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In a missing data problem we observe the result of a (known) many-to-one mapping of an
unobservable 'complete' dataset. The aim is to estimate some parameter of the distribution
of the complete data. In this situation, the stochastic version of the EM algorithm is
sometimes a viable option. It is an iterative algorithm that produces an ergodic Markov
chain on the parameter space. The stochastic EM (StEM) estimator is then a sample from
the equilibrium distribution of this chain. Recently, a method called 'coupling from the
past' was invented to generate a Markov chain in equilibrium. We investigate when this
method can be used for a StEM chain and give examples where this is indeed possible.
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1 Stochastic EM

The objective of this paper is to combine two algorithms: the stochastic
EM (StEM) algorithm and perfect sampling through coupling from the past
(CFTP). In the present section we describe the former and in the next sec-
tion the latter algorithm. In the third section we combine the two and
give examples. Finally, we present a brief review of two relevant concepts:
stochastic and realizable monotonicity.

Consider the following estimation problem. Suppose that X is dis-
tributed according to a probability measure PQ0. Suppose we can observe
only the result of a many-to-one mapping Y = Y(X). The goal is to estimate
θo from observing Y = y. The parameter 0Q is assumed to be in some general
set Θ. This setup is sometimes called a missing data problem. Often the so-
called EM algorithm (Dempster, Laird and Rubin (1977)) provides a method
to find the maximum likelihood estimator of #o There are two drawbacks.
The first is that it is not known how many iteration steps are needed to
come close enough to convergence. The other is that sometimes the E-step,
computation of the conditional expectation of the likelihood given the data,
is not possible.

In this latter case, the stochastic version of the EM algorithm (StEM)
(Celeux and Diebolt (1986), Wei and Tanner (1990)) may be a viable alter-
native. For a review and large sample results see Nielsen (2000). The algo-
rithm works as follows. Suppose that we can sample from the conditional
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distribution, under any given 0, of the complete data given the observed
data. Suppose also that the complete data maximum likelihood estimator is
readily computable: ΘMLE = M(X). Now,

1. Fix a 0(0) in Θ

2. Sample X{ί) from Pθ(o)( \Y = y)

3. Set 0(1) = M(X(1))

4. Sample X{2) from P*(i)(.|F = y)

5. Set 0(2) = M{X(2))

6. ...

By iterating this procedure, we obtain a sequence 0(0), 0(1), 0(2), If
steps 2,4,... are carried out using independent standard uniform random
variables, the sequence θ(t) is a time homogeneous Markov chain. Under
certain conditions which are investigated in Nielsen (2000) it is ergodic. If
so, the algorithm converges in that the 0(ί) converge in distribution to a
random variable, say 0, which is distributed according to the stationary
distribution of the Markov chain. Then 0 is the StEM estimate. In other
words, a StEM estimate is a sample (or an average of samples) from the
stationary distribution of the StEM Markov chain.

The drawbacks of stochastic EM and ordinary EM are different but sim-
ilar. First of all it may be difficult, time-consuming or impossible to sample
from the conditional distribution of the complete data given the observed
data. Also, it is not clear in general for how long we should run the StEM
chain to allow it to reach equilibrium. In this paper, however, we note that
in some cases we can use a device known as coupling from the past (CFTP)
(Propp and Wilson, 1996) to obtain a sample that is guaranteed to come
from the stationary distribution of the StEM chain. In the next section we
briefly explain CFTP.

2 Perfect Simulation

Consider an ergodic (i.e. irreducible and aperiodic) Markov chain X(t) on a
state space S and suppose we want to simulate its equilibrium distribution.
Starting the chain from an arbitrary state and then running it for a very long,
but finite time will generally not ensure that samples are from the stationary
distribution. Recently, Propp and Wilson (1996) devised a method called
coupling from the past, to produce perfect or exact samples in finite time.
We closely follow Kendall and Thόnnes (1999) to explain how it works.

For now, let us assume that the state space S is finite. A Markov chain
X(t) on 5 can be described by means of i.i.d. 'transition maps' Ht : S —>• S
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(t = 1,2,...). A realization of such a transition map specifies for each state
i G S in which the chain might be at time t — 1 where the chain will jump
to at time t. If pij are the transition probabilities of the Markov chain to
move from i to j then the common distribution of the Ht should be such
that P{Ht(ϊ) = j) = pij. Prom the transition maps Ht the Markov chain
X(t) is obtained by fixing X(0) at some Xo and setting

X(t) = Ht(X(t - 1)).

Coupling from the past now works as follows. We select a time —T < 0
in the past and simultaneously run chains starting from each state of 5 from
time —T to time 0. The chains are coupled by using the same realizations
of the transition maps for all of them. Hence it follows that if two chains
started at different states meet, they stay together. Now we check if all chains
have coalesced at time 0. If so, then the state at time 0 must be a sample
from the stationary distribution. This is understood as follows. Imagine
that at some time before — T we also started a chain from an initial state
selected according to the stationary distribution. This chain will remain in
equilibrium, so in particular its state at time 0 is distributed according to
the stationary distribution. However, we have arranged it so that all chains
started at time —T or earlier are in the same state at time 0, no matter
which state the were in at time —T.

If not all chains have met, then we run chains from time — 2T to time
0, making sure that we use the realizations of H-τ+i, #-τ+2> , HQ which
were obtained earlier. If the paths still have not coalesced, we run chains
from time — AT and so on.

If the state space S has more than just a few elements it will not be feasible
to run chains starting from all possible states.

Let us now consider finite, countable or even uncountable S. Suppose
that S admits a partial ordering ^, and that there are minimal and maximal
elements, 5 and s such that

s N̂ s •< s, for all s G S.

Also suppose that the Markov chain is 'monotone' in that it respects the
ordering in the sense that

Ht{s) ^ JΓt(β'), for all s ± sf.

In words, when two coupled chains are in comparable states, we insist that
their subsequent states remain comparable and in the same order.

In practice, we now only need to run chains from states s and s. If these
two have met at time zero, then any other coupled chain started at some
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intermediate state s (s ^ s ^ s) would have been at the same state at time
0. This follows directly from our assumption that the chain respects the
ordering.

It remains to verify in each application that the algorithm will almost
surely terminate in finite time. To ensure a useful algorithm the time until
termination should of course not be too long.

David Wilson's 'perfect simulation web page' at
http://dimacs.rutgers.edu/~dbwilson/exact.html/ provides a wealth
of up-to-date information about CFTP.

3 Perfect Stochastic EM

In this section we combine the ideas from the previous two sections. We use
the set-up and notation of section 1. Let us suppose that the parameter space
Θ admits a partial ordering -<. Fix an arbitrary time —T < 0 in the past.
Suppose that for t = -T + 1, - T + 2,..., 0 we can construct independent
collections of coupled random variables {Xe(t), 0 e Θ} such that

(1) Xθ(t) ~ PΘ(.\Y = y)

(2) 0 ^ 0 ' =• M(Xθ{t)) * M{Xv(t)) almost surely.

Recall that M(X) is the complete data maximum likelihood estimator. Be-
cause of (1) we can simulate StEM chains 0_T(-T), 0_ T (-T+1), . . . , 0-τ(O)
by fixing Θ(—T) at any 0 € Θ and setting subsequent θ(t) = M(X^(t_1)(ί)).
By requirement (2) it is ensured that if two coupled StEM chains are in
comparable states their order will always be respected. In other words, two
ordered coupled paths cannot cross.

Suppose that there are 'minimal' and 'maximal' elements 0 and 0 in Θ
such that 0 ^ 0 ^ 0 for all 0 G Θ. Consider two coupled StEM chains θ^τ(.)
and 0^τ(.) starting at time - T at θiτ(-T) = 0 and Θ^τ{-T) = 0. As we
explained in the preceding section it suffices to check if these two chains have
coalesced at time zero, i.e. if 0^T(O) = 0^T(O). If so, then we have a perfect
StEM estimate 0 = 0^T(O). If not we have to go back further in time as also
described in the previous section.

We now demonstrate the perfect stochastic EM algorithm in two exam-
ples. The first example is very simple, the second is more involved.

3.1 Example 1

Suppose X = (Xi,X2,-.-<)Xn) is a vector of i.i.d. samples from PQQ =
Exp(0o); the exponential distribution with intensity ΘQ (i.e. reciprocal of
the mean). We wish to estimate 0o G Θ = [0, oo), where 0 > 0. Fol-
lowing our second example we remark on this slightly peculiar choice of



Perfect Stochastic EM 611

parameter space. The complete data maximum likelihood estimator of 0o is

ΘMLE = M(X) = (n/ Σ Xi) V 0. Suppose we only observe

for some fixed positive constant C. Write Y{ = (Xi,Ai) for the observed
data. This is the classical right censoring problem. The maximum likelihood
estimator of 0o based on the observed data is known to be the 'occurrence'
divided by the 'exposure'

U~~\ *V0.

There is really no need to apply the StEM algorithm here. Also, we should
point out that application of the ordinary EM algorithm is straightforward
here. The purpose of this example is merely to explain how the perfect StEM
algorithm works.

We now describe how the ordinary StEM algorithm (without CFTP)
works here. When below we multiply vectors we mean coordinate-wise mul-
tiplication (mapping two vectors to one).

1. Fix 0(0) > 0

2. Sample X(l) from PΘ^Q)(X\Y = y). We accomplish this by setting
X(l) = X + Δ£7(l), where £7(1) = (£?i(l),... ,En(l)) and the £^(1)
are all i.i.d. with common distribution Exp(0(O)).

3. Set 0(1) = M(X(1)) = ^ j ^ y V 0

4. Sample X(2) from P$W(X\Y = y)

5. Set 0(2) = M{X{2))

6. ...

Repeating this procedure, we obtain an ergodic Markov chain 0(0), 0(1),...
Define 0 = M(X). Clearly, 0 is a natural upper bound for the parameter

space θ . If we choose 0(0) E [0,0] the subsequent states will remain in [0,0].
Of course 0 and 0 are minimal and maximal for [0, θ] with the usual ordering
onR.

Recall the usual ordering onR n : x < y if x\ < y\ and x<ι < y<χ... and
Xn < Vn Note that if x > y then M{x) < M(y). To apply CFTP we
need a collection {Xθ(t) : 0 6 [0,0], t = -T + 1, -T + 2,..., 0} such that
Xθ(t) ~ Pθ(X\Y = y) while 0 < 0' implies Xθ(t) > X#{t). This, in turn,
implies M(Xθ(t)) < M(Xy{t)).
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For t = —T + 1, — T + 2,... 0 and i = 1,2,..., n generate independent

E^iit) ~ Exp(0) and Ei(t) ~ Exp(0 - 0)

For all 0 E (0, 0] define

Now, JB^t) - Exp(0) and 0 < 0' implies Eθ,i(t) > J5^ ,*(«). Set Eθ{t) =
(EΘA(t),..., £*,„(«)) and note that 0 < 0' implies Eθ{t) > Eθ,{t). Define

It is easy to check that we have constructed a collection {Xe{t) : θ G
[0,5], ί = —T + 1, — T + 2,..., 0} meeting our requirements.

We can now run a 'lower' chain 0^ T (-T), 0 ^ T ( - T + 1 ) , . . . , 0^Γ(O) start-
ing at Θtτ(-T) = θ and an 'upper' chain 0^ T (-T), 0^ Γ (-T + 1 ) , . . . , 0^T(O)
starting at 0? Γ (-T) = 0. We check if 0^Γ(O) = 0^T(O). If not, we repeat
starting from — 2T.

We do still need to make sure that the algorithm will terminate in finite
time. It is enough to check that for some fixed - T the event 0^T(O) = 0^Γ(O)
has positive probability. Well, choosing T = 1

0 ) = X ί | έ ( 0 ) , Vi)

> P(Exp(0) < Exp(0 - Θ))n > 0.

3.2 Example 2

This concludes our first example. Our next example is more involved. We
know of no method to compute the maximum likelihood estimator or ap-
ply the EM algorithm. However, other stochastic approximations besides
(perfect) StEM are available. This example is based on joint work with
Marie-Colette van Lieshout and has appeared in more detail in van Zwet
(1999).

Let X be a homogeneous Poisson process with intensity λ > 0 on a non-
empty compact set S c S 2 , and B = B(0,1) the closed unit disc centered at
the origin. Then, writing A® B = {α + b : α € A, be 2?}, we may consider
the random set

The random set B{X) Π 5 is called the Boolean model of discs. The points
of X are called the germs and the associated discs are the grains.

From observing Y = B(X) Π S we want to estimate λ E (0, λ], where
λ < oo. As in the previous example the parameter space [0, λ] is slightly
peculiar. We briefly comment on this following the present example.
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We can think of the germs X as the complete data and the complete
data maximum likelihood estimator is M(X) = (n(X)/\S\) A λ, where n(X)
means the number of points of X and \S\ is the area of 5. As usual we write
Pχ( \Y) for the conditional distribution under λ of the complete data given
the observed data.

Since the grains are discs, the location of a germ is identified whenever a
part of its associated grain's boundary is exposed. Therefore, the conditional
distribution of X can be decomposed into a deterministic 'exposed boundary'
part Xb and a stochastic 'interior' X1 of germs that cannot be identified from
F. Indeed we write X = X{ U Xb. Define

C = Y\B(Xb)

V = {seS:(s®B)ΠSCY}.

In words, C is the part of Y which is not covered by exposed grains, and
must therefore be covered by the interior grains. The set V describes the
locations where interior points may fall such that their associated grains are
not outside of Y.

Note that a natural lower bound for the parameter is λ = (|C|/|i?| +
n(Xb))/\S\.

The conditional distribution given Y of the exposed boundary part Xb

is of course degenerate. It is not hard to show that, conditionally on F, X1

is distributed as a Poisson point process on V with intensity λ, conditioned
on coverage of C by the associated Boolean model B(Xι). The distribution
Pχ( \Y) is of course the convolution of the two. We note that P\(-\Y) involves
a normalizing constant which is intractable and hence maximum likelihood
estimation and the EM algorithm become impossible. In van Zwet (1999)
a method based on CFTP is presented to obtain a collection of samples
{Xx : λ E [λ,λ]} such that Xχ ~ P\( \Y) and λ < λ' implies Xχ C Xx,m

Hence we can apply StEM and even make it perfect.
We simulated a Boolean model on the unit square, with intensity 75 and

grains with radii 0.1 instead of 1. We chose λ = 100. Figure 1 shows a run of
the perfect StEM algorithm. Note that the chain is continued once a perfect
sample has been found, because averaging of the subsequent samples will
bring down the variance of the estimator. The figure is meant as an illustra-
tion only. Much more extensive simulations would be needed to determine
how fast the algorithm terminates and how the estimator performs.

This concludes our second example.
The natural parameter space (0, oo) of the first example was artificially

replaced by [0, oo) (0 > 0). We then found a natural upper bound θ < oo.
Similarly, in the the second example we introduced an artificial upper bound
λ < oo and found a natural lower bound λ > 0. The reason for introducing
the artificial bounds is of course the need for both maximal and minimal
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time

Figure 1. The upper and lower processes in the perfect stochastic EM algorithm, starting

at times -1,-2 and -4.

elements of the parameter space. In practice, one would probably compute
some pilot estimate of the parameter and then choose the artificial bound
such that one feels confident that they do not exclude the real parameter.

4 Realizable monotonicity

In this section we review work by Fill and Machida (2000) and Ross (1993).
The difficulty in making the StEM algorithm perfect lies in the construction
of collections of random variables with prescribed distributions to meet con-
dition (2). The work of Fill and Machida (2000) and of Ross (1993) makes
clear when such constructions are possible—at least in principle.

The concept of realizable monotonicity (Fill and Machida (2000)) is essen-
tially what is needed. Realizable monotonicity is closely related to stochastic
monotonicity, which is a more familiar concept and which is generally eas-
ier to check. Fill and Machida (2000) and Ross (1993) present conditions
under which stochastic monotonicity implies realizable monotonicity. The
work of Fill and Machida (2000) is motivated by the relevance of realizable
monotonicity for perfect sampling.

Recall that we have complete data X in some space E with distribution
PQ (θ £ (Θ, :<)). We observe only some function Y of X and we write
Qθ = PΘ( \Y). The complete data maximum likelihood estimator of θ is
given by a measurable function M from B to θ . Now suppose that E
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admits a partial ordering <E such that, for any X\,X2 E E

2 => M(X\) •< M ( x 2 )

To apply the perfect StEM algorithm we need to be able to construct a

collection {XQ, θ Eθ} such that

(3) Xθ ~ Qθ

(4) θ r< θ' => XQ <E Xθ', almost surely

We now review two notions of monotonicity for a collection {QQ , θ E θ}

of probability measures: realizable and stochastic monotonicity.

Definition 4.1 Consider two partially ordered spaces (Θ, -<) and (22, ^ # ) .

The collection {QΘ , θ E θ } is called realizable monotone if there exists a

collection of E-valued random variables {XQ , θ G θ } satisfying (3) and (4).

We now turn to stochastic monotonicity. A subset U of E is said to be an

up-set in (22, ̂ ) iί y E U whenever x E U and x -<E V- If Qi and Q2 are

probability measures on (ϋ7, f) then Qi is stochastically smaller than Q2 if

< Q2(f^) for all up-sets U in (£7, ̂ £ ) . We then write Qλ x f Q 2 .

Definition 4.2 TΛe collection {QQ , 0 G θ } is called stochastically mono-
tone if

θ^ff =*Q9^E Qθ', as.

It can be easily seen that realizable monotonicity implies stochastic mono-
tonicity. That the converse is not always true is demonstrated by means of
an example in Ross (1993). However, for various finite classes of (E,^E)>

Fill and Machida (2000) give conditions on finite index sets (Θ, ̂ ) such that
realizable and stochastic monotonicity are equivalent. For instance, we have
equivalence whenever (22, -<E) or (θ , -<) is a finite linearly ordered set (re-
call that a set is linearly ordered if each pair of elements is comparable).
This and other results for finite sets are all the more useful because of the
following unpublished result by Ross (1993).

Theorem 4.1 Suppose that (Θ, -<) is a partially ordered set and (E, -<E) is
a complete separable metric space with closed partial order. Then a collection
{Qθ, θ E Θ} of probability measures on E is realizably monotone if and only
if for every finite Φ C Θ {Qe, θ GΦ} is realizably monotone.

Thus, if for some separable set with a closed partial order the results of Fill

and Machida (2000) apply to check realizable monotonicity for all its finite

subsets then Ross's theorem allows us to conclude realizable monotonicity
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for the entire infinite set. It is quite surprising that the theorem holds even
for uncountable Θ.
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