Chapter 6

Lecture 19

The vector-valued score function and information in the multiparameter case

Now we have an experiment $\left(S, \mathcal{A}, P_{\theta}\right), \theta=\left(\theta_{1}, \ldots, \theta_{p}\right) \in \Theta$ with Θ an open set in \mathbb{R}^{p} and a smooth function $g: \Theta \rightarrow \mathbb{R}^{1}$. We assume that $d P_{\theta}(s)=\ell_{\theta}(s) d \mu(s)$ as before, and define $\ell(\theta \mid s):=\ell_{\theta}(s)$. Assume that ℓ is smooth in θ and let $g_{i}(\theta)=\frac{\partial}{\partial \theta_{i}} g(\theta)$, $\ell_{i}(\theta \mid s)=\frac{\partial}{\partial \theta_{i}} \ell(\theta \mid s)$ and $\ell_{i j}(\theta \mid s)=\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \ell(\theta \mid s)$ for $1 \leq i, j \leq p$. There are two approaches to the present topic in this situation:
Approach 1. Generalize the previous one-dimensional discussion: Suppose that t is unbiased for g - that is to say,

$$
\int_{S} t(s) \ell(\delta \mid s) d \mu(s)=E_{\delta}(t)=g(\delta)
$$

for all $\delta \in \Theta$. Then

$$
E_{\theta}\left(t(s) \ell_{i}(\theta \mid s) / \ell(\theta \mid s)\right)=\int_{S} t(s) \ell_{i}(\theta \mid s) d \mu(s)=g_{i}(\theta)
$$

for $i=1, \ldots, p$ and hence every $t \in U_{g}$ has the same projection on $\operatorname{Span}\left\{1, L_{1}, \ldots, L_{p}\right\}$, where $L(\theta \mid s)=L_{\theta}(s)$ and

$$
L_{i}(\theta \mid s)=\frac{\partial}{\partial \theta_{i}} L(\theta \mid s)=\frac{\ell_{i}(\theta \mid s)}{\ell(\theta \mid s)} .
$$

This approach is useful for studies of conditions which ensure that $L_{1}, L_{2}, \ldots, L_{p}$ are in $W_{\theta}=\operatorname{Span}\left\{\Omega_{\delta, \theta}: \delta \in \Theta\right\}$.
Approach 2. Use the result for the θ-real case: Fix $\theta \in \Theta$ and a vector $c=\left(c_{1}, \ldots, c_{p}\right) \neq$ 0 , and suppose that δ is restricted to the line passing through θ and $\theta+c-$ in other words, that we consider only $\delta=\theta+\xi c$ for some scalar ξ. (Note that, since Θ is
open, if ξ is sufficiently small then $\theta+\xi c \in \Theta$.) Then g becomes a function of ξ for which t remains unbiased. By (12),
$\operatorname{Var}_{\theta}(t) \geq[\text { Fisher information in } s \text { for } g \text { at } \theta \text { in the restricted problem] }]^{-1}$

$$
=\left(\left.\frac{d g}{d \xi}\right|_{\xi=0}\right)^{2} /[\text { Fisher information for } \xi \text { in } s \text { for estimating } g]
$$

Now, since $\delta=\theta+\xi c$,

$$
\left.\frac{d g}{d \xi}\right|_{\xi=0}=\left.\sum_{i=1}^{p} \frac{\partial g}{\partial \delta_{i}}\right|_{\delta=\theta} c_{i}=\sum_{i=1}^{p} c_{i} g_{i}(\theta) .
$$

The information in the denominator is $E_{\theta}(d L / d \xi)^{2}$, and

$$
\left.\frac{d L}{d \xi}\right|_{\xi=0}=\sum_{i=1}^{p} c_{i} L_{i}(\theta \mid s)
$$

so that the information may be expressed explicitly as

$$
E_{\theta}\left(\frac{d L}{d \xi}\right)^{2}=\sum_{i=1}^{p} \sum_{j=1}^{p} c_{i} c_{j} E_{\theta}\left(L_{i}(\theta \mid s) L_{j}(\theta \mid s)\right)=\sum_{i, j} c_{i} c_{j} I_{i j}
$$

where $I_{i j}$ is the (i, j) th entry of the Fisher information matrix

$$
I(\theta)=\left\{\operatorname{Cov}_{\theta}\left(L_{i}(\theta \mid s), L_{j}(\theta \mid s)\right)\right\}_{p \times p}
$$

(where the sample space is S). Let

$$
L_{i j}=\frac{\partial L_{i}}{\partial \theta_{j}}=\frac{\partial}{\partial \theta_{j}}\left[\frac{\ell_{i}}{\ell}\right]=\frac{\ell_{i j}}{\ell}-\frac{\ell_{i} \ell_{j}}{\ell^{2}} ;
$$

then

$$
E_{\theta}\left(L_{i j}\right)=\int \ell_{i j}(\theta \mid s) d \mu(s)-E_{\theta}\left(L_{i} L_{j}\right)=-E_{\theta}\left(L_{i} L_{j}\right)
$$

and hence we have the p-dimensional analogue of (13):
$13^{p} . I(\theta)=\left\{-E_{\theta}\left(L_{i j}(\theta \mid s)\right\}\right.$.
The above lower bound for $\operatorname{Var}_{\theta}(t)$ can now be written as

$$
\left[\sum_{i} c_{i} g_{i}(\theta)\right]^{2} /\left(\sum_{i, j} c_{i} c_{j} I_{i j}\right) .
$$

Let us assume that I is positive definite. It will be shown below that

$$
\begin{equation*}
\sup _{c}\{\text { the bound above }\}=\sum_{i, j} g_{i}(\theta) I^{i j}(\theta) g_{j}(\theta), \tag{*}
\end{equation*}
$$

where $\left\{I^{i j}(\theta)\right\}=I^{-1}(\theta)$; and the supremum is achieved when c is a multiple of $h(\theta) I^{-1}(\theta)$, where $h(\theta)=\left(g_{1}(\theta), \ldots, g_{p}(\theta)\right)=\nabla g(\theta)$.

Thus we have the p-dimensional analogue of (12):
12^{p}. If $t \in U_{g}$, then $\operatorname{Var}_{\theta}(t) \geq h(\theta) I^{-1}(\theta) h(\theta)^{\prime}$.
Assume that this bound is attained, at least approximately; then, for the estimation of g, there exists a one-dimensional problem (namely, the one obtained by restricting δ to $\left\{\theta+\xi c^{*}: \xi \in \mathbb{R}\right\}$, where $\left.c^{*}=h(\theta) I^{-1}(\theta)\right)$ which is as difficult as the p-dimensional problem.

Proof of $\left(^{*}\right)$. For $u=\left(u_{1}, \ldots, u_{p}\right)$ and $v=\left(v_{1}, \ldots, v_{p}\right)$ in \mathbb{R}^{p}, let $(u \mid v):=\sum_{i=1}^{p} u_{i} v_{i}=$ $u v^{\prime}$ and $\|u\|:=(u \mid u)^{1 / 2}$. Let I be a (fixed) positive definite symmetric $p \times p$ matrix and set $(u \mid v)_{*}:=\sum_{i, j} u_{i} I_{i j} v_{j}=u I v^{\prime}$ and $\|u\|_{*}:=(u \mid u)_{*}^{1 / 2}$. Let $g=\left(g_{1}, \ldots, g_{p}\right)$ be a fixed point in \mathbb{R}^{p}. Consider the maximization over $\underline{a}=\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{R}^{p}$ of

$$
\frac{\left(\sum_{i=1}^{p} a_{i} g_{i}\right)^{2}}{\sum_{i, j} a_{i} I_{i j} a_{j}}=\frac{\left(\underline{a} g^{\prime}\right)^{2}}{\|\underline{a}\|_{*}^{2}}=\frac{\left(\underline{a} I \mid g I^{-1}\right)^{2}}{\|\underline{a}\|_{*}^{2}}=\frac{\left(\underline{a} \mid g I^{-1}\right)_{*}^{2}}{\|\underline{a}\|_{*}^{2}}=\left(\left.\frac{a}{\|a\|_{*}} \right\rvert\, g I^{-1}\right)_{*}^{2}
$$

The unique (up to scalar multiples) maximizing value is given by $\underline{a}=g I^{-1}$ and the maximum value is

$$
\left(\left.\frac{g I^{-1}}{\left\|g I^{-1}\right\|_{*}} \right\rvert\, g I^{-1}\right)_{*}^{2}=\left[\frac{\left(g I^{-1}\right) I\left(g I^{-1}\right)^{\prime}}{\left\|g I^{-1}\right\|_{*}}\right]^{2}=\left\|g I^{-1}\right\|_{*}^{2}=g I^{-1} g^{\prime}
$$

Lecture 20

We have seen that, with $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ and fixed g, the "most difficult" onedimensional problem is with $\delta \in \Theta$ unknown but restricted to

$$
\left\{\theta+\xi c^{*}:|\xi| \text { is sufficiently small }\right\}
$$

where $c^{*}=c^{*}(\theta)=h(\theta) I^{-1}(\theta)$ and $h(\theta)=\operatorname{grad} g(\theta)=\left(g_{1}(\theta), \ldots, g_{p}(\theta)\right), g_{i}=\frac{\partial g}{\partial \theta_{i}} ;$ i.e.,

$$
t \in U_{g} \Rightarrow \operatorname{Var}_{\theta}(t) \geq \operatorname{Var}_{\theta}(\tilde{t}) \geq \operatorname{Var}_{\theta}\left(t_{\theta, 1}^{*}\right)=h(\theta) I^{-1}(\theta) h^{\prime}(\theta)
$$

where \tilde{t} is the projection (of any $t \in U_{g}$) to W_{θ} and $t_{\theta, 1}^{*}$ is the projection (again, of any $t \in U_{g}$) to $\operatorname{Span}\left\{1, d L /\left.d \xi\right|_{\xi=0}\right\}$. Now (remembering that $\delta=\theta+\xi c^{*}$)

$$
\left.\frac{d L}{d \xi}\right|_{\xi=0}=\sum_{i=1}^{p} c_{i}^{*} L_{i}(\theta \mid s)=: L^{\prime}
$$

and, under P_{θ} (i.e., for $\left.\xi=0\right) 1 \perp L^{\prime}$, so $\left\{1, L^{\prime} /\left\|L^{\prime}\right\|\right\}$ is an orthonormal basis for $\operatorname{Span}\left\{1, L^{\prime}\right\}$ and

$$
\begin{aligned}
t_{\theta, 1}^{*}= & g(\theta) \cdot 1+\left(t, \frac{L^{\prime}}{\left\|L^{\prime}\right\|}\right) \cdot \frac{L^{\prime}}{\left\|L^{\prime}\right\|}=g(\theta)+\left.\frac{1}{\left\|L^{\prime}\right\|} \frac{d g}{d \xi}\right|_{\xi=0} \frac{L^{\prime}}{\left\|L^{\prime}\right\|} \\
& =g(\theta)+\left(\sum_{i=1}^{p} c_{i}^{*} L_{i}(\theta \mid s)\right) \frac{\sum_{i} c_{i}^{*} g_{i}(\theta)}{\sum_{i, j} c_{i}^{*} I_{i j}(\theta) c_{j}^{*}}=g(\theta)+\left(\sum_{i=1}^{p} c_{i}^{*} L_{i}(\theta \mid s)\right) \frac{c^{*} h^{\prime}}{c^{*} I c^{* \prime}}
\end{aligned}
$$

Note that $c^{* \prime}=I^{-1} h$, so $c^{*} I c^{* \prime}=h I^{-1} h^{\prime}=c^{*} h^{\prime}$ and so the above formula becomes

$$
t_{\theta, 1}^{*}=g(\theta)+\sum_{i=1}^{p} c_{i}^{*} L_{i} .
$$

We have

$$
\operatorname{Var}_{\theta}\left(t_{\theta, 1}^{*}\right)=\frac{\left(\sum c_{i}^{*} g_{i}(\theta)\right)^{2}}{\left(\sum_{i, j} c_{i}^{*} I_{i j}(\theta) c_{j}^{*}\right)}=\frac{\left(h I^{-1} h^{\prime}\right)^{2}}{\left(h I^{-1}\right) I\left(h I^{-1}\right)^{\prime}}=h I^{-1} h^{\prime} .
$$

More heuristic (as in the one-dimensional parameter case)

"ML estimates are nearly unbiased and nearly attain the bound in 12^{p}."
We assume that the ML estimate $\hat{\theta}$ of θ exists. Since Θ is open and $L(\cdot \mid s)$ is continuously differentiable, we have that

$$
L_{i}(\hat{\theta})=\left.\frac{\partial L(\theta \mid s)}{\partial \theta_{i}}\right|_{\theta=\hat{\theta}}=0 .
$$

Choose and fix $\theta \in \Theta$, and regard it as the actual parameter value. If we assume that $\hat{\theta}$ is close to θ, then

$$
L_{i}(\hat{\theta}) \approx L_{i}(\theta)+\sum_{j=1}^{p}\left(\hat{\theta}_{j}-\theta_{j}\right) L_{j i}(\theta), \quad i=1, \ldots, p
$$

Assume that the sample is highly informative, i.e., that

$$
L_{j i}(\theta \mid s) \approx-I_{i j}(\theta)
$$

(We know that $E_{\theta}\left(L_{j i}(\theta \mid s)\right)=-I_{j i}(\theta)$. We are thus assuming that

$$
\left\{L_{j i}\right\}=\left\{-I_{j i}\left(1+\varepsilon_{j i}\right)\right\}
$$

where $\varepsilon_{j i}(\theta, s) \rightarrow 0$ in probability. This happens typically when the data is highly informative.) From this it follows that

$$
L_{i}(\theta) \approx \sum_{j=1}^{p}\left(\hat{\theta}_{j}-\theta_{j}\right) I_{j i}(\theta), \quad i=1, \ldots, p
$$

- i.e., $(\hat{\theta}-\theta) I=\left(L_{1}, \ldots, L_{p}\right)$.

Definition. $L^{(1)}(\theta \mid s):=\left(L_{1}(\theta \mid s), \ldots, L_{p}(\theta \mid s)\right)$ is the SCORE VECTOR.
Thus the ML estimate of a given g is

$$
\begin{aligned}
\hat{t}(s)=g(\hat{\theta}(s)) \approx g(\theta)+\sum_{j=1}^{p}\left(\hat{\theta}_{j}(s)-\theta_{j}\right) g_{j}(\theta) & =g(\theta)+(\hat{\theta}(s)-\theta) h^{\prime}(\theta) \\
& \approx g(\theta)+L^{(1)}(\theta \mid s) I^{-1}(\theta) h^{\prime}(\theta)=t_{\theta, 1}^{*}
\end{aligned}
$$

under P_{θ}. Since $E_{\theta}\left(L^{(1)}(\theta \mid s)\right)=0$, we have $E_{\theta}(\hat{t}) \approx g(\theta)$. Since θ is arbitrary, \hat{t} is approximately unbiased for g, i.e., $\hat{t} \dot{\in} U_{g}$. Since

$$
\hat{t}(s) \approx g(\theta)+L^{(1)}(\theta \mid s) I^{-1}(\theta) h^{\prime}(\theta)=g(\theta)+c^{*}\left(L^{(1)}(\theta \mid s)\right)^{\prime}
$$

under P_{θ}, we know that $\hat{t} \dot{\operatorname{Span}}\left\{1, L_{1}, \ldots, L_{p}\right\}$, so that $\hat{t} \approx t_{\theta, 1}^{*}$ under P_{θ} and

$$
\operatorname{Var}_{\theta}(\hat{t}) \approx \operatorname{Var}_{\theta}\left(t_{\theta, 1}^{*}\right)=h(\theta) I^{-1}(\theta) h^{\prime}(\theta) .
$$

This is, if true, remarkable, for it happens for every g and every $\theta \in \Theta$.
Example 3. Suppose that the X_{i} are iid $N\left(\mu, \sigma^{2}\right)$ and $\theta=\left(\theta_{1}, \theta_{2}\right)=\left(\mu, \sigma^{2}\right)$. Some functions g which may be of interest are $g(\theta)=\mu, g(\theta)=\sigma^{2}($ or $g(\theta)=\sigma), g(\theta)=\mu / \sigma$ (or $g(\theta)=\sigma / \mu$, if $\mu \neq 0$) and $g(\theta)=$ the real number c such that $P_{\theta}\left(X_{i}<c\right)=\alpha$ (for some fixed $0<\alpha<1$) - i.e., $g(\theta)=\mu+z_{\alpha} \sigma$, where z_{α} is the normal α fractile.

Let us compute I. Since s consists of n iid parts, $I(\theta)$ for s is simply $n I_{1}(\theta)$, where $I_{1}(\theta)$ is I for X_{1}. If X_{1} is the entire data, then

$$
L=C-\frac{1}{2} \log \tau-\frac{1}{2 \tau}\left(X_{1}-\mu\right)^{2},
$$

where C is a constant and $\tau:=\sigma^{2}=\theta_{2}$; thus

$$
L_{1}=\frac{X_{1}-\mu}{\tau} \quad \text { and } \quad L_{2}=-\frac{1}{2 \tau}+\frac{1}{2 \tau^{2}}\left(X_{1}-\mu\right)^{2} .
$$

Homework 4

3. Check that

$$
I_{1}(\theta)=\left(\begin{array}{cc}
1 / \tau & 0 \\
0 & 1 / 2 \tau^{2}
\end{array}\right) .
$$

Lecture 21

Example 3 (continued). We return to the situation $s=\left(X_{1}, \ldots, X_{n}\right)$; then

$$
I(s)=n\left(\begin{array}{cc}
1 / \tau & 0 \\
0 & 1 / 2 \tau^{2}
\end{array}\right) \quad \text { and } \quad I^{-1}(s)=\left(\begin{array}{cc}
\tau / n & 0 \\
0 & 2 \tau^{2} / n
\end{array}\right)
$$

Consider $g(\theta)=\mu=\theta_{1}$; then the most difficult one-dimensional problem is

This one-dimensional problem is in a one-parameter exponential family with sufficient statistic \bar{X}, and \bar{X} is a UMVUE in this one-dimensional problem which attains the C-R bound - i.e., \bar{X} is unbiased and $\operatorname{Var}_{\theta}(\bar{X})=h(\theta) I^{-1}(\theta) h^{\prime}(\theta)$, where $h=(1,0)$; thus

$$
\operatorname{Var}_{\theta}(\bar{X})=\tau / n \forall \theta \in \Theta .
$$

The following are some $g s$ (and their corresponding C-R bounds) for which the C-R bound is not attained:
i. $g(\theta)=\sigma^{2}$; the C-R bound is $\frac{2 \tau^{2}}{n}$.
ii. $g(\theta)=\sigma$; the C-R bound is $\frac{\tau}{2 n}$.
iii. $g(\theta)=\mu+z_{\alpha} \sigma, h=\left(1, z_{\alpha} / 2 \sqrt{\tau}\right)$; the C-R bound is $\frac{\tau}{n}+\tau \frac{z_{\alpha}^{2}}{2 n}$.

To see this, it is enough to check case (i), since the reasoning for the other cases is similar. Here

$$
\ell(\theta \mid s)=C \tau^{-n / 2} e^{-\frac{1}{2 \tau}\left[n(\bar{X}-\mu)^{2}+n v\right]}
$$

where C is a constant and $v=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$;

$$
L(\theta \mid s)=C^{\prime}-\frac{n}{2} \log \tau-\frac{1}{2 \tau}\left[n(\bar{X}-\mu)^{2}+n v\right]
$$

where $C^{\prime}=\log C ; L_{1}(\theta \mid s)=\frac{n}{\tau}(\bar{X}-\mu)$ and

$$
L_{2}(\theta \mid s)=-\frac{n}{2 \tau}+\frac{1}{2 \tau^{2}}\left[n(\bar{X}-\mu)^{2}+n v\right] .
$$

Let $\delta=\left(\mu_{*}, \tau_{*}\right)$; then

$$
E_{\delta}\left(L_{1}(\theta \mid s)\right)=\frac{n}{\tau}\left(\mu_{*}-\mu\right)
$$

and

$$
\begin{aligned}
E_{\delta}\left(L_{2}(\theta \mid s)\right)=-\frac{n}{2 \tau}+\frac{1}{2 \tau^{2}}\left[\tau_{*}(n-1)+n \frac{\tau_{*}}{n}+\right. & \left.n\left(\mu_{*}-\mu\right)^{2}\right] \\
& =-\frac{n}{2 \tau}+\frac{1}{2 \tau^{2}}\left[n \tau_{*}+n\left(\mu_{*}-\mu\right)^{2}\right]
\end{aligned}
$$

From these equations it is easily seen that there do not exist constants $a(\theta), b(\theta)$ and $c(\theta)$ such that

$$
E_{\delta}\left[a(\theta)+b(\theta) L_{1}(\theta \mid s)+c(\theta) L_{2}(\theta \mid s)\right]=\tau_{*}
$$

for all $\delta=\left(\mu_{*}, \tau_{*}\right)$ - i.e., there is no unbiased estimate of τ_{*} in $\operatorname{Span}\left\{1, L_{1}(\theta \mid \cdot), L_{2}(\theta \mid \cdot)\right\}$, so that the C-R bound is not attainable for $g(\theta)=\tau$.

On the other hand, $\bar{X}=\mu+\frac{\tau}{n} L_{1}(\theta \mid s)$ is in $\operatorname{Span}\left\{1, L_{1}, L_{2}\right\}$ and is unbiased for μ, and so attains the C-R bound for μ. It is easy to check that the ML estimate is $\hat{\theta}=(\bar{X}, v)$, so the MLE for μ is \bar{X}; it is exactly unbiased, and its variation is
the C-R bound. The MLE for $\tau=\sigma^{2}$ is $v=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$; we have that $E_{\theta}(v)=\frac{n-1}{n} \tau=\tau-\frac{\tau}{n}$ (note that $\frac{\tau}{n}$ is small when I is "large"),

$$
\operatorname{Var}_{\theta}(v)=\frac{\tau^{2}}{n^{2}} \operatorname{Var}_{\theta}\left(X_{n-1}^{2}\right)=\frac{2(n-1)}{n^{2}} \tau^{2}
$$

which is less than the C-R bound $\frac{2 \tau^{2}}{n}$ for τ (so v is not unbiased), and

$$
\operatorname{MSE}_{\theta}(v)=\frac{2(n-1)}{n^{2}} \tau^{2}+\frac{\tau^{2}}{n^{2}}=\frac{2 \tau^{2}}{n}-\frac{\tau^{2}}{n^{2}}<\frac{2 \tau^{2}}{n} .
$$

Homework 4

4. The ML estimate for $\sigma=\sqrt{\tau}$ is \sqrt{v}. Show that $E_{\theta}(\sqrt{v})=\sigma+o(1)$ and $\operatorname{Var}_{\theta}(\sqrt{v})=\frac{\tau}{2 n}+o(1)$ as $n \rightarrow \infty$. (Hint: z is an $X_{k}^{2} \Leftrightarrow \frac{1}{2} z$ is a $\Gamma(k / 2)$ variable. A $\Gamma(m)$ variable has density $\frac{e^{-x} x^{m-1}}{\Gamma(m)}$ in $(0, \infty) . \Gamma(m+1)=\sqrt{2 \pi m} \cdot m^{m} e^{-m}+o(1 / m)$ as $m \rightarrow \infty$, so

$$
\frac{\Gamma(m+h)}{\Gamma(m)}=m^{h}(1+o(1))
$$

as $m \rightarrow \infty$ for a fixed h.)

Lecture 22

Note. In the general case of $\left(S, \mathcal{A}, P_{\theta}\right), \theta \in \Theta$, the above considerations are somewhat more general than are required for strict unbiased estimation. In particular, associated with each $\theta \in \Theta$ there is a set W_{θ} of estimates which has the following properties:

Corollary to (8). If we are estimating a scalar $g(\theta)$ corresponding to any estimate t, then there is an estimate $\tilde{t} \in W_{\theta}$ such that $E_{\delta}(t)=E_{\delta}(\tilde{t})$ for all $\delta \in \Theta$ and

$$
E_{\theta}(t-g(\theta))^{2}=: R_{t}(\theta) \geq R_{\tilde{t}}(\theta):=E_{\theta}(\tilde{t}-g(\theta))^{2},
$$

with the inequality strict unless $P_{\delta}(t=\tilde{t})=1$ for all $\delta \in \Theta$.
In general, W_{θ} depends on θ and we must be content with $C=\bigcap_{\theta \in \Theta} W_{\theta}$. In some important special cases, however - for example, in an exponential family - W_{θ} is independent of θ. In any case, though, the MLE and related estimates have the property that, if " $I(\theta)$ " is large, any smooth function $f(\hat{\theta})$ is approximately in W_{θ} for any fixed θ.
Example 3 (continued). $\theta=(\mu, \tau)$, where $\tau=\sigma^{2}$. Choose and fix θ; then what is W_{θ} ? There are three methods available:
Method 1. Look at $\Omega_{\delta, \theta}$. W_{θ} is the subspace spanned by $\left\{\Omega_{\delta, \theta}: \delta \in \Theta\right\}$.
Method 2. (Let θ be real, under regularity conditions.) $\left.\frac{d^{j}}{d \delta^{j}} \Omega_{\delta, \theta}\right|_{\delta=\theta} \in W_{\theta}$. This is the method which leads to the Cramér-Rao and Bhattacharya inequalities.

Method 3. (Due to Stein.) $\int_{\delta_{1}}^{\delta_{2}} \Omega_{\delta, \theta} d \delta \in W_{\theta}$.
We use Method 2. Since $\ell(\theta \mid s)=e^{L(\theta \mid s)}$, we have $\ell_{i}(\theta \mid s)=e^{L(\theta \mid s)} L_{i}(\theta \mid s)$,

$$
\ell_{i j}(\theta \mid s)=e^{L(\theta \mid s)}\left[L_{i j}(\theta \mid s)+L_{i}(\theta \mid s) L_{j}(\theta \mid s)\right]
$$

etc., and hence $\ell_{i} / \ell=L_{i}, \ell_{i j} / \ell=L_{i j}+L_{i} L_{j}$, etc. Thus $\ell_{i} / \ell, \ell_{i j} / \ell$, etc. are in W_{θ}. Here we have

$$
\begin{array}{cc}
L_{1}=\frac{n(\bar{X}-\mu)}{\tau} & L_{2}=\frac{n\left[v+(\bar{X}-\mu)^{2}\right]}{2 \tau^{2}}-\frac{n}{2 \tau} \\
L_{11}=-\frac{n}{\tau} & L_{21}=-\frac{n(\bar{X}-\mu)}{\tau^{2}} \\
L_{12}=-\frac{n(\bar{X}-\mu)}{\tau^{2}} & L_{22}=-\frac{n\left[v+(\bar{X}-\mu)^{2}\right]}{\tau^{3}}-\frac{n}{2 \tau^{2}} .
\end{array}
$$

Since $\ell_{11} / \ell=L_{11}+L_{1}^{2}$ is an affine function of $(\bar{X}-\mu)^{2}$, we have

$$
\operatorname{Span}\left\{1, \bar{X}, v,(\bar{X}-\mu)^{2}\right\}=\operatorname{Span}\left\{1, L_{1}(\theta \mid \cdot), L_{2}(\theta \mid \cdot), \ell_{11}(\theta \mid \cdot) / \ell(\theta \mid \cdot)\right\} \subseteq W_{\theta},
$$

whence \bar{X} is the LMVUE of $E_{\delta}(\bar{X})=\mu_{*}, v$ is the LMVUE of $E_{\delta}(v)=\frac{n-1}{n} \tau_{*}$ and $\frac{n v}{n-1}$ is the LMVUE of $E_{\delta}(n v /(n-1))=\tau_{*}\left(\right.$ remember $\delta=\left(\mu_{*}, \tau_{*}\right)$.) Since \bar{X}, v and $\frac{n v}{n-1}$ do not depend on θ, they are in fact in $C=\bigcap_{\theta \in \Theta} W_{\theta}$ and hence are the UMVUEs of their expected values. (Neither \sqrt{v} nor $\frac{\bar{X}}{\sqrt{v}}$ (the latter is the MLE of $\mu / \sigma)$ is available by this method, but one can show by the above method that any function of \bar{X} and v is in C. If Θ is the set of all pairs $\left(\mu, \sigma^{2}\right)$, then we are in the two-parameter exponential family case and a result to be stated later applies.)

Regularity conditions

Θ is open in \mathbb{R}^{p} and $d P_{\theta}(s)=\ell(\theta \mid s) d \mu(s)$.
Condition 1^{p}. For each $s, \ell(\cdot \mid s)$ is a positive continuously differentiable function of θ.

Condition $\mathscr{2}^{p}$. Given any $\theta \in \Theta$, we may find an $\varepsilon=\varepsilon(\theta)>0$ such that

$$
\max \left\{\left|L_{j}(\delta \mid s)\right|:\left|\delta_{i}-\theta_{i}\right| \leq \varepsilon\right\} \in V_{\theta}
$$

(i.e., the function is square-integrable with respect to P_{θ}), or at least

$$
\frac{\max \left\{\left|\ell_{j}(\delta \mid s)\right|:\left|\delta_{i}-\theta_{i}\right| \leq \varepsilon\right\}}{\ell(\theta \mid s)} \in V_{\theta} .
$$

Let $I(\theta)=E_{\theta}\left(L_{i}(\theta \mid s) L_{j}(\theta \mid s)\right)$.
Condition 3^{p}. For each $\theta, I(\theta)$ is positive definite.
12^{p} E. a. For each $\theta, 1, L_{1}(\theta \mid s), \ldots, L_{p}(\theta \mid s) \subseteq W_{\theta}$, and $1 \perp L_{j}(\theta \mid s)$ in V_{θ} for $j=1, \ldots, p$.
b. If U_{g} is non-empty, then g is differentiable and the projection of any $t \in U_{g}$ to $\operatorname{Span}\left\{1, L_{1}, \ldots, L_{p}\right\}$ (which is the projection of \tilde{t} to $\operatorname{Span}\left\{1, L_{1}, \ldots, L_{p}\right\}$) is

$$
t_{\theta, 1}^{*}=g(\theta)+h(\theta) I^{-1}(\theta)\left(L_{1}(\theta \mid s), \ldots, L_{p}(\theta \mid s)\right)^{\prime}
$$

where $h(\theta)=\operatorname{grad} g(\theta)$.
c. If $t \in U_{g}$, then $\operatorname{Var}_{\theta}(t) \geq h(\theta) I^{-1}(\theta) h^{\prime}(\theta)$ for all $\theta \in \Theta$.

Proof. The proof is left as an exercise for the reader. See the proof in the case $p=1$ and use Approach 1 rather than Approach 2.

Note also that $g(\theta)$ is a projection of t to $\operatorname{Span}\{1\}$ and that 1 is orthogonal to L_{1}, \ldots, L_{p}, so that the projection of $t-g(\theta)$ to $\operatorname{Span}\left\{1, L_{1}, \ldots, L_{p}\right\}$ is the same as its projection to $\operatorname{Span}\left\{L_{1}, \ldots, L_{p}\right\}$. Thus

$$
\begin{aligned}
& \operatorname{Var}_{\theta}(t-g(\theta)) \geq E_{\theta}\left(\operatorname{projection} \text { of } t-g(\theta) \text { to } \operatorname{Span}\left\{L_{1}, \ldots, L_{p}\right\}\right)^{2} \\
& =E_{\theta}\left(h I^{-1}\left(L_{1}, \ldots, L_{p}\right)^{\prime}\left[h I^{-1}\left(L_{1}, \ldots, L_{p}\right)^{\prime}\right]^{\prime}\right) \\
& \\
& \quad=E_{\theta}\left(h I^{-1}\left(L_{1}, \ldots, L_{p}\right)^{\prime}\left(L_{1}, \ldots, L_{p}\right) I^{-1} h^{\prime}\right)=h I^{-1} h^{\prime}
\end{aligned}
$$

Lecture 23

Note. In the case when Θ is open in $\mathbb{R}^{p}, g: \Theta \rightarrow \mathbb{R}^{\prime}$ is differentiable and conditions $1^{p-3^{p}}$ are satisfied, then, for any estimate t,

$$
R_{t}(\theta):=E_{\theta}(t(s)-g(\theta))^{2} \geq \beta_{t}(\theta) I^{-1}(\theta) \beta_{t}^{\prime}(\theta)+\left[b_{t}(\theta)\right]^{2}
$$

where $b_{t}(\theta):=E_{\theta}(t)-g(\theta)$ and $\beta_{t}(\theta):=\operatorname{grad} E_{\theta}(t)=\operatorname{grad} g(\theta)+\operatorname{grad} b_{t}(\theta)$.
Proof. Let $\gamma(\delta)=E_{\delta}(t)$, so that $t \in U_{\gamma}$. Then

$$
R_{t}(\theta)=\operatorname{Var}_{\theta}(t)+\left[b_{t}(\theta)\right]^{2} \geq[\operatorname{grad} \gamma(\theta)] I^{-1}(\theta)[\operatorname{grad} \gamma(\theta)]^{\prime}
$$

by C-R bound.
This result is useful even in case $p=1-$ see, for example, the proof of the admissibility of $\hat{\theta}$ in Example 1(a) in Lehmann (1983, Theory of point estimation).

On the distance between θ and δ

Should one use the Euclidean distance d_{1} ? What is really of interest is the "distance" between $P_{\delta^{(1)}}$ and $P_{\delta^{(2)}}$ - given, say, by

$$
d_{2}\left(\delta^{(1)}, \delta^{(2)}\right)=\sup _{A \in \mathcal{A}}\left|P_{\delta^{(1)}}(A)-P_{\delta^{(2)}}(A)\right|=\frac{1}{2} \int_{S}\left|\ell\left(\delta^{(1)} \mid s\right)-\ell\left(\delta^{(2)} \mid s\right)\right| d s
$$

or

$$
d_{3}\left(\delta^{(1)}, \delta^{(2)}\right)=\int_{S}\left(\sqrt{\ell\left(\delta^{(1)} \mid s\right)}-\sqrt{\ell\left(\delta^{(2)} \mid s\right)}\right)^{2} d \mu(s)
$$

The distance d_{3} is used in E. J. G. Pitman (1979, Some basic theory of statistic inference). It is related to the Fisher information in the following way:

Suppose that we want to distiguish between $P_{\delta^{(1)}}$ and $P_{\delta^{(2)}}$ on the basis of s. Instead of a hypothesis-testing approach, let us choose a real-valued function $t(s)$. What is the difference between $\delta^{(1)}$ and $\delta^{(2)}$ on the basis of t ?

Regard t as an estimate of $g(\delta):=E_{\delta}(t)$. Then $\left|g\left(\delta^{(1)}\right)-g\left(\delta^{(2)}\right)\right|$ might be taken as a measure of the distance between $\delta^{(1)}$ and $\delta^{(2)}$ on the basis of t. It is, however, more plausible to use the standardized versions

$$
\frac{1}{\mathrm{SD}_{\delta^{(1)}}(t)}\left|g\left(\delta^{(1)}\right)-g\left(\delta^{(2)}\right)\right| \quad \text { and } \quad \frac{1}{\mathrm{SD}_{\delta^{(2)}}(t)}\left|g\left(\delta^{(1)}\right)-g\left(\delta^{(2)}\right)\right|,
$$

especially if t is approximately normally distributed.
Now choose and fix $\theta \in \Theta$ and restrict δ to a small neighborhood of θ. Then $\operatorname{Var}_{\delta}(t) \approx \operatorname{Var}_{\theta}(t)$, and hence the distance (between $\delta^{(1)}$ and $\delta^{(2)}$, on the basis of t) is approximately

$$
\frac{\left|g\left(\delta^{(1)}\right)-g\left(\delta^{(2)}\right)\right|}{\sqrt{\operatorname{Var}_{\theta}(t)}}=: d_{t, \theta}\left(\delta^{(1)}, \delta^{(2)}\right) .
$$

Since the distance should be "intrinsic", we should maximize it with respect to t. First, we maximize $d_{t, \theta}$ with respect to t with the expectation function g fixed to get

$$
\frac{\left|g\left(\delta^{(1)}\right)-g\left(\delta^{(2)}\right)\right|}{\sqrt{(\operatorname{grad} g(\theta)) I^{-1}(\theta)(\operatorname{grad} g(\theta))^{\prime}}} .
$$

With $\delta^{(1)} \rightarrow \theta$ and $\delta^{(2)} \rightarrow \theta$, this is approximately

$$
\frac{\left|\left(\delta^{(1)}-\delta^{(2)}\right)[\operatorname{grad} g(\theta)]^{\prime}\right|}{\sqrt{(\operatorname{grad} g(\theta)) I^{-1}(\theta)(\operatorname{grad} g(\theta))^{\prime}}}
$$

Next, maximize the square of this with respect to $h(\theta)=\operatorname{grad} g(\theta)$, which then leads to the squared distance

$$
D_{\theta}^{2}\left(\delta^{(1)}, \delta^{(2)}\right)=\left(\delta^{(2)}-\delta^{(1)}\right) I(\theta)\left(\delta^{(2)}-\delta^{(1)}\right)^{\prime}
$$

The distance D_{θ} is called the local Fisher metric in the vicinity of θ. It is the distance between $P_{\delta^{(1)}}$ and $P_{\delta^{(2)}}$ as measured in standard units for a real-valued statistic of the form $g(\hat{\theta})$, where g is suitably chosen so that $\operatorname{grad} g(\theta)=\left(\delta^{(2)}-\right.$ $\left.\delta^{(1)}\right) I(\theta)$.
Example 1(a). Let $n=1, s \sim N\left(\theta, \sigma^{2}\right)$ and $\theta \in \Theta=(-\infty, \infty)$, where σ^{2} is a fixed known quantity. Then $I(\theta)=1 / \sigma^{2}$ for all θ,

$$
D_{\theta}^{2}\left(\delta^{(2)}, \delta^{(1)}\right)=\frac{\left(\delta^{(2)}-\delta^{(1)}\right)^{2}}{\sigma^{2}}
$$

and

$$
D=\frac{\left|\delta^{(2)}-\delta^{(1)}\right|}{\sigma}=\left|\frac{\text { mean of } P_{\delta^{(1)}}-\text { mean of } P_{\delta^{(2)}}}{\text { common SD }}\right| .
$$

If $n>1$ and $s=\left(X_{1}, \ldots, X_{n}\right)$ with the X_{i} iid, then

$$
D_{\theta}\left(\delta^{(1)}, \delta^{(2)}\right)=\sqrt{n}\left|\frac{\delta^{(2)}-\delta^{(1)}}{\sigma}\right|
$$

For fixed $\theta \in \mathbb{R}^{p}, D_{\theta}$ is the metric derived from the inner product

$$
(u \mid v)_{*}:=\sum_{i, j} u_{i} I_{i j}(\theta) v_{j}=u I(\theta) v^{\prime},
$$

which has been used before. Exercise (informal): Look at D_{θ} in Example 3, $N\left(\theta_{1}, \theta_{2}\right)$. Example 4. $Y \in \mathbb{R}^{k}$ has the $N_{k}(\theta, \Sigma)$ distribution and density

$$
\ell(\theta \mid y)=\frac{1}{(2 \pi)^{k / 2}|\Sigma|^{k / 2}} e^{-\frac{1}{2}(y-\theta) \Sigma^{-1}(y-\theta)^{\prime}}
$$

with respect to Lebesgue measure. With this density, θ and Σ are respectively the mean and covariance matrices of Y. Show that $I(\theta)=\Sigma^{-1}$ for all θ and hence $D_{\theta}^{2}\left(\delta^{(2)}, \delta^{(1)}\right)$ is the fixed square distance $\left(\delta^{(2)}-\delta^{(1)}\right) \Sigma^{-1}\left(\delta^{(2)}-\delta^{(1)}\right)$.

Lecture 24

Note. A sufficient condition for 13^{p} - i.e., the equality $I(\theta)=-\left\{E_{\theta}\left(L_{i j}(\theta \mid s)\right)\right\}$ - is that, given any $\theta \in \Theta$, we may find an $\varepsilon=\varepsilon(\theta)>0$ such that

$$
\max \left\{\left|\ell_{i j}(\delta \mid s) / \ell(\delta \mid s)\right|:\left|\delta_{i}-\theta_{i}\right| \leq \varepsilon\right\},
$$

or at least

$$
\max \left\{\left|\ell_{i j}(\delta \mid s)\right|:\left|\delta_{i}-\theta_{i}\right| \leq \varepsilon\right\} / \ell(\theta \mid s),
$$

be P_{θ} integrable (for $i, j=1, \ldots, p$).

Note. The theory extends to estimation of vector-valued functions - for example, if $u(s)=\left(u_{1}(s), \ldots, u_{p}(s)\right)$ is an unbiased estimate of θ and $\operatorname{Var}_{\theta}\left(u_{i}\right)<+\infty$ for each $i=1, \ldots, p$ and $\theta \in \Theta$, then $\operatorname{Cov}_{\theta}(u)-I^{-1}(\theta)$ is positive semidefinite for each $\theta \in \Theta$.
Proof. Fix $a=\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{R}^{p}$ and define $g(\theta)=\sum_{i=1}^{p} a_{i} \theta_{i}=a \theta^{\prime}$. Then $t(s)=$ $a u^{\prime}(s)$ is an unbiased estimate of g. Since $\operatorname{grad} g(\theta)=a$, we have

$$
\operatorname{Var}_{\theta}(t)=a \operatorname{Cov}_{\theta}(u) a^{\prime} \geq a I^{-1}(\theta) a^{\prime}
$$

so that ($a \in \mathbb{R}^{p}$ having been arbitrary) $\operatorname{Cov}_{\theta}(u)-I^{-1}(\theta)$ is positive semidefinite.
Definition. $\left(S, \mathcal{A}, P_{\theta}\right), \theta \in \Theta \subseteq \mathbb{R}^{p}$ is a (p-parameter) EXPONENTIAL FAMILY with statistic $T=\left(T_{1}, \ldots, T_{p}\right): S \rightarrow \mathbb{R}^{p}$ if $d P_{\theta}(s)=\ell(\theta \mid s) d \mu(s)$, where

$$
\ell(\theta \mid s)=C(s) e^{B_{1}(\theta) T_{1}(s)+\cdots+B_{p}(\theta) T_{p}(s)+A(\theta)}
$$

The family is non-degenerate at a particular $\theta \in \Theta$ if

$$
\left\{\left(B_{1}(\delta)-B_{1}(\theta), \ldots, B_{p}(\delta)-B_{p}(\theta)\right): \delta \in \Theta\right\}
$$

contains a neighborhood of $0=(0, \ldots, 0)$.
We assume non-degeneracy at each $\theta \in \Theta$.
Exercise: Check that Example 1(a) is a non-degenerate exponential family with $p=1$, with $T_{1}=\bar{X}$ if $\Theta=\mathbb{R}^{1}$; Example 2(a) is a non-degenerate exponential family with $p=1, T_{1}=\bar{X}$ and $\Theta=(0,1)$; Example 2(b) is a non-degenerate exponential family with $p=1, T_{1}=N$ and $\Theta=(0,1)$; Example 3 is a two-parameter nondegenerate exponential family with $T_{1}=\sum X_{i}, T_{2}=\sum X_{i}^{2}$ and

$$
\Theta=\{(\mu, \tau):-\infty<\mu<+\infty \text { and } 0<\tau<+\infty\}
$$

and Example 4 is a k-parameter exponential family with $T=\sum y_{i}=\left(T_{1}, \ldots, T_{k}\right)$.
15^{p}. a. For each $\theta \in \Theta, W_{\theta}$ is the space of all Borel functions of $T=\left(T_{1}, \ldots, T_{p}\right)$ which are in V_{θ}.
b. $C=\bigcap_{\theta \in \Theta} W_{\theta}$ is the class of all UMVUE - i.e., the class of all Borel functions of T which are in $L^{2}\left(P_{\theta}\right)$ for all $\theta \in \Theta$.
c. For any g such that U_{g} is non-empty, there exists an essentially unique estimate $\tilde{t}=\tilde{t}(T) \in C \cap U_{g}$.
d. $\tilde{t}=E_{\theta}(t \mid T)$ for all $t \in U_{g}$ and $\theta \in \Theta$.
e. For all $A \subseteq S, E_{\theta}\left(I_{A} \mid T\right)=P_{\theta}(A \mid T)$ (essentially) is the same for each $\theta \in \Theta$, i.e., T is a sufficient statistic.
f. T is a complete statistic.

Proof.
a. Choose $\theta \in \Theta$ and write $\xi_{i}=B_{i}(\delta)-B_{i}(\theta)$. Then

$$
\Omega_{\delta, \theta}=e^{\sum_{i=1}^{p} \xi_{i} T_{i}(s)-K_{\theta}\left(\xi_{1}, \ldots, \xi_{p}\right)},
$$

where $K_{\theta}\left(\xi_{1}, \ldots, \xi_{p}\right)=\log E_{\theta}\left(e^{\sum \xi_{i} T_{i}(s)}\right)$ is the cumulant generating function of T at $\left(\xi_{1}, \ldots, \xi_{p}\right)$ under P_{θ}. Non-degeneracy means that

$$
K_{\theta}\left(\xi_{1}, \ldots, \xi_{p}\right)<+\infty
$$

for $\left(\xi_{1}, \ldots, \xi_{p}\right)$ in a neighborhood of 0 , and hence W_{θ} contains all functions $e^{\sum \xi_{i} T_{i}}$ for $\left(\xi_{1}, \ldots, \xi_{p}\right)$ in a neighborhood of 0 . By differentiation, we find that W_{θ} contains all polynomials in T_{1}, \ldots, T_{p}, so W_{θ} contains all Borel functions of T which belong to V_{θ}.
On the other hand, since each $\Omega_{\delta, \theta}$ is a Borel function of T, every function in W_{θ} is such; so (a) is proved.
b. This follows from (a) and (9).
c. This follows from (a) and (8).
d. This follows from (a) and (8) and the fact that, if W is the space of all functions of T, projection to W is the conditional expectation given T.
e. This follows from (c) and (d) by letting $g(\theta)=P_{\theta}(A)$.
f. Suppose $E_{\theta} h=0$ and $E_{\theta} h^{2}<+\infty$ for all $\theta \in \Theta$. Then $h(T)$ is the UMVUE of $g(\theta)=0$; but 0 is an unbiased estimate of this g, so $\operatorname{Var}_{\theta} h=0$ for all $\theta \in \Theta$ and hence $P_{\theta}(h=0)=1$ for all $\theta \in \Theta$.

