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Abstract

Consider a locally asymptotically normal semiparametric model with a
real parameter ϋ and a possibly infinite-dimensional parameter F. We are
interested in estimating a real-valued functional a(F). If ά# estimates a(F)
for known $, and ϋ estimates #, then the plug-in estimator ά^ estimates
a(F) if ϋ is unknown. We show that ά^ is asymptotically linear and regular
if ά# and $ are, and calculate the influence function and the asymptotic
variance of ά^. If a(F) can be estimated adaptively with respect to #, then
ά^ is efficient if ά# is efficient. If a(F) cannot be estimated adaptively, then
for ά^ to be efficient, ΰ must also be efficient. We illustrate the results with
stochastic process models, in particular with time series models, and discuss
extensions of the results.

Key Words: Empirical estimator, asymptotically linear estimator, influ-
ence function, regular estimator, Markov chain model, nonlinear regres-
sion, residual distribution, nonlinear autoregression, innovation distribution,
stochastic equicontinuity, stochastic differentiability.

1 Introduction

Let Vn = {PnϋF : ^ G Θ,F G 7 } denote a sequence of semiparametric
models, with θ one-dimensional and T a possibly infinite-dimensional set.
We are interested in estimating a real-valued functional a(F). For each ϋ
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let ά# be an estimator for a(F) when ΰ is known, and let ΰ be an estimator
for #. The plug-in estimator for a(F) is ά^, obtained by substituting ΰ for
ΰ in ά#.

In Section 2 we introduce a semiparametric version of local asymptotic
normality, and a concept of asymptotically linear estimators for function-
als on such models. This concept requires embedding the semiparametric
model into a "nonparametric" supermodel which is to some extent arbi-
trary, although for specific types of stochastic models there usually is a nat-
ural choice. We recall two results which are essentially known, at least for
i.i.d. models and Markov chain models. The first characterizes regular esti-
mators among asymptotically linear ones; the second characterizes efficient
estimators.

In Section 3 we show that ά^ is asymptotically linear if ά# and ϋ are,
and calculate the influence function of ά^.

In Section 4 we assume that both ά# and ϋ are asymptotically linear
and regular, and show that then ά^ is also regular. The characterization
of regular estimators then allows comparison of the asymptotic variance of
the plug-in estimator with the minimal asymptotic variance. In particular,
if a(F) can in principle be estimated adaptively with respect to #, i.e., if
knowledge of ΰ does not contain information about a(F)j then ά^ is efficient
whenever ά# is efficient for known ϋ. lΐa(F) cannot be estimated adaptively
with respect to #, then both ά# and ΰ must be efficient for ά^ to be efficient.
For i.i.d. observations and estimators of the form ά# = a(F$), these results
are due to Klaassen and Putter (1999).

Sections 5 and 6 contain applications to models with i.i.d. observations
and to Markov chain models, respectively. The discussion is heuristic in
these two sections. Some extensions of the results are outlined in Section 7.

2 Characterizing Regular and Efficient Estimators

In this section we recall briefly characterizations of regular and of efficient
estimators of real-valued functional in semiparametric models. For the i.i.d.
case we refer to Bickel, Klaassen, Ritov and Wellner (1998), Chapter 3 and in
particular Section 3.4. For Markov chains see Wefelmeyer (1999); for general
models and counting process models see Andersen, Borgan, Gill and Keiding
(1993, Chapter VIII); for general parametric models see Le Cam and Yang
(1990).

We will embed the semiparametric model in a "nonparametric" super-
model. The reason is that we want a sufficiently rich class of "asymptotically
linear" estimators, and asymptotic linearity will be defined in terms of statis-
tics approximating local likelihood ratios; see below.

For n G N let Vn denote a collection of probability measures on some
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measurable space (Ωn, Tn). Fix a sequence Pn in Vn and assume that the
model is locally asymptotically normal at Pn in the following sense. There
is a linear space H with inner product (h,hf) and corresponding norm ||/ι||,
there is a sequence of random linear functionals Sn on H, and for each h E H
there are perturbations Pnh of Pn within Vn such that

\\h\\ + oPn{l), (2.1)

under P n , (2.2)

with N denoting a standard normal random variable. The linear space H
may be interpreted as (approximate) tangent space oίVn at Pn.

Now consider a sequence of semiparametric submodels Vn — {PnϋF '•
^ G Θ J F G ^ 7 } o f ? n , with θ one-dimensional and T an arbitrary, possibly
infinite-dimensional set. We fix ΰ and F and consider perturbations ϋnu =
ϋ + n~1/2u of ϋ and Fnυ of F, with v in some linear space V. In general,
the appropriate rate may be different from n" 1/ 2, but it will be n" 1 / 2 in our
applications, which is why we have taken it to be n~ιl2 here. We assume
that (2.1) and (2.2) hold at Pn = Pn#F5 and that the semiparametric model
is locally asymptotically normal in the following sense. There are an element
m in H and a linear operator D : V ->• H such that for Pnuυ = PnϋnuFnv *

log ^ = Sn(um + Dv) - I | |um + Dt;||2 + oPnϋF{l).

Prom (2.2),

Sn(um + -Dv) => ||i4m + 2?v||JV under Pn#F

The tangent space of the semiparametric model is

H=[m] + DV,

with [m] denoting the linear span of m. The one-dimensional space [m] is
the tangent space for known F, obtained by perturbing ΰ. The space DV is
the tangent space for known #, obtained by perturbing F. We assume that
DV is closed, and that m does not belong to DV. We may think of m as
the score function for ΰ.

Let α(#, F) be a real-valued functional. It is called differentiable at (#, F)
with gradient g Ίΐ g £ H and

n1 / 2(α(τ?n ί z,Fn v) - α(tf,F)) -> {g,um + Dv) for u G Λ, v € V. (2.3)

The canonical gradient g is the projection of g onto if; it is therefore of the
form ΰm + Dv.
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An estimator ά is called asymptotically linear for α(#, F) with influence
function bifbeH and

n1/2(ά-a(ϋ,F)) = Sn(b) + oPnΰF(l). (2.4)

An estimator ά is called regular for α(#, F) with ZzYm£ L if L is a random
variable such that

nι/2(ά - a(βnu, Fnv)) => L under P n m ; for all u G # , Ϊ; G V. (2.5)

The convolution theorem of Hajek (1970) says that

L = \\g\\N + M in distribution,

with M independent of N. This justifies calling a regular estimator a efficient
for a(ΰ,F) if it is asymptotically normal with variance ||ff||2,

nιl2{a - α(0, F)) =• \\g\\N under P n i 9 F .

We have the following two characterizations:

(1) An asymptotically linear estimator is regular for α(i?,F) if and only if
its influence function is a gradient of α(??,F).

(2) A regular estimator is efficient for α(#, F) if and only if it is asymptoti-
cally linear with influence function equal to the canonical gradient of a(ΰ,F).

Now it becomes clear why we have introduced the "nonparametric"
model. If we restrict attention to the semiparametric model, then there
is only one gradient, the canonical one, and all regular and asymptotically
linear estimators are asymptotically equivalent. In the examples of Sections
5 and 6 we will need to consider estimators whose influence functions are
non-canonical gradients. The concept of asymptotically linear estimators is
arbitrary in that it depends on the choice of "nonparametric" model; see
Wefelmeyer (1991).

3 Asymptotic Linearity of Plug-in Estimators

Consider the problem of estimating a real-valued functional a(F) in the
semiparametric model Vn = {PnΰF '• ΰ Eθ,F G T}. Fix ϋ and F. Suppose
that for each τ near ΰ we have an asymptotically linear estimator aT of α(F),
with influence function 6T. We assume that asymptotic linearity holds locally
uniformly in shrinking neighborhoods of 7?,

sup |n1/2(ai?n]ί _ a(F)) - Sn(bκJ\ = o P n , ,( l), (3.1)
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and that Sn(bΰnu) is stochastically differentiable at u = 0,

sup \Sn(bΰnJ - Sn(b#) + (m,bϋ)u\ = oPnΰF(l). (3.2)

Now let ϋ be asymptotically linear for ΰ, with influence function c,

By conditions (3.1) and (3.2), the plug-in estimator ά^ fulfills

= Sn(b^) + oPnΰF(l)

= Sn(bΰ - (m,b#)c)+oPnϋF(l).

This means that ά^ is asymptotically linear for a(F) with influence function

b = b#-{m,bΰ)c (3.3)

If (m, &#) = 0, then we can relax the assumption that ϋ is asymptotically
linear to n1/2-consistency and still get that the plug-in estimator is asymp-
totically linear, now with influence function 6 = &#.

Asymptotic linearity (3.3) of the plug-in estimator also follows if we
replace conditions (3.1) and (3.2) by a non-uniform version of (3.1),

- a(F)) = Sn(b#) + o P n , F ( l ) , (3.4)

and an expansion of ά^,

n1/2(^ ~ &*) = - K bϋ)nι'2φ -ΰ) + oPnΰF(1). (3.5)

An application is Example 3 in Section 6.

Remark 1. (Plug-in and sample splitting.) Our requirements (3.1) and

(3.2) are stronger than the following conditions. For every bounded sequence

= Sn(bΰnun) + oP τ ι,F(l), (3.6)

Sn(b*nun) - Sn(b») = -un(mM + oPnΰF(l). (3.7)

Property (3.7) appears quite frequently in the literature. It has been been

verified by Drost, Klaassen and Werker (1997), Jeganathan (1995), Koul

and Schick (1997) and Kreiss (1987) for some time series models. A simple

sufficient condition for (3.7) is given in Schick (2000) in the context of i.i.d.

observations.
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It was shown by Klaassen and Putter (1999) in the context of i.i.d. ob-
servations that under these weaker conditions one can use sample splitting
techniques to construct a modified version of the plug-in estimator with
influence function b as in (3.3). Their construction can be generalized to
stationary and ergodic Markov chains using the sample splitting techniques
developed in Schick (2001). But this will not be pursued here.

Remark 2. (Stochastic differentiability.) We will check stochastic differ-
entiability (3.2) for specific types of processes in Sections 5 and 6, using
stochastic equicontinuity of empirical processes. Here we indicate that (3.2)
also follows from a locally uniform version of local asymptotic normality.
Compare the proof of Theorem 6.2 in Bickel (1982). Since F is fixed in
(3.2), we will omit it from the notation. Fix ϋ and set τ = ϋnu = ldΛ-n~ι'2u.
Assume that the parametric family {Pn<β : ΰ G Θ} is locally asymptotically
normal at #,

log - ^ = uSnΰ(m) - -u2\\m\\l + oPnΰ(l).

Assume also that for τ near ϋ there is a tangent space Hτ such that for each
bτ £ Hτ we have local asymptotic normality at r,

l o g % ^ = Snτ(bτ) - hbT\\2

T + oPnr(l).

Then
1 2 1 2 2

2 2

If bτ is continuous at r = ΰ in an appropriate sense, PUτbτ will be approx-
imately equal to Pnϋ,um+bϋ (For a more explicit argument it would be
convenient if the sequence of "nonparametric" supermodels Vn were indexed
by an infinite-dimensional parameter; see LeCam (1986, Chapter 11) and
Greenwood and Wefelmeyer (1991, Section 4).) Hence

log dPnτb- = log- dpn*,™+*>*
g dPnΰ ° g dPnϋ

= Sn4um + bΰ)--\\um + bΰ\\l + oPnϋ(l). (3.9)

If both Snτ and || | | τ are continuous at r = ϋ in an appropriate sense, we
obtain from (3.8) and (3.9):

= oP n i 9(l).

Stochastic differentiability (3.2) requires that the supremum over |ιt| < Δ is
stochastically negligible. For this, we need a corresponding strong version
of local asymptotic normality, as introduced in Fabian and Hannan (1985,
Section 9.1).
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4 Efficient and Adaptive Plug-in Estimators

We continue the discussion of plug-in estimators under additional assump-
tions. As in Section 3, let a(F) be a real-valued functional of F. Fix # and
F. For r near ϋ let άτ be a locally uniformly asymptotically linear estimator
of a(F) in the sense of (3.1), and let ΰ be an asymptotically linear estimator
of ΰ. Now assume, in addition, that a(F) is differentiate (2.3) at (ΰ,F),
that ά# is regular at (#,F) for known ΰ, and that ϋ is regular at (ΰ,F).
Then we can decompose the canonical gradient of a(F) and the influence
function of the plug-in estimator ά^ as follows.

Let cp denote the canonical gradient of ϋ when F is known. It is of the
form CF = tm with t determined by

-ΰ) = u = {tm, um),

i.e., t = | |m||~2 and

cF = \\m\\~2m.

The squared length | |m||2 of m may be called the Fisher information for ϋ
when F is known.

Let Dvm be the projection of m onto DV. When ϋ is unknown, the
canonical gradient of ϋ is characterized by three properties. It is in H =
[m] + DV, orthogonal to DV, and its projection onto [m] is cp Hence it is
of the form c = t(m — Dvm) , with t determined by (c — ϋp,m) = 0, i.e.,
t = (m — Dvm, m)~ι = ||m — Dvm\\~2. Hence the canonical gradient of ΰ is

c=\\m-Dvm\\-2(m-Dvm).

The squared length \\m — Dvm\\2 of m — Dvm is the Fisher information for
ΰ.

Let g# denote the canonical gradient of a(F) when ϋ is known. The
canonical gradient ~g of a(F) for unknown ΰ is characterized by three prop-
erties. It is in H — [m] + DV, orthogonal to m, and its projection onto DV
is gϋ. Hence g — g# is of the form tc, with t determined by (m,p) = 0, i.e.,
t = -(m,g#), i.e.,

g = gΰ-{m,g#)c. (4.1)

Since ϋ is regular for ϋ, we obtain from characterization (1) of Section 2

that the influence function of ϋ is a gradient of ΰ, say c. Hence

(4.2)

Since ά# is regular for a(F) when ϋ is known, we obtain from characterization

(1) of Section 2 that the influence function of ά# is a gradient of a(F) for

known ΰ, say g#. Hence

(4.3)
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From (3.3) we obtain that the plug-in estimator ά^ is asymptotically linear

for a(F), with influence function

9 = 9ΰ -(m,g#)c. (4.4)

Prom (4.1) and (4.4) we obtain

9 -9" = 9ΰ -9# - (m,g# - g#)c - {m,gϋ)(c - c). (4.5)

It follows from (ra, c) = 1 and relations (4.2) and (4.3) that g-g is orthogonal
to Ή. Hence g is a gradient. Characterization (1) of Section 2 now implies
that the plug-in estimator ά^ is regular.

Since g — g and c — c are orthogonal to if, the asymptotic variance of
the plug-in estimator ά^ is

-\\m - Dυm\\-2{m,gΰ - gΰ)
2 - 2(c - c,gϋ - S#)(m,3#

If ά# is efficient for a(F) when i? is known, and ΰ is efficient for i?, then

9ΰ — 3i9 a n d c = c. Hence g — ~g by (4.5), and the plug-in estimator ά^ is

efficient for a(F). By (4.1), its asymptotic variance is

llsll2 = ll^ll2 + \\m - Dvm\\-2(m,gϋ)
2. (4.7)

If ά^ is efficient for a(F) when ΰ is known, then by (4.5) the influence

function of the plug-in estimator ά^ is

g = g-(m,gΰ){c-c), (4.8)

and by (4.6) the asymptotic variance of α^ is

2 2 2 (4.9)

If ϋ is efficient for #, then by (4.5) the influence function of the plug-in
estimator ά^ is

9 = 9 + 9ϋ -9ϋ ~ {™>,9ϋ ~ g#)c, (4.10)

and by (4.6) the asymptotic variance of ά^ is

llίll2 + \\g* - VoW2 ~ \\m - Dvm\\-2(m,gϋ - gϋf. (4.11)

We say that a(F) can be estimated adaptively with respect to ΰ if the
asymptotic variance bound for a(F) is not decreased by knowing ΰ. This is
the case if and only if Ίj = ~gϋ. By (4.1), this is equivalent to ( m , ^ ) = 0.
Then ~g does not depend on c. Hence the plug-in estimator ά$ is efficient
whenever ά# is efficient for known #, and the asymptotic variance is | |g#| | 2.

We say that F can be estimated adaptively with respect to ϋ if for every
differentiable functional a(F) the asymptotic variance bound for a(F) is not
decreased by knowing ΰ. This is equivalent to orthogonality of m and DV.
Then ϋ can also be estimated adaptively with respect to F , and c = cp =

2
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5 The i.i.d. Case

If we have i.i.d. observations ΛΊ,... ,Xn, then a natural candidate for the
"nonparametric" model of Section 2 is the usual nonparametric model, with
completely unknown distribution Q(dx) of X{. (Larger nonparametric mod-
els are obtained by allowing the observations to be dependent.) Fix Q. Set
Qh = J h(x)Q{dx) and

H = L2fl(Q) = {he L2(Q) : Qh = 0}.

For h E H set

The approximation is meant in the sense of Hellinger differentiability. The
joint law of X L , . . . , Xn is Pn = Qn. We have local asymptotic normality:

(Qhψ2N,

with N standard normal. This is (2.1) and (2.2) with

V , (h,ti) = Q(hti).

Remark 3. (Stochastic differentiability.) In the stochastic differentiability
condition (3.2), the parameter F is fixed, and we may omit it. Let {Q$ :
ϋ G Θ} be a parametric family of distributions of X{. For r near ϋ let
bτ G ̂ 2,o(Qr) Stochastic differentiability (3.2) follows if bτ is differentiate
at r = ϋ in an appropriate sense. By Taylor expansion,

sup =*P»«U)
H < Δ '

From QT6T = 0 we obtain by taking the derivative under the integral,

(5.2)

with nriΰ = dτ=#dQτ/dQΰ the score function for ϋ. Relations (5.1) and
(5.2) imply stochastic differentiability (3.2). A proof for fixed bounded se-
quences u = un is in Schick (2000). For (5.2) it is essential that Qτbτ = 0,
in other words, that bτ is in the nonparametric tangent space, i.e., that

n-i/2 γj}=ι bτ(Xi) is a statistic which approximates a local likelihood.
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For stochastic differentiability (3.2) to hold, the function b# need not be

differentiable. For r near ϋ consider the empirical process

If the collection of functions 6r, r near #, fulfills an appropriate bracketing

condition, then vnτ is stochastically equicontinuous at r = ϋ\ For each ε, η >

0 there is δ > 0 such that

limsupPn#( sup \vnτ -vnϋ\>η) < ε.

Such a result was first proved by Daniels (1961) and Huber (1967) to obtain

asymptotic normality of the maximum likelihood estimator under weak con-

ditions on the score function; for a general version see Pollard (1985). For

T = ΰnu we obtain

sup

= O P n , ( l ) . (5.3)

From QTbT = 0 we obtain

= Qΰbτ-Qτbτ = ~(τ -

(5.4)

Relations (5.3) and (5.4) imply stochastic differentiability (3.2).

Example 1. (Nonlinear regression.) Let (Xi, YΊ),..., (Xn, Yn) be pairs of
real observations with

The εi are i.i.d. with density f(y) which has mean zero and finite variance
but is unknown otherwise. The X{ are independent and independent of the
Si and have unknown distribution function G(y). The pair (Xi,Yi) plays
the role of Xι in the general setting. The model is semiparametric. The
distribution of (Xi, Yι) is

Q»fG(dx,dy) = dG{x)f(y - r(β,x))dy.

Fix 7?, / and G. We introduce perturbations

fnz(y) =

dGnw{x) = dG{x){\+n-ιl2w(x)).
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The density fnz must integrate to one and have mean zero, so z runs through

Z = {zβ L2(f) : Jz(y)f(y)dy = 0, J yz(y)f(y)dy = 0}.

The function Gnw must be a distribution function, so w runs through

L2fl{G) = {we L2(G) : j w{x)dG(x) = 0}.

The perturbed distribution of (X^Yi) is

Qnuzw(dx,dy) = Q#nufnzGnw(dxidy) = dGnw{x)fnz{y - r(ϋnu,x))dy

= QϋfG{dx, dy) (l + n-1'2 (ur(0, x)i{y - r(0, *))

where r(ϋ,x) is the derivative of r(ΰ,x) with respect to #, and ^(y) =
—f'{y)lf{y) is the score function for location of the error distribution. Hence
the tangent space H of the nonlinear regression model consists of functions

h{x, y) = ur(ϋ, x)i(y - r(tf, x)) + z(y - r(tf, x)) + tι (a ).

It is therefore of the form ~H = [m] + DV of Section 2, with V = Zx L2,o(G),

m(z,y) = r(i9, x)^(y - r(tf, a:)), Dv(a:, y) = z(y - r(ΰ, x)) + w(x).

Note that by taking the derivative under the integral,

E(ε£(ε)) = Ix£(x)f{x)dx = - ί xf'(x)dx = 1. (5.5)

Note also that w(x) is orthogonal to both m(x, y) and z(y — r(ΰ, #)), so that
both ϋ and / are adaptive with respect to G.

We want to estimate the expectation

= Jk(y)f(y)dy

of an /-square-integrable function k under the error distribution. The usual
estimator is the empirical estimator based on the estimated errors,

n

with ii = Yi—r(ΰ, Xi). A natural estimator of?? is the least squares estimator
i?, which solves
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The least squares estimator is asymptotically linear with influence function

c(x,y) = (Er(ϋ,X)2)-ιr(ΰ,x)(y-r(ϋ,x)).

We have (m,c) = Er{ϋ,X)2 by (5.5), and c J_ DV since Jyz(y)f{y)dy = 0

for z G Z. Hence c is a gradient of ΰ. The empirical estimator of a(f) =

Ek(ε) based on true innovations is

Its influence function is

For v = (z,w) G Z x I/2,o(G) we have

n^WA.) - α(/)) -> £(*(φ(e)) = (», Dυ).

Hence g$ is a gradient of α(/) when Ί9 is known. It fulfills

Hence by Remark 3, an appropriate bracketing condition on the collection
of functions bτ(x,y) = k(y — TX) — Ek(ε) implies stochastic differentiability
(3.2) of the form

sup Σ
M < Δ i=ι

uEr(4,X)E(l(ε)k(ε))\=oPa,/G(l).

It follows from (3.3) that the plug-in estimator ά^ is asymptotically linear
for a(f) with influence function

9 = 9ϋ-{m,gϋ)c

- k(ε) -Ek(ε) -Er(ΰ,X)E(ί(ε)k(ε))(Er(ΰ,X)2)-1r(ΰ,x)ε.

Efficient estimators for ΰ are constructed in Schick (1993). The canonical
gradient ~g and an efficient estimator for Ek{ε) are in Mύller and Wefelmeyer
(2000a).
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6 Markov Chain Models

Let XQ, . . . , Xn be observations from a homogeneous and uniformly ergodic
Markov chain with transition distribution Q(x)dy) and invariant law π(dx).
Assume for simplicity that the chain is stationary. The natural "nonpara-
metric" model of Section 2 is described by the collection of all such transition
distributions. Fix Q. Set Qxh = f Q(x,dy)h(x,y) and

H = {he L2(π ® Q) : Qxh = 0}.

For h e H set

Qnh(x,dy) = Q(x,dy)(l + rΓ

The approximation is meant in the sense of Hellinger differentiability for
Markov chains. The joint law oϊ X$,... ,Xn is

Pn{dx0, . ,dxn) = π(dxo)Q{xo,dx\) Q(xn-Udxn).

We have local asymptotic normality:

i = ι

with N standard normal. This is (2.1) and (2.2) with

Sn(h) = n" 1 / 2 Σ h{Xi-UXi), (Λ, ti) = π ® Q(hti).
2 = 1

Remark 4. (Stochastic differentiability.) The arguments of Remark 3
translate to stochastic process models. Stochastic equicontinuity for Markov
chains was obtained by Ogata (1980) in connection with asymptotic nor-
mality of maximum likelihood estimators. Results for general discrete-time
stochastic processes are in Andrews (1994) and Andrews and Pollard (1994).
Let {Q$ : ϋ G Θ} be a parametric family of transition distributions of X{.
For r near ϋ let bτ be π r ® Qr-square-integrable with f Qr(x,dy)bT(y) = 0
for all x. The score function for ϋ is
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If the functions bτ fulfill an appropriate bracketing condition for r near #,
we have stochastic differentiability (3.2) of the form

sup
H < Δ

Example 2. (Nonlinear autoregression.) The observations XQ, ... ,Xn are
real with

The ε; are i.i.d. with density f(x) which has mean zero and finite variance but
is unknown otherwise. Conditions for uniform ergodicity are in Bhattacharya
and Lee (1995) and An and Huang (1996). The model is semiparametric,
with transition distribution

(x, dy) = f(y - r(0, x))dy.

Fix ϋ and /. We introduce perturbations

ϋnu = ϋ + n-ι'2u,

fnv(x) = f(x){l + n-ι'2v{x)).

As in the regression example, Example 1, the function v runs through

V = {υ e L2(f) : ίv{x)f(x)dx = θjxv(x)f(x)dx = 0}.

The perturbed transition distribution is

= fnυ(y - r{ϋnu,x))dy

x, dy) (l + n-1'2(ur{ϋ,χ)l(y - r(0, x)) + υ(y - r(ΰ,

where r(ϋ,x) is the derivative of r(ϋ,x) with respect to ϋ, and i(x) =
—f'(x)/f(x) is the score function for location of the innovation distribution.
Hence the tangent space H of the nonlinear autoregressive model consists of
functions

h{x,y) = ur(ϋ, x)i(y - r(0, x)) + v{y - r(0, x)).

It is therefore of the form H = [m] + DV of Section 2, with

m(z, y) = r(ΰ, x)i(y - r(ΰ, x)), Dυ(x, y) = v(y - r(#, x)).
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We want to estimate the expectation

= Jk(x)f(x)dx

of an /-square-integrable function k under the innovation distribution. The
usual estimator is the empirical estimator based on the estimated innova-
tions,

ά= - ]
n <

with έi = Xi — r(ϋ,Xi-\). A natural estimator of ΰ is the least squares
estimator #, which solves

The least squares estimator is asymptotically linear with influence function

We have (ra,c) = Er(ΰ,X)2 by (5.5), and c J_ DV since Jxv(x)f(x)dx = 0
for v € V. Hence c is a gradient of ΰ. The empirical estimator of α(/) =
Ek(ε) based on true innovations is

1 ^

Its influence function is

9ϋfa y) = k(y - ^ ) - Ek(ε).

We have

n1/2(α(/™) - α(/)) -> B(fc(e)t;(ε)) = (g*,Dv) for t; G V.

Hence g$ is a gradient of a(f) when i9 is known. It fulfills

" (m,gϋ) = Er(ϋ,X)E(ί(e)k(ε)).

By Remark 4, an appropriate bracketing condition on the functions

bτ(x, y) = k(y - rx) - Ek(ε)

implies stochastic differentiability (6.1). It follows from (3.3) that the plug-in
estimator ά^ is asymptotically linear for a(f) with influence function

9 = gϋ-{rn,g$)c

= jfc(ε) - Ek{ε) - Er{ϋ,X)E{i{ε)k{ε))(Er{ΰ,X)2)-ιr{ϋ,x)ε.
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Efficient estimators for ϋ are constructed in Drost, Klaassen and Werker
(1997) and Koul and Schick (1997). The canonical gradient g and an efficient
estimator for Ek(ε) is in Schick and Wefelmeyer (2000).

Example 3. (Heteroscedastic linear autoregression.) The observations
Xo5 , X n are real with

The Si are independent and, for simplicity, standard normal. Conditions for
uniform ergodicity and efficient estimators for ϋ are in Maercker (1997) and
Schick (1999). The model is semiparametric, with transition distribution

1 /υ — ϋx

where φ is the standard normal density. Fix ϋ and 5. Introduce perturba-
tions

tfmi = 0 + n~1 / 2u, snυ{x) = s(x)(l + n-l'2v{x)).

The function υ runs through V = ^ ( Z ) , where / is the stationary density.
The perturbed transition distribution is

Qnuv(x,dy) = QΰnuSnv{
χ,dy) = —-7-τy( y

G (T\

= Qϋs{x,dy)(l + n-1/2{um{x,y) + Dv(x,y))),

with

Since the normal distribution is symmetric, m and DV are orthogonal, and
s can be estimated adaptively with respect to ΰ.

Suppose we want to estimate the functional

a(s) = / s(x)2dx.
Jo

For all u E R and v EV we have

n1/2(a(snυ) - a(s)) -> 2 / s(x)2v(x)dx = (Dva,Dυ + um)
Jo

with va = l[0)i]S2//. Hence a(s) is differentiate at (i?,s), with canonical
gradient

— ϋx\^ \
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Assume first that ΰ is known. Then we can estimate a(s) by

l

/ h(x)
Jo

where

Here wn(x) = c~ιw(c~ιx), where w is a continuously differentiable sym-
metric density with compact support [—1,1], and cn is a bandwidth of order
n " 1 / 3 . We show that a$ is asymptotically linear with influence function Dva.
We do so under the assumption that 5 is twice continuously differentiable.
Write

(Xi - ΰXi^)2 = β(Xi-i)2(ε? - 1) + s(X - i ) 2 .

Expand s(Xi_i) around s(x) to obtain

, x Γ1A(x) + 2s(x)8'{x)f1(x) 2

aϋ - a(s) = / j — dx
Jo fo{x)

where

A(X) = -
ToTo . Λ

1=1

i=\

The assumptions imply that / is twice continuously differentiable. Hence

we obtain uniformly for x G [0,1],

EA{x)2 = O(n-ιc-1) = O(n

E(fo(x) - /(z))2 = 0{n-χc-1 + c4

n) = O(n"2/3),

E(fι(x) - cnf'(x))2 = Oin-'c-1 + ci) = O(n-2/3).

We can also show that sup o < x <i |/o(#) — / ( # ) | converges to zero in proba-

bility. From this and the facfthat / is bounded away from zero on [0,1], we

can conclude that

άΰ - a{s) = I -jγ^dx + 0Pnΰs (cn).

Now write



230 MULLER, SCHICK AND WEFELMEYER

with
1In(y) = Jo j^wn(y-x)dx.

It is easy to check that In converges in L,2(f) to the indicator of [0,1].
Combining the above lets us conclude that α# has influence function Dυa.

Suppose now that ϋ is unknown. Let ϋ be a n1/2-consistent estimator
of ΰ. We prove that the plug-in estimator ά^ is efficient. We have already
shown above that ά$ fulfills (3.4) with b$ = Dva. By the argument of Section
3, it remains to show (3.5). Since (m,Dva) = 0 by adaptivity, (3.5) reduces
to asymptotic equivalence of ά^ and ά#, i.e., nl/2(a$ — ά#) = opnϋs(l). To
prove this, we note first that

~^/o fo(x)

where

B{x) = -Ys{Xi-ι):
nϊΞ{

Since /0 B(x)/fo(x)dx converges to zero in probability, we obtain the desired
result.

7 Extensions

1. We have assumed ϋ and a(F) to be one-dimensional. Extension to finite-
dimensional a(F) is straightforward; infinite-dimensional a(F) require ad-
ditional technicalities. In nonlinear regression, Example 1, we may, e.g.,
be interested in estimating the error distribution function F, defined by
F(t) — P(ε < t). For linear regression we refer to Klaassen and Putter
(1999). Extension to finite-dimensional ϋ is also straightforward. We note
that it may happen that a(F) is adaptive with respect to certain components
of ί? only. For efficiency of ά^, efficient estimators are required only for the
non-adaptive components of ΰ. Extensions of nonlinear regression, Example
1, are treated in Mύller and Wefelmeyer (2000a). Extensions of nonlinear
autoregression, Example 2, are treated in Schick and Wefelmeyer (2000).

2. We have restricted attention to functionals a(F) of F only. The
results may be extended to functionals α(i9, F) which depend also on ΰ. An
interesting application is estimation of invariant distributions of time series,
for example in linear autoregression Xι = ΰXi-ι + E{. Since Y^LxWej is
distributed as the invariant law, we can write the expectation of a function
k under the invariant law as

Ek{X) = Ek(Σΰj

εj) = a(ΰ,F),
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where F is the invariant distribution function. Hence Ek(X) can be esti-
mated by a von Mises statistic or a [/-statistic based on estimated innova-
tions; see Schick and Wefelmeyer (2001).

3. The results extend from semiparametric models {PnϋF : t f 6 θ , F E
J7} to parametric families {Vn>β : ϋ G θ} of nonparametric models. This
is of interest when we start from a nonparametric model Vn and impose a
restriction which depends on an unknown parameter, say r#(Pn) = 0, leading
to

Vn* = {Pn r#(Pn) = 0}.

For example, let XQ, . . . , Xn be observations from a Markov chain with tran-
sition distribution fulfilling /Q(x,dy)y = r{ϋ,x) for some ϋ. This is the-
nonlinear autoregressive model X{ = r($,Xi_i) + ε̂ , where the ε% are mar-
tingale increments, not i.i.d. as in Example 2. For estimators of ϋ see We-
felmeyer (1994), (1996), (1997a), (1997b); for estimators of the stationary
law see Schick and Wefelmeyer (1999). The model may be written as a
semiparametric model by introducing transition distributions F(x,dy) with
/ F(x, dy)y = 0 and writing

Q{x,dy)=F{x,dy-r(ΰJx)).

This is, however, technically inconvenient because we perturb ΰ and would
need differentiability of F.

Another example are i.i.d. observations (-XΊ, YΊ),..., ( I n , Yn) with joint
law fulfilling the constraint E(a(X, Y, ΰ)\X) = 0, where α(X, Y, ϋ) is a given
function. For plug-in estimators in such models see Mύller and Wefelmeyer
(2000b). A special case is a{X,Y,ϋ) = Y - r(tf,X), i.e., Y{ = r(ϋ,Xi) + εu

which differs from Example 1 in that we do not assume Z{ and X{ to be
independent.
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