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Abstract

For n = 1,..., 7i, let xni,i = 1,..., n, be points in a compact subset
in Sftd,d > 1, at which observations Yn{ are taken. It is assumed that
these observations have the structure Yni = g(xni) + εni> where g is
a real-valued unknown function, and the errors (eni, ^nn) coincide
with the segment (£χ,... ,fn) of a strictly stationary sequence of ran-
dom variables ξi, &»— F° r each x G 5Rd, the function g(x) is estimated
by gn(x]Xn) = i2?=iwni(x\xn)Yni, where xn = (xnli... ,xn n) and
Wnϊ( ; •) are weight functions. Under suitable conditions on the under-
lying stochastic process £1,62, and the weights wni( ; •), it is shown
that the estimate gn(x\Xn) is asymptotically unbiased, and consistent
in quadratic mean. By adding the assumption of (positive or nega-
tive) association of the sequence £i,&» • •> it is shown that ρn(^;^n),
properly normalized, is also asymptotically normal.

Key words and phrases: Fixed design regression, stationarity, weights,
fixed design regression estimate, asymptotic unbiasedness, consistency in
quadratic mean, association, asymptotic normality.

1 Introduction

For each natural number n, consider the design points xni, % = 1,... ,n in

Sβd, d > 1, which, through a real-valued (Borel) function g defined on $ϊd,

produce observations Ym, subject to errors εni, 1 < i < n. That is,

Yni = g(xni) + εni, l<i<n. (1.1)

It is eventually assumed that, for each n, (εnχ,... ,ε n n ) is equal in distri-

bution to (£i,. . . ,ξ n )ί where {£n}, n > 1, is a (strictly) stationary and

(positively or negatively) associated (see Definition 1.1) sequence of random

variables (r.v.s). The problem we are faced with here is that of estimating
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the function g in terms of the YniS and xniS, and establishing optimal prop-

erties for the proposed estimate. Following established tradition in this line

of work, for each x G 5Rd, the contemplated estimate is gn(x\ xn) given by

gn{x;xn) = ^2wni(x;xn)Ynii (1.2)
2 = 1

where xn = (xnι,... ,£nn), and wni( ), 1 < i < n, are suitable weight
functions. It will be shown that, under appropriate regularity conditions,
the proposed estimate is asymptotically unbiased, consistent in quadratic
mean, and asymptotically normal.

Properties of this nature and for specific choices of the weight functions
were established by Priestly and Chao (1972), and Gasser and Mύller (1979).
This problem was also investigated by Georgiev and Greblicki (1986) and
Georgiev (1988). In all of these cases, the errors εUu i = l , . . . 5 n , were
assumed to be independent identically distributed (i.i.d.). When indepen-
dence is replaced by strong mixing, the above cited results were established
in Roussas (1989) and Roussas et al. (1992). In the present contribution,
independence is suppressed again and is replaced by association. For a brief
review on the significance of the concept of association, some of its appli-
cations, and a summary of some (statistical) results under association, the
interested reader is referred to the review paper Roussas (1999). Relevant
are also the papers of Cai and Roussas (1999 a,b). Important results on some
limit theorems for dependent r.v.s, and, in particular, negatively dependent
r.v.s may be found in Bozorgnia et al. (1996), Patterson and Taylor (1997),
Taylor and Patterson (1997), and Taylor et al. (1999a,b).

The paper is organized as follows. Asymptotic unbiasedness and consis-
tency in quadratic mean are established in Section 2 after suitable assump-
tions are spelled out. Asymptotic mormality is proved in Section 3 along
with a number of auxiliary results. Assumptions under which these results
hold are also stated in this same section, and they are followed by some
comments.

This section is concluded with the definition of association.

Definition 1.1. For a finite index set 7, the r.v.s {Xi\ i G /} are said to be

positively associated (PA), if for any real-valued coordinatewise increasing

functions G and H defined on SR7,

Cσυ[G{Xuiεr),H(XJ9j εη]>0,

provided EG2(Xi,i G I) < oo,£H2(XjJ G J) < oo. These r.v.s are said to
be negatively associated (NA), if for any nonempty and disjoint subsets A
and B of /, and any coordinatewise increasing functions G and H with G :
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5ft and # : 5ftβ -> 5ft with SG2(Xi,i e A) < oo,SH2(XjJ E ΰ ) < o o ,

i,z e A),H(XjJ e B)] < 0.

If / is not finite, the r.v.s {Xi\i G /} are said to be PA or NA, if any finite
subcollection is a set of PA or NA r.v.s, respectively.

Finally, it is mentioned at the outset that all limits are taken as n —> oo
unless otherwise stated, and C stands for a generic (positive) constant.

2 Asymptotic Unbiasedness and Consistency in Quadratic
Mean

Assumptions (A)

(Al) For a compact subset S of 5ftrf, the function g : S —> 5? is continuous.

(A2) For 1 < i < n and n > 1, the errors εniS have expectation 0.

For each x G S and with xn = (xnχ,... ,x n n ) ϊ^m € 3?d, i = 1, . . . ,n, the
weights wni(x]xn) are 0 for i > n, and satisfy the following requirements
for 1 < i < n:

(A3) ΣΊ-i \wni{x\ xn)\ < S, n > 1, for a positive constant B.

(A4) Σ?=ikfe«n)hl .

(A5) For any c> 0, £ " = 1 |^ n ί (a;;x n ) |/ ( | | X n ._ ; r | | > c ) (a;) -> 0,

where || || is any one of the familiar norms in 3?d.

All results in this paper hold for all x G 3id and with xn as defined above.

Theorem 2.1 (asymptotic unbiasedness). Under assumptions (Al) - (A5),

£gn{x',xn) ->g(χ)

Proof. Writing gn(x) and wni(x) instead oί gn(x\xn) and wni(x;xn), re-
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spectively, we have

n

Sgn(x) - g(x) I =:| ^2wni{x)g{xni) - g{x) \
2 = 1

n

7/j ίr^ II niΎ \ — n(τ\

I Wnι\?) II 9^mJ 9VXJ I i(||xni-^||<c)^>'
i= l

For every ε > 0 and sufficiently small c = c(ε), consider those xnjS for
which || ίr î — re | |< c. Then | g(xni) — g{%) |< ε, and therefore | g{xni) —
g(x) I /(||χni-χ||<c)(^) < ε Thus, for all sufficiently large n, (2.1) yields
I £gn(x) — g(x) ϊ< 2Cε + εC + εC = 4εC, where C is a suitable bounding
constant. This completes the proof. •

Before the formulation of the second main result, assumptions (A) are
augmented as follows.

Assumptions (B)

(Bl) For each n > 1, (ε n i , . . . , εnn) is equal in distribution to (ξi,..., ξn),
where {ξn}5 n > 1, is a (strictly) stationary sequence of r.v.s, £ξf = σ2 < oo,

(B2) For each x G 3id and x n as above,

{\wni(x] xn)\ 1 < i < n} -> 0.

Theorem 2.2 (consistency in quadratic mean). Under assumptions (Al) -
(A5) and (Bl) - (B2),

ε[gn(x;xn)-g{x)]2->0.

Proof. For further notational simplification, write just wni instead of
v>ni{x) — Wmθz;#n), and recall that wn = max{\wni\; 1 < i < n}. Then, by
assumptions (A3) and (B2),

(2.2)
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Next,

£ [9n(x) - 9(x)]2 = ε [gn(x) - εgn{x)}2 + [£gn(x) - g(x)]2 ,

and the second term on the right-hand side above tends to 0, under assump-
tions (Al) - (A5), by Theorem 2.1. So, it suffices to show that Var(gn(x)) ->>
0. To this end,

Var(gn(x)) = Var Σ ) [ ^2

wli£εli
i=\

wniwnjS {εniεnj)

jS {εniεnj). (2.3)

Since the first term on the right-hand side of (2.3) tends to 0 by (2.2), it
suffices to show that

By assumption (Bl),

jZ (εniεnj)

0.

iξj)

n—\

t = l

n - l

2 = 1

•\Cσo(ξltξn-i+ι)\]

(by stationarity)

n—1 n— i

t = l s . i = l
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by assumptions (A3), (Bl) and (B2). •

Remark 2.1. At this point, it is to be observed that Theorems 2.1 - 2.2 were

established without reference to association. The property of association is

used only in Theorem 3.1, stated and proved in Section 3.

3 Asymptotic Normality

Introduce the following notation by suppressing the argument z. Set

Zni = σ~ιwniεni, equal in distribution to σ~ιwniii, Ί , .
σl =Var(gn>) = v a r t ^ r ι β M ,CΛ ϊ (όΛ)

Also, for m = 1,..., fc, let

Jm ={(m

and define ynm, y'nm and y^ by:

ynm = Σ Zni, y'nm = Σ Znj, y l = Σ Z^ ( 3 3)
ielm jeJm l=k(p+q)+l

and let

y'nm, K = V'n (3-4)
ra=l m=l

We wish to show that

Sn Λ ΛΓ(0,1), where Sn = σ-\gn - Sgn). (3.5)

Clearly,

Sn = Tn+T'n+Tl (3.6)

and (3.5) will be established by showing that

Tn Λ JV(0,1), (3.7)

and

ε{τ n γ + ε(τχf -> o. (3.8)
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These assertions hold true under the set of assumptions stated below.
Although some of the assumptions spelled out below coincide with as-

sumptions previously made, we choose to gather all of them here for easy
reference.

Assumptions (C)

(Cl) The sequence {£n}5 n > 1, is (either positively or negatively) associated
and (strictly) stationary.

(C2) Sξx = 0, S\ξι\2+δ < oo for some δ > 0, and Σ ^ |Coυ(fi>£j+i)l < °°

(C3) For 1 < i < n and n > 1, (ε n i, . . . ,εnr ι) is equal in distribution to

(fl,---,ίn).

With wn = max{\wni(x\ # n ) | , 1 < i < n}, it is assumed that:

(C4) (i) wn = 0{n-1).

(ii) wn = O(σ^), where σ\ = σ\{x) = Var(gn(x;xn)).

Let p = Pn and q = qn be positive integers with q < p < n and tending
to oo, as n —> oo, and let k = kn be the largest integer for which
k(p + q) < n. Then select p and q as just described, and also to satisfy
the requirements:

(C5) (i) p = o{np), p = 2(ϊ^y (the same δ as in (C2)).

(ϋ) *?->!.

Comments on some assumptions

(a) The choice of p, q, and fcasθ<g<p<n, and tending to oo, and
k being the largest integer for which k(p + q) < n imply immediately
that * M -> 1 and J -> 0 (since J = ̂  ^ ) .

(b) $ - M implies f ->• 0 and J -»• 0 (since ^ψ± = & + f and both

*ίH±ώ,$-> 1, and 2 = f - + 0 ) .
n

1 £±£

(c) If p = o(n) (which is implied by (C5)(i)), then fc -> oo (since £ =

5) -»° b y ( b))
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(d) Choices of p and q as described above and satisfying condition (C5)

are readily available. Indeed, for 0 < 62 < δ\ < p, take p ~ nδl and

q ~ nδ2 (where xn ~ yn means | ^ ->• 1). This choice of p is consistent

with (C5)(i) (since £ = ;£-• ^ 7 Γ "^ °) Furthermore, A; ~ n 1"* 1

(since ^ = ^ • & and k = ^ . ^ . . ^ which tends to

1). Therefore $ = ^ ^ ^ 1.

(e) That δ in assumptions (C2) and (C5)(i) must be the same stems from

the proof of Lemma 3.2(iii).

(f) Assumption (C4)(ii) is borrowed from Roussas et al.(2000) (see Re-

mark 2.1(ii), page 265).

Theorem 3.1. Under assumptions (Cl) - (C5), the convergence asserted
in (3.5) holds; that is,

where Sn is defined in (3.5), gn = gn{xm, xn) is given in (1.2), and σ\ = σ^(x)
= Var(gn).

The proof of the theorem follows by combining the two propositions
below. The propositions, as well as the three lemmas employed in this
section, hold under all or parts only of assumptions (Cl) - (C5). However,
these lesser assumptions will not be explicitly stated.

Proposition 3.1. The convergence asserted in (3.8) holds; that is,

ε{τ'nγ + ε{τ£γ -+ o,

where T'n and T% are given in (3.4).

Proposition 3.2. The convergence asserted in (3.7) holds; that is,

τnΛ;\r(o,i),

where Tn is given in (3.4).

Assuming for a moment that Propositions 3.1 and 3.2 have been estab-
lished, we have

Proof of Theorem 3.1. It follows from Propositions 3.1 - 3.2 and relation
(3.6). •

The following three lemmas will be required in various parts of the proofs
of Propositions 3.1 - 3.2.
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Lemma 3.1. Let ynm and yf

nm be defined by (3.3). Then:

(i)

KKr<k

and

(ϋ)

l<l<r<k " 3=q

where, it is recalled from assumption (B2) that, wn = max{\wni\] 1 < i < n},
and σ\ is given in (3.1).

Proof, (i) From the definition of the ynms, and with the 7ms as defined in
(3.2), it is clear that

Kl<r<k

Coυ(ynl,ynr)
Kl<r<k

COV

^ Σ YJYJ
i<ι<r<kieiιjeir

Ccro{ZnilZnj)

<ί Σ
where

A-= Σ
l<i<r

However, by stationarity of the

jeh

Σ

-«ΣΣ|

(3.9)

(3.10)

< (fe-l)p + (p - +
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... + \Cov(ξ1,ξ{p+q)+p)

(k - 2) [p|Coι;(ξi,ξ2(P+,)+i)| + (P - 1) +

( p -

)

Uk-l)[(p-l)\Cσv(ξ2,ξ(p+q)+1)\ + . . . +

(k - 2) [(p - l) |c< W (ξ 2 ,ξ 2 ( P + ρ ) + i) | +

2[(p-] •••+

+ (3-11)

where An\ and An2 stand for the first and second bracket in (3.11), respec-
tively.

However,

Anι < pk

i€/2 jeh

<pk
j=p+q+l
oo

<pk Σ \Cσv(ξi,ξj+i) (3.12)

and
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P+Q
An2<pk\

2(p+9)

Coυ(ξ1,ξj+1)\+ £ \Cσυ(ξuξj+1)
j=2{p+q)-(p-l)

(fc-2)(p+g)

Σ + Σ

p+qI J=Q
I

J=(P+Q)+Q

(k-2){p+q)

Σ
j=(k-3)(p+q)+q

Cσv{ξuξj+1) Cσυ{ζuξj+1)\
j=(k-2)(p+q)+q

(3.13)

Relations (3.11) - (3.13) imply that An < 2pk Y^Lq\Coυ(ξuξj+ι)l so that
(3.9) and (3.10) yield

Coυ(ynl,ynr)
\<l<r<k

which is what part(i) asserts.

(ii) It follows as in part (i) upon replacing the ynms by the y'nπβ.

Corollary 3.1. It holds:

Λ<l<r<k Cov(ynhynr) -+ 0, and (ii) 0.

Proof, (i) The right-hand side of the expression in Lemma 3.1(i) is written
as: ( 5 ) ( $ ) K ) ΣT=q \Cov(ξuξj+ι)l and this is bounded by: CY%Lq
\Coυ(ξι,ξj+ι)\, on account of assumptions (C4)(ii), (C5)(ii) and (C4)(i).
However, this last expression tends to 0 by assumption (C2).

(ii) Likewise, the right-hand side of the expression in Lemma 3.1(ii) is written

^: ( ? ) ( ί ) K ) ΣT=P \Cσv(ξi,ξj+i)\ ̂  0 as in part (i). •
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We may now proceed with the proof of Proposition 3.1.

Proof of Proposition 3.1. First,

m=l m=l

and

Var{y'nm) = Var I ] Γ Zni I =

σ2qwl

σ2qw2

n

+

so that, by assumptions (C4)(ii),

k

KKr<k

< c ^ ,

Var{y'nm) < C^qk = C (&) (nwn) -+ 0;
m=l

y^) , (3.14)

(3.15)

this is so because nwn = 0(1) and ^ ->• 0, which is implied by ^ ->• 1 (see
Comment (b) after Assumptions (C)). Relations (3.14) - (3.15) and Corollary
3.1(ii) show that S{T'n)

2 -> 0.

Next,

2 = Var

i=k(p+q)+l

Cov{ZnUZnj)\, (3.16)
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and

Var{Zni) <

i=k(p+q) + l

2 2 / \ 2

= σ-^rV ( 1 + - ) < C^-p (since - -^ 0, by (Comment(b))
σn \ P/ σn P

< Cwnp = C- -> 0 (by (C4)(i) and (C5)(i)). (3.17)
n

Thus, relation (3.17) implies that

Var(Zni) -+ 0.

Finally,

i=k(p+q)+l

Cov(ZnUZnj)

(3.18)

2 n-k(p+q)-l

= 5 Σ {l"-

< C*ή-(p + q) = C^fp (1 + ^ < C ^ P (by Comment (b))

< c?- -+ 0 (by (3.17)).
n

(3.19)

Relations (3.16) - (3.19) show that £(T%)2 -> 0. The proof of the proposition
is completed. •
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For the formulation of the second lemma, introduce the following no-

tation. Let Ynm, m = l,...,fc be independent r.v.s with Ynm having the

distribution of ynm, set si = Σm=iVar(Ynm), and let Xnm = ^ with

distribution function Fnm, m = 1,..., k. Then the r.v.s Xnm, rn — 1,..., k

are independent with 8Xnm = 0 and Σm=i Var(Xnm) = 1. Finally, for

ε > 0, set

*2dFnm(x). (3-20)

Then we have

Lemma 3.2. Let Tn and gn(ε) be given by (3.4) and (3.20), respectively,

and recall that si = Σ,k

m=ι Var(Ynm).

Then:

(i) εTl -> 1, (ii) si -> 1, and (iii) gn{ε) -+ 0.

Proof, (i) From (3.5), £5;; = 1, whereas from (3.6),

= εs2

n + ε{τ'n + τχ)2 - 2ε [sn{τ'n + rj)]

= l + ε{τ'n + τχ)2 - 2ε [sn(τ^ + τ;')].

But by Proposition 3.1,

εHr^ + TZ)2 < εHTtf + εHTZ)2 -> o, (3.21)

and

< (εϊsήεh (τ'n + τή2 = ε\ (τ n + τή2 -+ o (by (3.21)).

Thus,

(ii) Prom (3.4) again,

ετl -41.

J ] Cov(ynl,ynr)
m=l m=l

) , (3.22)
Kl<r<k
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and Σι<ι<r<kCov(ynι,ynr) -* 0 by Corollary 3.1(i). Then relation (3.22)
and part(i) yield s^ —> 1.

(iii) We have

J x2dFnm(x) = ε [x2

nml{\Xnm\ > ε) ] = s~2ε [y2

nml (\ynm\ > εsn) ]

< s~2£s \ynm\2s P1* (\ynm\ > εsn) (where s, t > 1 with - + - = 1 )
s t

\2s

< s~2ε~s \yn

2s (ε~2ss-- 2 s ε \yn
\2s \Vn

125

(3.23)

At this point, take s = ^ and t = ^ , so that 2s = 2 + δ = v, and ^ = δ.
Then (3.23) becomes

[ x2dFnm(x) <\-\t
J(\x\>ε) ε sn

\Vn

However, by assumption (Bl)

ε \ynm\ =ε y zni < ε > \zni\ < -±t
ieim \ieim /

and

so that

(3.24)

i (3.25)

i=i \ii\Y<Pvε\iι\v, and therefore, by (3.24) - (3.25),

/ x2dFnm(x)<(^ε\ξA^.
J(\x\>ε) \ ε J σnsnl(\x\>ε)

Hence, with C = e~ιε \ ξι \u,

However,

(3.26)

(3 27)
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by assumption (C4)(ii), part(ii) of the present lemma and assumption (C5)(ii),
and

7*=εlΫwniξA =σ2γw2

ni + 2 Y
i = l

, ξj)

so that

= Cnw*,
i=\

^ < (3.28)

Then, by (3.26) - (3.28), and assumption (C4(i)),

< C
n2

(3.29)

However, the right-hand side in (3.29) tends to 0 on account of the choice of

p in assumption (C5)(i); namely, p — o(n2<-1+s'>) or p1+δ = o{nϊ). The proof
of the lemma is completed. •

Lemma 3.3. With the ynms denned by (3.3) and for any t € R, it holds

m = l

(3.30)

Proof. Clearly,
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m = l

H Σ J/nm
£e m=l _

k-1

It Σ !/n
e m=l

m=l

«*
ife-i

Σ Σ
m=l _ ^ e m=l

1/nm

k-1

it Σ ynn
k-1Σ

m = l _

m=l

it
k-1 k-l
Σ ynrn

£e m=l -

m = l

and, by a repetition of the argument, inequality (3.30) becomes

it Σ ynrn γ Ύ

β m=l _ II ,
m = l

k-1

it Σ 2
g τn=l

fc-2
it Σ 2M

At this point, use relations (3.1) and (3.3) to define the functions

fm{xu i € Im) = elt(Tn ΣieinVniXi ? m = i 5 . . . 5 fc?

and observe that, for each i G / m , farfm(χii i ^ Λn) ^ |^σn 1 ^ i

It follows that, for each i E / m , m = 1,. . . , i, and I = 1, . . . , fc,

(3.31)

^ 7 11/m(^<,ie/m)
1 m = l

(3.32)
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Therefore, applying Lemma 1 in Bulinski(1996) to each one of the terms on
the right-hand side of (3.31), we obtain by way of (3.32)

it Σ Vnm

m=l 71 jeh leh

-4- > 7 \UθV

jG(/l+/2)^/3

+•••+ Σ

By utilizing stationarity of the &s and repeating the arguments used in
relations (4.3) - (4.5) in Roussas(2000), inequality (3.33) becomes

m = l

j=q

0,

{ζuξj)\

(3.34)

by assumptions (C4), (C5)(ii) and (C2). The proof of the lemma is com-
pleted. •

Proof of Proposition 3.2. Lemma 3.2(ii) implies that Σm=i Ynmd^N(0,1)
by the Feller-Lindeberg Criterion (see, for example, Loeve (1963), page
280). This fact along with (3.34) yield the result Σm=i ynmd^N(0,1) or
Tnd^N(0,1), as the proposition asserts. •
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