\theta}(v) = \frac{2(n-1)}{n^2}\tau^2 + \frac{\tau^2}{n^2} = \frac{2\tau^2}{n} - \frac{\tau^2}{n^2} < \frac{2\tau^2}{n}.$$

Homework 4

4. The ML estimate for $\sigma = \sqrt{\tau}$ is \sqrt{v} . Show that $E_{\theta}(\sqrt{v}) = \sigma + o(1)$ and $\operatorname{Var}_{\theta}(\sqrt{v}) = \frac{\tau}{2n} + o(1)$ as $n \to \infty$. (HINT: z is an $X_k^2 \Leftrightarrow \frac{1}{2}z$ is a $\Gamma(k/2)$ variable. A $\Gamma(m)$ variable has density $\frac{e^{-x_xm-1}}{\Gamma(m)}$ in $(0,\infty)$. $\Gamma(m+1) = \sqrt{2\pi m} \cdot m^m e^{-m} + o(1/m)$ as $m \to \infty$, so $\Gamma(m+h)$

$$\frac{\Gamma(m+h)}{\Gamma(m)} = m^h (1 + o(1))$$

as $m \to \infty$ for a fixed h.)

Lecture 22

Note. In the general case of $(S, \mathcal{A}, P_{\theta}), \theta \in \Theta$, the above considerations are somewhat more general than are required for strict unbiased estimation. In particular, associated with each $\theta \in \Theta$ there is a set W_{θ} of estimates which has the following properties:

Corollary to (8). If we are estimating a scalar $g(\theta)$ corresponding to any estimate t, then there is an estimate $\tilde{t} \in W_{\theta}$ such that $E_{\delta}(t) = E_{\delta}(\tilde{t})$ for all $\delta \in \Theta$ and

$$E_{\theta}(t-g(\theta))^2 =: R_t(\theta) \ge R_{\tilde{t}}(\theta) := E_{\theta}(\tilde{t}-g(\theta))^2,$$

with the inequality strict unless $P_{\delta}(t = \tilde{t}) = 1$ for all $\delta \in \Theta$.

In general, W_{θ} depends on θ and we must be content with $C = \bigcap_{\theta \in \Theta} W_{\theta}$. In some important special cases, however – for example, in an exponential family – W_{θ} is independent of θ . In any case, though, the MLE and related estimates have the property that, if " $I(\theta)$ " is large, any smooth function $f(\hat{\theta})$ is approximately in W_{θ} for any fixed θ .

Example 3 (continued). $\theta = (\mu, \tau)$, where $\tau = \sigma^2$. Choose and fix θ ; then what is W_{θ} ? There are three methods available:

Method 1. Look at $\Omega_{\delta,\theta}$. W_{θ} is the subspace spanned by $\{\Omega_{\delta,\theta} : \delta \in \Theta\}$.

Method 2. (Let θ be real, under regularity conditions.) $\frac{d^{j}}{d\delta^{j}}\Omega_{\delta,\theta}\Big|_{\delta=\theta} \in W_{\theta}$. This is the method which leads to the Cramér-Rao and Bhattacharya inequalities.

Method 3. (Due to Stein.) $\int_{\delta_1}^{\delta_2} \Omega_{\delta,\theta} d\delta \in W_{\theta}$. We use Method 2. Since $\ell(\theta \mid s) = e^{L(\theta \mid s)}$, we have $\ell_i(\theta \mid s) = e^{L(\theta \mid s)} L_i(\theta \mid s)$,

$$\ell_{ij}(\theta \mid s) = e^{L(\theta \mid s)} \left[L_{ij}(\theta \mid s) + L_i(\theta \mid s) L_j(\theta \mid s) \right],$$

etc., and hence $\ell_i/\ell = L_i$, $\ell_{ij}/\ell = L_{ij} + L_iL_j$, etc. Thus ℓ_i/ℓ , ℓ_{ij}/ℓ , etc. are in W_{θ} . Here we have

$$L_{1} = \frac{n(\overline{X} - \mu)}{\tau} \qquad \qquad L_{2} = \frac{n[v + (\overline{X} - \mu)^{2}]}{2\tau^{2}} - \frac{n}{2\tau}$$
$$L_{11} = -\frac{n}{\tau} \qquad \qquad L_{21} = -\frac{n(\overline{X} - \mu)}{\tau^{2}}$$
$$L_{12} = -\frac{n(\overline{X} - \mu)}{\tau^{2}} \qquad \qquad L_{22} = -\frac{n[v + (\overline{X} - \mu)^{2}]}{\tau^{3}} - \frac{n}{2\tau^{2}}.$$

Since $\ell_{11}/\ell = L_{11} + L_1^2$ is an affine function of $(\overline{X} - \mu)^2$, we have

$$\operatorname{Span}\{1, \overline{X}, v, (\overline{X} - \mu)^2\} = \operatorname{Span}\{1, L_1(\theta \mid \cdot), L_2(\theta \mid \cdot), \ell_{11}(\theta \mid \cdot)/\ell(\theta \mid \cdot)\} \subseteq W_{\theta},$$

whence \overline{X} is the LMVUE of $E_{\delta}(\overline{X}) = \mu_*$, v is the LMVUE of $E_{\delta}(v) = \frac{n-1}{n}\tau_*$ and $\frac{nv}{n-1}$ is the LMVUE of $E_{\delta}(nv/(n-1)) = \tau_*$ (remember $\delta = (\mu_*, \tau_*)$.) Since \overline{X} , v and $\frac{nv}{n-1}$ do not depend on θ , they are in fact in $C = \bigcap_{\theta \in \Theta} W_{\theta}$ and hence are the UMVUEs of their expected values. (Neither \sqrt{v} nor $\frac{\overline{X}}{\sqrt{v}}$ (the latter is the MLE of μ/σ) is available by this method, but one can show by the above method that any function of \overline{X} and v is in C. If Θ is the set of all pairs (μ, σ^2) , then we are in the two-parameter exponential family case and a result to be stated later applies.)

Regularity conditions

 Θ is open in \mathbb{R}^p and $dP_{\theta}(s) = \ell(\theta \mid s)d\mu(s)$.

Condition 1^p . For each $s, \ell(\cdot | s)$ is a positive continuously differentiable function of θ .

Condition \mathscr{P} . Given any $\theta \in \Theta$, we may find an $\varepsilon = \varepsilon(\theta) > 0$ such that

$$\max\{|L_j(\delta \mid s)| : |\delta_i - \theta_i| \le \varepsilon\} \in V_{\theta}$$

(i.e., the function is square-integrable with respect to P_{θ}), or at least

$$\frac{\max\{|\ell_j(\delta \mid s)| : |\delta_i - \theta_i| \le \varepsilon\}}{\ell(\theta \mid s)} \in V_{\theta}.$$

Let $I(\theta) = E_{\theta} (L_i(\theta \mid s) L_j(\theta \mid s)).$ Condition \mathcal{P} . For each θ , $I(\theta)$ is positive definite.

- 12^{*p*}E. a. For each θ , 1, $L_1(\theta \mid s), \ldots, L_p(\theta \mid s) \subseteq W_{\theta}$, and $1 \perp L_j(\theta \mid s)$ in V_{θ} for $j = 1, \ldots, p$.
 - b. If U_g is non-empty, then g is differentiable and the projection of any $t \in U_g$ to Span $\{1, L_1, \ldots, L_p\}$ (which is the projection of \tilde{t} to Span $\{1, L_1, \ldots, L_p\}$) is

$$t_{\theta,1}^* = g(\theta) + h(\theta)I^{-1}(\theta) \big(L_1(\theta \mid s), \dots, L_p(\theta \mid s) \big)',$$

where $h(\theta) = \operatorname{grad} g(\theta)$.

c. If $t \in U_q$, then $\operatorname{Var}_{\theta}(t) \ge h(\theta)I^{-1}(\theta)h'(\theta)$ for all $\theta \in \Theta$.

Proof. The proof is left as an exercise for the reader. See the proof in the case p = 1 and use Approach 1 rather than Approach 2.

Note also that $g(\theta)$ is a projection of t to Span{1} and that 1 is orthogonal to L_1, \ldots, L_p , so that the projection of $t - g(\theta)$ to Span{1, L_1, \ldots, L_p } is the same as its projection to Span{ L_1, \ldots, L_p }. Thus

$$\begin{aligned} \operatorname{Var}_{\theta}\big(t - g(\theta)\big) &\geq E_{\theta}\big(\operatorname{projection} \text{ of } t - g(\theta) \text{ to } \operatorname{Span}\{L_{1}, \dots, L_{p}\}\big)^{2} \\ &= E_{\theta}\big(hI^{-1}(L_{1}, \dots, L_{p})'[hI^{-1}(L_{1}, \dots, L_{p})']'\big) \\ &= E_{\theta}\big(hI^{-1}(L_{1}, \dots, L_{p})'(L_{1}, \dots, L_{p})I^{-1}h'\big) = hI^{-1}h'.\end{aligned}$$

Lecture 23

Note. In the case when Θ is open in \mathbb{R}^p , $g: \Theta \to \mathbb{R}'$ is differentiable and conditions $1^{p}-3^{p}$ are satisfied, then, for any estimate t,

$$R_t(\theta) := E_{\theta} (t(s) - g(\theta))^2 \ge \beta_t(\theta) I^{-1}(\theta) \beta_t'(\theta) + [b_t(\theta)]^2,$$

where $b_t(\theta) := E_{\theta}(t) - g(\theta)$ and $\beta_t(\theta) := \operatorname{grad} E_{\theta}(t) = \operatorname{grad} g(\theta) + \operatorname{grad} b_t(\theta)$.

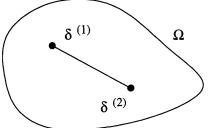
Proof. Let $\gamma(\delta) = E_{\delta}(t)$, so that $t \in U_{\gamma}$. Then

$$R_t(\theta) = \operatorname{Var}_{\theta}(t) + [b_t(\theta)]^2 \ge \left[\operatorname{grad} \gamma(\theta)\right] I^{-1}(\theta) \left[\operatorname{grad} \gamma(\theta)\right]'$$

by C-R bound.

This result is useful even in case p = 1 – see, for example, the proof of the admissibility of $\hat{\theta}$ in Example 1(a) in Lehmann (1983, *Theory of point estimation*).

On the distance between θ and δ



Should one use the Euclidean distance d_1 ? What is really of interest is the "distance" between $P_{\delta^{(1)}}$ and $P_{\delta^{(2)}}$ – given, say, by

$$d_2(\delta^{(1)}, \delta^{(2)}) = \sup_{A \in \mathcal{A}} |P_{\delta^{(1)}}(A) - P_{\delta^{(2)}}(A)| = \frac{1}{2} \int_S \left| \ell(\delta^{(1)} \mid s) - \ell(\delta^{(2)} \mid s) \right| ds$$

or

$$d_3(\delta^{(1)}, \delta^{(2)}) = \int_S \left(\sqrt{\ell(\delta^{(1)} \mid s)} - \sqrt{\ell(\delta^{(2)} \mid s)}\right)^2 d\mu(s).$$

The distance d_3 is used in E. J. G. Pitman (1979, Some basic theory of statistic inference). It is related to the Fisher information in the following way:

Suppose that we want to distiguish between $P_{\delta^{(1)}}$ and $P_{\delta^{(2)}}$ on the basis of s. Instead of a hypothesis-testing approach, let us choose a real-valued function t(s). What is the difference between $\delta^{(1)}$ and $\delta^{(2)}$ on the basis of t?

Regard t as an estimate of $g(\delta) := E_{\delta}(t)$. Then $|g(\delta^{(1)}) - g(\delta^{(2)})|$ might be taken as a measure of the distance between $\delta^{(1)}$ and $\delta^{(2)}$ on the basis of t. It is, however, more plausible to use the standardized versions

$$rac{1}{{
m SD}_{\delta^{(1)}}(t)}|g(\delta^{(1)})-g(\delta^{(2)})| \quad ext{and} \quad rac{1}{{
m SD}_{\delta^{(2)}}(t)}|g(\delta^{(1)})-g(\delta^{(2)})|,$$

especially if t is approximately normally distributed.

Now choose and fix $\theta \in \Theta$ and restrict δ to a small neighborhood of θ . Then $\operatorname{Var}_{\delta}(t) \approx \operatorname{Var}_{\theta}(t)$, and hence the distance (between $\delta^{(1)}$ and $\delta^{(2)}$, on the basis of t) is approximately

$$rac{|g(\delta^{(1)}) - g(\delta^{(2)})|}{\sqrt{\operatorname{Var}_{ heta}(t)}} =: d_{t, heta}(\delta^{(1)},\delta^{(2)}).$$

Since the distance should be "intrinsic", we should maximize it with respect to t. First, we maximize $d_{t,\theta}$ with respect to t with the expectation function g fixed to get

$$\frac{|g(\delta^{(1)}) - g(\delta^{(2)})|}{\sqrt{(\operatorname{grad} g(\theta))I^{-1}(\theta)(\operatorname{grad} g(\theta))'}}$$

With $\delta^{(1)} \to \theta$ and $\delta^{(2)} \to \theta$, this is approximately

$$\frac{|(\delta^{(1)} - \delta^{(2)})[\operatorname{grad} g(\theta)]'|}{\sqrt{(\operatorname{grad} g(\theta))I^{-1}(\theta)(\operatorname{grad} g(\theta))'}}$$

Next, maximize the square of this with respect to $h(\theta) = \operatorname{grad} g(\theta)$, which then leads to the squared distance

$$D^{2}_{\theta}(\delta^{(1)}, \delta^{(2)}) = (\delta^{(2)} - \delta^{(1)})I(\theta)(\delta^{(2)} - \delta^{(1)})'.$$

The distance D_{θ} is called the LOCAL FISHER METRIC in the vicinity of θ . It is the distance between $P_{\delta^{(1)}}$ and $P_{\delta^{(2)}}$ as measured in standard units for a real-valued statistic of the form $g(\hat{\theta})$, where g is suitably chosen so that $\operatorname{grad} g(\theta) = (\delta^{(2)} - \delta^{(1)})I(\theta)$.

Example 1(a). Let n = 1, $s \sim N(\theta, \sigma^2)$ and $\theta \in \Theta = (-\infty, \infty)$, where σ^2 is a fixed known quantity. Then $I(\theta) = 1/\sigma^2$ for all θ ,

$$D^2_{\theta}(\delta^{(2)}, \delta^{(1)}) = \frac{(\delta^{(2)} - \delta^{(1)})^2}{\sigma^2}$$

and

$$D = \frac{|\delta^{(2)} - \delta^{(1)}|}{\sigma} = \left| \frac{\text{mean of } P_{\delta^{(1)}} - \text{mean of } P_{\delta^{(2)}}}{\text{common SD}} \right|.$$

If n > 1 and $s = (X_1, \ldots, X_n)$ with the X_i iid, then

$$D_{\theta}(\delta^{(1)},\delta^{(2)}) = \sqrt{n} \left| \frac{\delta^{(2)} - \delta^{(1)}}{\sigma} \right|.$$

For fixed $\theta \in \mathbb{R}^p$, D_{θ} is the metric derived from the inner product

$$(u|v)_* := \sum_{i,j} u_i I_{ij}(\theta) v_j = u I(\theta) v',$$

which has been used before. *Exercise* (informal): Look at D_{θ} in Example 3, $N(\theta_1, \theta_2)$. *Example 4.* $Y \in \mathbb{R}^k$ has the $N_k(\theta, \Sigma)$ distribution and density

$$\ell(\theta \mid y) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{k/2}} e^{-\frac{1}{2}(y-\theta)\Sigma^{-1}(y-\theta)'}$$

with respect to Lebesgue measure. With this density, θ and Σ are respectively the mean and covariance matrices of Y. Show that $I(\theta) = \Sigma^{-1}$ for all θ and hence $D^2_{\theta}(\delta^{(2)}, \delta^{(1)})$ is the fixed square distance $(\delta^{(2)} - \delta^{(1)})\Sigma^{-1}(\delta^{(2)} - \delta^{(1)})$.

Lecture 24

Note. A sufficient condition for 13^p – i.e., the equality $I(\theta) = -\{E_{\theta}(L_{ij}(\theta \mid s))\}$ – is that, given any $\theta \in \Theta$, we may find an $\varepsilon = \varepsilon(\theta) > 0$ such that

$$\max\{|\ell_{ij}(\delta \mid s)/\ell(\delta \mid s)| : |\delta_i - \theta_i| \le \varepsilon\},\$$

or at least

$$\max\{|\ell_{ij}(\delta \mid s)| : |\delta_i - \theta_i| \le \varepsilon\}/\ell(\theta \mid s),$$

be P_{θ} integrable (for $i, j = 1, \ldots, p$).

Note. The theory extends to estimation of vector-valued functions – for example, if $u(s) = (u_1(s), \ldots, u_p(s))$ is an unbiased estimate of θ and $\operatorname{Var}_{\theta}(u_i) < +\infty$ for each $i = 1, \ldots, p$ and $\theta \in \Theta$, then $\operatorname{Cov}_{\theta}(u) - I^{-1}(\theta)$ is positive semidefinite for each $\theta \in \Theta$.

Proof. Fix $a = (a_1, \ldots, a_p) \in \mathbb{R}^p$ and define $g(\theta) = \sum_{i=1}^p a_i \theta_i = a\theta'$. Then t(s) = au'(s) is an unbiased estimate of g. Since grad $g(\theta) = a$, we have

$$\operatorname{Var}_{\theta}(t) = a \operatorname{Cov}_{\theta}(u) a' \ge a I^{-1}(\theta) a',$$

so that $(a \in \mathbb{R}^p$ having been arbitrary) $\operatorname{Cov}_{\theta}(u) - I^{-1}(\theta)$ is positive semidefinite. \Box

Definition. $(S, \mathcal{A}, P_{\theta}), \theta \in \Theta \subseteq \mathbb{R}^{p}$ is a (*p*-parameter) EXPONENTIAL FAMILY with statistic $T = (T_{1}, \ldots, T_{p}) : S \to \mathbb{R}^{p}$ if $dP_{\theta}(s) = \ell(\theta \mid s)d\mu(s)$, where

$$\ell(\theta \mid s) = C(s)e^{B_1(\theta)T_1(s) + \dots + B_p(\theta)T_p(s) + A(\theta)}.$$

The family is non-degenerate at a particular $\theta \in \Theta$ if

$$\{(B_1(\delta) - B_1(\theta), \dots, B_p(\delta) - B_p(\theta)) : \delta \in \Theta\}$$

contains a neighborhood of $0 = (0, \ldots, 0)$.

We assume non-degeneracy at each $\theta \in \Theta$.

Exercise: Check that Example 1(a) is a non-degenerate exponential family with p = 1, with $T_1 = \overline{X}$ if $\Theta = \mathbb{R}^1$; Example 2(a) is a non-degenerate exponential family with p = 1, $T_1 = \overline{X}$ and $\Theta = (0, 1)$; Example 2(b) is a non-degenerate exponential family with p = 1, $T_1 = N$ and $\Theta = (0, 1)$; Example 3 is a two-parameter non-degenerate exponential family with $T_1 = \sum X_i$, $T_2 = \sum X_i^2$ and

$$\Theta = \{ (\mu, \tau) : -\infty < \mu < +\infty \text{ and } 0 < \tau < +\infty \};$$

and Example 4 is a k-parameter exponential family with $T = \sum y_i = (T_1, \ldots, T_k)$.

- 15^{*p*}. a. For each $\theta \in \Theta$, W_{θ} is the space of all Borel functions of $T = (T_1, \ldots, T_p)$ which are in V_{θ} .
 - b. $C = \bigcap_{\theta \in \Theta} W_{\theta}$ is the class of all UMVUE i.e., the class of all Borel functions of T which are in $L^2(P_{\theta})$ for all $\theta \in \Theta$.
 - c. For any g such that U_g is non-empty, there exists an essentially unique estimate $\tilde{t} = \tilde{t}(T) \in C \cap U_g$.
 - d. $\tilde{t} = E_{\theta}(t \mid T)$ for all $t \in U_g$ and $\theta \in \Theta$.
 - e. For all $A \subseteq S$, $E_{\theta}(I_A \mid T) = P_{\theta}(A \mid T)$ (essentially) is the same for each $\theta \in \Theta$, i.e., T is a sufficient statistic.
 - f. T is a complete statistic.

Proof.

a. Choose $\theta \in \Theta$ and write $\xi_i = B_i(\delta) - B_i(\theta)$. Then

$$\Omega_{\delta,\theta} = e^{\sum_{i=1}^{p} \xi_i T_i(s) - K_{\theta}(\xi_1, \dots, \xi_p)},$$

where $K_{\theta}(\xi_1, \ldots, \xi_p) = \log E_{\theta}(e^{\sum \xi_i T_i(s)})$ is the cumulant generating function of T at (ξ_1, \ldots, ξ_p) under P_{θ} . Non-degeneracy means that

$$K_{\theta}(\xi_1,\ldots,\xi_p)<+\infty$$

for (ξ_1, \ldots, ξ_p) in a neighborhood of 0, and hence W_{θ} contains all functions $e^{\sum \xi_i T_i}$ for (ξ_1, \ldots, ξ_p) in a neighborhood of 0. By differentiation, we find that W_{θ} contains all polynomials in T_1, \ldots, T_p , so W_{θ} contains all Borel functions of T which belong to V_{θ} .

On the other hand, since each $\Omega_{\delta,\theta}$ is a Borel function of T, every function in W_{θ} is such; so (a) is proved.

- b. This follows from (a) and (9).
- c. This follows from (a) and (8).
- d. This follows from (a) and (8) and the fact that, if W is the space of all functions of T, projection to W is the conditional expectation given T.
- e. This follows from (c) and (d) by letting $g(\theta) = P_{\theta}(A)$.
- f. Suppose $E_{\theta}h = 0$ and $E_{\theta}h^2 < +\infty$ for all $\theta \in \Theta$. Then h(T) is the UMVUE of $g(\theta) = 0$; but 0 is an unbiased estimate of this g, so $\operatorname{Var}_{\theta} h = 0$ for all $\theta \in \Theta$ and hence $P_{\theta}(h = 0) = 1$ for all $\theta \in \Theta$.