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REACT estimators use ideas from signal processing, model-selection, and shrinkage to
achieve much smaller risk in one-way layouts and other linear models than does the clas-
sical least squares estimator. The REACT method can generate automatic scatterplot
smoothers that compete well on standard data sets with the best fits obtained by other
methods. This paper addresses two further questions: Which features in a REACT esti-
mator are not necessarily present in the true mean vector; and which features of the true
mean vector might have been smoothed out by the REACT estimator? We answer both
questions by constructing extremal members of a confidence set of asymptotic coverage
probability α that is centered at the REACT estimator. The methodology is demonstrated
on two data-sets from the smoothing literature.
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1 Introduction

Consider the Gaussian linear model in which the n x l response vector y has
a N(Xβ,σ2In) distribution, the regression parameters β and the variance
σ2 being both unknown. Suppose that the n x p regression matrix X has
full rank p < n. The least squares estimator of the mean η = E(y) = Xβ
is then TJLS — X{X'X)~ιX'y. Under normalized quadratic loss, the risk of
an estimator ή of η is p~1E|^ — η\2. This risk is precisely σ2 for the least
squares fit f]LS

Stein (1956) proved the inadmissibility of the least squares fit ηis to
the Gaussian linear model when dimension of the regression space exceeds
2. This defect in least squares becomes intuitively clear in special cases.
Consider the one-way layout with one observation per cell (e.g. a digitized
signal observed in white noise) or the two-way layout with one observation
per cell (e.g. a digitized image observed in white noise). In such examples,
the least squares estimator of the signal η is the raw data y. It is not

1 This research was supported in part by National Science Foundation Grant DMS95-
30492.
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surprising that electronic devices such as television sets do not rely on the
Gauss-Markov theorem to separate signal from noise.

REACT fits combine ideas from signal processing, model-selection and
shrinkage to accomplish superefficient estimation of η. The acronym itself
is a reminder of the steps in the methodology: Risk Estimation and Adap-
tation after Coordinate Transformation. The first step in REACT is to
devise an orthonormal regression basis for the linear model such that η can
be well-approximated by a linear combination of the first few orthonormal
basis vectors. It is then reasonable to consider candidate model-selection
or shrinkage estimators of η that concentrate on estimating the regression
coefficients of these important basis vectors, so as to take advantage of possi-
ble bias-variance trade-off. Finally, the candidate estimator that minimizes
estimated risk is the REACT estimator of 77.

Four decades of development in Statistics preceded REACT fits. James
and Stein (1961) and Stein (1966) pioneered shrinkage improvements over
least squares estimators. Mallows (1973) examined the use of CL as a cri-
terion for model-selection, noting that minimum CL misleads if the class of
candidate estimators is too large. Model-selection is a particular form of
variable shrinkage. Scenarios in which minimum CL succeeds in minimiz-
ing asymptotic risk over a class of candidate estimators were isolated by Li
(1987), Kneip (1994), Beran and Dύmbgen (1998). The role of the basis
emerged tacitly in Stein's (1966) treatment of multiple shrinkage estimators
and in Pinsker's (1980) asymptotic minimax analysis of trend estimation
in Gaussian noise. Donoho and Johnstone (1994, 1995) emphasized the
importance of a suitable basis and of risk-based adaptation. REACT, the
application of signal recovery and shrinkage techniques to superefficient es-
timation in linear models, was described in Beran (2000). Common to these
varied papers are models in which the unknown signal is deterministic.

A parallel literature on random signals has developed estimation for
stationary time-series, for Bayes or empirical Bayes formulations, and for
hidden Markov models. It is remarkable how often results for random signal
models have turned out to have analogs for deterministic signal models with
many parameters. Considerable mystery still surrounds this correspondence.

Less explored are ways of representing the likely errors incurred in esti-
mating deterministic signals. Stein (1981) suggested a construction of confi-
dence sets around trend estimators that generalizes the classical confidence
set for η centered at 7]LS- Beran (1996) and Beran and Dumbgen (1998)
justified this method asymptotically for confidence sets centered at estima-
tors obtained through nested model-selection or through adaptive monotone
shrinkage. For given coverage probability α, better REACT estimators at
the center turn out to yield asymptotically smaller confidence sets. How may
these high-dimensional confidence sets be put to use? This paper probes the
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confidence sets for extremal members so as to determine which features of
η may have been smoothed out in ή and which features of ή may not be
present in η.

Section 2 reviews REACT methodology for one-way layouts, drawing
particular attention to three orthonormal bases for this design: orthonormal
polynomial contrasts, certain trigonometric contrasts that enrich the discrete
cosine basis, and the smooth contrasts described in Beran (2000). Section 3
defines most unsaturated and most saturated members of confidence sets
centered at REACT estimators of η. These fits at the extremes of credibility
exhibit potential differences between the REACT estimator and the true
mean vector η. Analyses of two data-sets illustrate the possible economy of
orthonormal polynomial contrasts and the methodology for probing REACT
confidence sets. Section 4 sketches technical underpinnings.

2 REACT Fits in the One-Way Layout

For a one-way layout with p factor levels, the classical choice of regression
matrix X is the incidence matrix. Each row of this X contains a single 1, the
remaining p — 1 entries being 0. Rows are repeated according to number of
replications at each factor level. The column index of the 1 indicates factor
level. This section reviews REACT fits to one-way layouts. For further
background, see Beran (2000).

Scatterplot fits are naturally related to the one-way layout. Given the
{xi\ 1 < i < n}, suppose that the {yi'Λ <i <n} are conditionally indepen-
dent and that the conditional distribution of yz is N(m(xi),σ2). If m is an
unknown function and p denotes the number of distinct values among the
{xi}, then this conditional model is a one-way layout. By reordering labels
as necessary, suppose that X{ is a nondecreasing function of i. Interpolation
between successive components of an estimator of η then yields a curve fit
to the scatterplot. While this interpolated estimator is poor when based
on 7/L5-, it can be very satisfactory when based on more efficient REACT
estimators of η.

2.1 Transformation to an economical coordinate system

For any matrix A, let M(A) denote the subspace spanned by the columns of

A. Let Uβ denote a suitably chosen nxp matrix with orthonormal columns

such that M(Uβ) = M(X). Considerations that enter into the choice of UE

will be discussed below. Define

(2.1) z = U'Ey, ξ = Ez.

Evidently, z has a normal Np(ξ, cr2lp) distribution. The mapping between £,
whose range is i?p, and 77, whose range is the ^-dimensional regression space
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M{X) C i? n , is one-to-one with

(2.2) ξ = U'Eη, η = UEξ.

Similarly, any estimator ή of η corresponds in one-to-one fashion to the
estimator ξ = U'Eή of f, the inverse relation being ή = UΈξ< Quadratic loss
is preserved under this correspondence because U'EUE = Ip entails

(2.3) P~l\n-η\2=p-l\ϊ-ξ\2-

We assume that the orthonormal basis UE provides an economical rep-
resentation of η in the sense that all but the first few components of ξ are
very nearly close to zero. Economy is designated by the subscript E. For
an economical basis, we need only identify and estimate the relatively few
nonzero components of ξ. The quadratic risk of ξ then accumulates many
small squared biases from ignoring the nearly zero components of ξ but
does not accumulate the many variances that would arise from an attempt
to estimate these components from z. Theorem 4 in Beran (2000) gives a
precise statement of the bias-variance trade-off in terms of Pinsker's (1980)
asymptotic minimax bound on quadratic risk. Note that the concept of eco-
nomical basis is more restrictive than the concept of sparse basis that is used
in treatments of thresholding estimators (cf. Donoho and Johnstone (1994)).

In the author's experiments to-date, three particular orthonormal bases
UE for one-way layouts have proved effective in analyzing scatterplots from
the smoothing literature. Let s denote the p x 1 column vector whose z-th
component is i and let u = Xs, where X is the incidence matrix defined at
the start of this section.
a) Polynomial contrast basis. The regression space of the one-way layout

is spanned by the columns of the matrix A = (ix°,ιt,..., up~ι), where
operations on u are performed componentwise. The columns of A are
linearly independent because a polynomial of degree p — 1 has at most
p—\ distinct roots while n>p. The polynomial contrast basis is defined
as the Gram-Schmidt orthonormalization of the columns of A. Because
A is nearly collinear for large p, sophisticated methods are needed to
compute this basis. The function poly in S-Plus is one possibility.

b) Trigonometric contrast basis. In this case the columns of A are the
first p entries in the list υ°,{{cos(feπi;),sin(A;πv)}:A; > 1} where v =
(u — l/2)/p. When the rows of the incidence matrix are distinct, A is
an enrichment of the discrete cosine basis that avoids the edge artifacts
of the discrete Fourier basis. The trigonometric contrast basis is defined
as the Gram-Schmidt orthonormalization of the columns of A.

c) Smooth contrast basis. This generalization of the discrete cosine trans-
form is described in Beran (2000).
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In general, which orthonormal basis is most economical in fitting a par-
ticular one-way layout is an empirical matter that depends on the unknown
η. Prior information about the nature of η may help delimit bases to be con-
sidered. Diagnostic plots of the components of z and estimated risk calcu-
lations assist subsequent selection from a modestly large collection of bases.
Such diagnostic techniques illuminate, later in this section, the success of
the polynomial contrast basis in fitting two case studies.

2.2 Estimated risks of candidate estimators

Let T be a closed subset of [0, l ] p . In the transformed coordinate system,
consider {fz: f G J7} as candidate shrinkage estimators for ξ. For any vector
h G i?p, let ave(/ι) = p~ι Σ?=i ^ΐ The risk of fz under normalized quadratic
loss is

(2.4) p-'Elfz - ξ\2 = ave[σ2/2 + £2(1 - ff] = p(f, ξ\ σ2).

If this risk function were known, we would estimate ξ by the best candidate
estimator fz, where

(2.5) 7 = argminp(/,ξ2,σ2).

This is equivalent to estimating η by ήj? = UEdia,g(f)Uf

Ey, a symmetric
linear smoother.

Usually the risk function in (2.4) is unavailable because both ξ2 and
σ2 are unknown. Two methods for estimating σ2 will be considered in this
paper:
a) The least squares variance estimator. When n > p, least squares theory

provides the estimator

(2.6) σLs = (n — p) \y — Ί)LS\ >

which is consistent provided n — p tends to infinity.

b) The high-component variance estimator. The ANOVA strategy of pool-

ing suggests

(2.7) ^ = (n-ϊΓ1

*=g+l

where q <p <n. The bias of σ\ is

(2-8) (n-q)-1 £
i=9+l
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Consistency of σ2

H is assured when this bias tends to zero as n tends
to infinity. Economy of UE makes the bias small when q exceeds the
number of basis vectors needed to approximate η well.

The estimator σ2

H is particularly useful when n = p, the one-way layout with
one observation per factor level.

Having devised a consistent estimator σ2 of σ2, we estimate ζ2 by z2 — σ2

and the risk p(/, ξ2, σ2) by

(2.9) p(f) = ave[σ2/2 + (z2 - σ 2)(l - /)*].

Tacit in the construction of p is the supposition that the law of large numbers
will make ave[(l - f)2(z2 - σ2)] consistent for ave[(l - f)2ξ2)]. Because
p(/) can sometimes be negative, we will consider as well the risk estimator
p+(/) = max{σ2ave(/2),p(/)}. The uniform consistency of p(/) and p+(/)
over suitable T is treated by Beran and Dύmbgen (1998).

2.3 Adaptation

It is natural to use p(/) as a surrogate for the risk p(/,ξ2, σ2) in identifying
the best candidate estimator. This strategy generates the fully data-based
estimator ήjr = UEdidLg(f)U'E, where

(2.10) / = argminj&(/).

Apart from the details of the variance estimator σ2, this construction of /
amounts to minimizing the Mallows (1973) Cx criterion or minimizing the
Stein (1981) unbiased estimator of risk.

Successful adaptation, meaning that the risks of ήjr and ή? converge,
requires restrictions on the richness of T. Beran and Dύmbgen (1998) de-
veloped sufficient conditions on the covering number of T to ensure success
of adaptation. The global class T = [0, ΐ\p is too large for adaptation. Two
smaller but very useful shrinkage classes for which adaptation works are:

a) Monotone class Tw This is the closed convex set {/ G [0, l ] p : /i > /2 >
• > /p} It makes sense to damp down the higher order components of
z in constructing fz precisely because UE is an economical basis. The
value /M that minimizes estimated risk p(f) over all / G TM is unique
and can be computed by algorithms for weighted isotonic regression, as
detailed in Beran and Dύmbgen (1998). The corresponding estimator of
η is ήM = UEdia,g{fM)U'Ey.

b) Nested selection class TNS- This subset of TM is defined as follows. For
0 < k < p, let e(k) denote the p dimensional column vector whose i-th
component is 1 if 1 < i < k and is 0 otherwise. Then TNS is the union of
the vectors {e(fe): 0 < k < p}. Nested model-selection is the idea behind

whose convex hull is TM- Computation of SNS-, the value that
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minimizes p(f) over all / G FNS, is straightforward. The corresponding
estimator of η is ήws = UEdi&g(fNs)Uf

Ey.
In the original parametrization, the candidate estimators have the form

UEdia,g(f)U'Ey. They are thus symmetric linear smoothers, in the sense of
Buja, Hastie and Tibshirani (1989), whose eigenvectors are given by the
columns of UE This observation explains why REACT estimators can act
like adaptive locally linear smoothers.

2.4 Case studies with polynomial contrasts

The underlying scatterplot in Figure 1 exhibits log-income versus age of the
individual sampled. This Canadian earnings data was introduced by Ullah
(1985) and treated further by Chu and Marron (1991). Conditioning on the
observed ages, we fit an unbalanced one-way layout to the n = 205 observed
log-incomes, the factor levels being the p = 45 distinct ages from 21 to 65,
taken in numerical order. The top row of Figure 1 exhibits the polynomial
contrast estimators ήπs and T)M, using the least squares estimator of vari-
ance to compute risks of candidate REACT estimators. In both plots, the
components of the estimator have been interpolated linearly. The visual
impression created by cubic spline interpolation is similar. Such interpola-
tion is more than a visual device if we consider mean log(income) to be a
continuous function of age.

Using p( ) to estimate the risks of Ϊ]LS, VNS and Ί]M yields, respectively,
PLS — σ\s — .295, PNS — —-029 and pM — —.037. The negative values are
inconvenient here. Using instead p+( ) yields the risk estimates p+,ΛΓ5 = -039
and p+,M = .036. Both of the REACT estimators have fax smaller estimated
risk than the least squares estimator f]LS- If the latter is plotted with linear
interpolation, the resulting curve is jagged, especially at the higher ages.
The two interpolated REACT fits are fully data-based once the basis Uβ
is selected, with no tuning parameter requiring attention, and resemble fits
obtained for this data by locally linear smoothers. Fits to this data by
Nadaraya-Watson kernel smoothers are biased upwards near ages 21 and 65
but otherwise resemble the REACT fits (see Chu and Marron (1991)).

Because ages are equally spaced, the two polynomial contrast REACT
estimators actually fit polynomials at the earnings data-points, though not in
between. The estimator ήjsrs fits a polynomial of degree 5 (which coincides
with the degree 5 least squares fit) while J]M fits a polynomial of degree
14 (which differs considerably from the degree 14 least squares fit). All
coefficients of the fitted REACT polynomials beyond the term of degree 2
are very small. Indeed, a classical F-test at level .10 does not find evidence
of nonzero coefficients beyond degree 2. Because rejection, not acceptance,
is important in testing, this result only indicates that we should not use a
fit of degree less than 2. The parabolic least squares fit to the earnings data
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completely misses the econometrically interesting dip between ages 40 and
50 and has notably larger estimated risk (namely .106) than either of the two
REACT fits. Estimating the mean vector with small risk is an enterprise
that differs from seeking overwhelming test evidence that certain regression
coefficients are non-zero.

In Figure 2, the (1,1) cell plots the signed square root of Zi versus i.
The square-root transformation makes more visible the values of Z{ that are
close to zero in value. This diagnostic plot supports the hypothesis that the
polynomial contrast basis is economical for the earnings data, a plausible
finding because the levels of the age factor are ordered in time. The (1,2)
cell exhibits the components of first five orthonormal polynomial contrasts,
with linear interpolation to aid visibility.

The underlying scatterplot in Figure 3 exhibits, for each row in a vine-
yard near Lake Erie, the total grape harvest over three years. Simonoff
(1996) used this vineyard data as a case study for smoothing methods and
provided further background. Conditioning on the p = 52 row numbers, we
fit a balanced one-way layout to the n = 52 observed three-year harvests.
The top row of Figure 3 exhibits, with linear interpolation, the polynomial
contrast estimators ή^s and f\w The high-component variance estimator
with q = 15 served to compute estimated risks. The estimated risks of 7)2,5,
ήπs and Ύ]M are, respectively, PLS = σ2

H — 6.08, pπs = 1-24 and pM = 1-02.

Row numbers being equally spaced, the estimator ήπs fits a polyno-
mial of degree 10 to the points in the vineyard data scatterplot (but not
in between). This fit coincides with the degree 10 least squares fit to the
same points. The estimator J]M fits a polynomial of degree 17 to the points
in the scatterplot (but not in between). This fit differs substantially from
the degree 17 least squares fit to these same points. Linear interpolation
between fitted points avoids the wiggliness inherent in polynomial curves.
Both REACT fits resemble a locally linear nonparametric regression fit to
this data exhibited in Fig. 5.13 of Simonoff (1996). The diagnostic plots
in the top row of Figure 4 and the relatively small estimated risks of both
REACT fits support the supposition that the polynomial contrast basis is
economical for the vineyard data. This conclusion is plausible because the
levels of the row-number factor are spatially ordered.

3 Confidence Sets and Saturation

We begin by applying the confidence set idea sketched at the end of Stein

(1981). For T equal to either TM or JJVS, consider the root

(3.1) tτ = pl/2\p-1\ήτ-η\2-pCf)}.

The right side of (3.1) compares the normalized quadratic loss of ή? with

an estimate of its expectation, which is the estimated risk. A confidence
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Figure 1. REACT fits and extremal confident fits to the Canadian earnings data.
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set for η is obtained by referring t? to the α-th quantile of its estimated
distribution.

For reasons detailed in Section 4, the variance estimator σ2 that enters
into the definition of ί̂  strongly affects the next step in the construction.
We therefore write tjr^ and i^2 to distinguish the two cases.

Least squares variance estimator. When σ2 = σ 2

5 , the distribution of
tjri for large p and n — p is approximately iV(0, fj x) with

(3 2) ^ = 2 ^ a v e [ ( 2 / - I)2] + 2[p/(n - p)]σis[ave(2/ - I)]2

+ [ 4 £ [ ( ^ | ) ( l / ) 2 ] ]

Accordingly, a confidence set of approximate coverage probability a for η is

( 3 . 3 ) C y f i ( α ) = { θ e M ( X ) : \ ή ? - θ \ 2 < p p Q ) 1 / 2 1

In this expression, Φ" 1 is the quantile function of the standard normal dis-
tribution.

When T consists of the single vector e(p), defined in Section 2, the
corresponding REACT estimator ήp is just 7)̂ 5. The classical confidence set
for η based on the F-distribution is {θ G M(X): \ήf-θ\2 < pσ2

LSF~^_p{a)}.
If p and n—p both tend to infinity in such a way that p/(n—p) converges to a
finite constant, then the classical confidence set is asymptotically equivalent
to the confidence set given by (3.3) when T = {e(p)}.

High-component variance estimator. The preceding confidence set is not
available for one-way layouts with one observation per factor level. Suppose
that n = p and σ2 = σ\. Let

Λi = 2/ - 1 + \p/(p - 9)][ave(l - 2/)](l - e(q))

h2 = f - l + \p/(p - g)][ave(l -

The distribution of ijr2 for large p and p — q and small p~ιl2 Σf= ς + 1 ξ2 is
approximately j ^

(3.5) >

The corresponding confidence of approximate coverage probability a for η is

(3.6) C y | 2 ( α ) = { θ e M ( X ) : \ ή τ - θ\2 < pp(f) 1 / 2 ι

3.1 Saturated and unsaturated fits

Visualizing either of the confidence sets Cjr^a) or CJ:^{OL) as subsets of
the regression space M(X) C Rn is difficult at best. One useful way of
interpreting such confidence sets centered at ήj? is to ask:



82 Rudolf Beran

Earnings z for Polynomial Contrasts First 5 Polynomial Contrasts

8 CD
3

0 10 20 30 40

Component

Shrinkage Factors for the NS Fits
0.

2
0.

0
0.

2

0 50 100 150 200

Observation

Shrinkage Factors for the M Fits

CO

d
ω
CO

I 2

q
d

1

1

10 20 30

Component

40

CO

d

I 2

q
d

10 20 30

Component

40

Residuals after Best NS Fit Residuals after Best M Fit

Λ O •

α>

CVJ .

•

20

1 a 2 • S
•

30

• 1

1

40 50

Age

•

• •

•

•

•

60

du
al

es
i

o -

T -

Cvl .

•

i:!i':.s .!:•••
• "•

•

20 30

. I"-

••;•-. "
ιγ-t •»-

40

Age

•

mm

•

•

50

•
•

1

" *

•

•

60

Figure 2. Diagnostic plots for REACT fits to the Canadian earnings data.
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a) Which features in the estimator ηjr are not necessarily present in η once

sampling error is taken into account?

b) Which features of η might have been smoothed out by the estimator ήj:

because of sampling error?

We will construct extremal members of the confidence sets Cjr^(α) that

throw light on both of these questions. For the bases considered in this

paper, these extremal elements amount to "smoothest" and "roughest" per-

turbations of the REACT fit that lie on the boundary of the confidence

set.

A shrinkage vector / G [0, l]p is said to be saturated up to order k

if /i = . . . = fk = 1. It is said to be unsaturated down to order k if

fk = .. = fP = 0. Let

(k) = {/ G FM' / is unsaturated down to order k}

^(k) = {/ G TM' f is saturated up to order k}.

Define

(3.8) /M,U(A) = argmin p(/), fhf,s(k) = argmin p(/).
/ ^ M f { k )

Among the shrinkage vectors {fM,u{k):k > 1} such that the vector

UE<&&g{fM,u{k))U'Ey lies in C ^ ( α ) , let ]M,U be the one for which k is

smallest. We say that Ϊ)M,U — UEdidLg(fM,u)Uf

Ey is the most unsaturated

a-confident M fit for η. In the other direction, among the shrinkage vectors

{fM,s(k):k ^ !} s u c h t h a t uEdiaLg(fM,s(k))uΈy l i e s i n C>,z(α), let fM,s be
the one for which k is largest. We say that r)M,s = UE(li3ig(fM,s)Uf

Ey is the
most saturated a-confident M fit for η.

Suppose that a is close to 1. Comparing T\M,U with T)M indicates which
features of the the estimator f)M need not be present in η once allowance
is made sampling error. This addresses question (a) above. On the other
hand, comparing Ϊ)M,S with Ύ]M indicates which features of η may have been
smoothed out by the estimator T)M because of sampling error. This addresses
question (b) above. The strategy just described for identifying interesting
extremal members of confidence sets centered at f)M extends readily to con-
fidence sets centered at ήNS

In the preceding discussion, the word "smooth" tacitly assumes that
the column vectors in UE are are of decreasing smoothness as column index
increases. This is the case for the bases mentioned in Section 2.4. More
generally, "smooth" should be be replaced by a description of the key feature
that is increasingly captured as we move through the basis.

3.2 Further analysis of the case studies

The second row of Figure 1 exhibits the most unsaturated NS and M fits
that lie within the 95% confidence balls for η centered, respectively, at
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and f]M- That both extreme unsaturated fits retain the middle-aged dip
in income makes it safe to conclude that mean log(income) η has this fea-
ture. Possible reasons for the dip include mid-life changes in career, re-entry
of women into the work-force after child-rearing, down-sizing of middle-
management positions, and so forth.

The third row in Figure 1 exhibits the most saturated NS and M fits
that lie within the respective 95% confidence balls for η. These extreme sat-
urated fits both point to two features that Ύ]M and ή^s might have smoothed
out: a small dip in mean log(income) around age 30 and greater variability
in mean log(income) at ages 60 to 65. Such informed conjectures rest on the
hypothesis of homoscedastic errors. Heteroscedastic errors would offer an-
other possible explanation of the variation in observed log(income) between
ages 60 to 65.

The (2,2) cell of Figure 2 compares the REACT shrinkage vector fM

(solid) line with the most unsaturated shrinkage vector }M,U (dotted line)
and the most saturated shrinkage vector /M, S (dashed line). The (2,1) cell
of the same figure makes the analogous comparisons of shrinkage vectors for
the various NS fits.

The second and third rows of Figure 3 present the most unsaturated
and most saturated M and NS fits to the vineyard data. We conclude from
the most unsaturated fits that the "valley" in mean harvest around row
number 35 cannot be discounted. The most saturated fits indicate additional
possible local patterns in how mean harvest depends on row number. More
polynomial contrasts are needed for the analysis of the vineyard data than
for the earnings data (see the middle row in Figure 4).

4 Technical Matters

The methodology described in the preceding two sections has a firm foun-

dation in asymptotic theory and in computational algorithms for isotonic

weighted least squares. This section outlines the most salient points.

4.1 Asymptotics for confidence sets

Underpinning the two confidence sets described in Section 3 are the following

theorems that determine the asymptotic distribution of t ^ and establish the

asymptotic coverage probability and asymptotic loss of C^^α). Let d be

any metric for weak convergence of probability measures on the real line and

let C(tp7i) denote the distribution of ifj under the model.

Theorem 4.1 Suppose that T is either TNS or TM For i = 1, assume

that σ2 = σ\s, m = min(p,n — p), and limmH>oop/(n - p) = η2 < oo. For

i = 2, assume that σ2 = σ%, m = min(p,p-ς), limm_>oop/(p--g) = β2 < oo,
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and limm-toop-1/2 ΣLς+i $ = ° Then, for every r > 0 and every σ2 > 0,

(4.1) JSJO^ sup 2 d [ £ f c ) , Λ Γ ( 0 , r ^ ) ] = 0,

where

2σ4ave[(2/ - I)2] + 2[p/(n -p)]σ4[ave(2/ - I)] 2

f 4 2 )

+ 4σ2ave[£2(l-/)2]

and

(4.3) τ£> 2 = 2σ4ave(Λ2) + 4σ2ave(Λ2.£2)

with

(4 4) Λ! = 2/ - 1 + b/(P - 9)][ave(l - 2/)](l - e(q))

h ~fl + \/(- g)][ave(l -

The variance r^ ̂  depends on p, ξ2, σ2, and on n — p or p — q according
to i. The estimators r ^ defined in (3.2) and (3.5) substitute z2 — σ2 for
ξ2, / for /, and σ2 for σ2, constraining the estimator of the last term on
the right of (4.2) and (4.3) to be non-negative and using the appropriate
definition of σ2. The next theorem establishes that the α-th quantile of the
7V(0,rj^) distribution is consistently estimated by τj?jΦ~ι(α). This leads
to the definitions of the confidence sets Cjr^α) in (3.3) and (3.6).

Let r2

:Fi — p(f) + p~1/2f> jiΦ~1(α). Of interest are two properties
of Cjr^α): the coverage probability P(η E Cjr^α)) and the geometrical
quadratic loss

(4.5) L(CTti(α),η) = sup p~ι\θ - η\2 = [ p " 1 / 2 | ^ - η\ + f ^ ] 2 .

Treating Cj:^{α) as a set-valued estimator of 77, this geometrical loss mea-
sures how poorly elements of the confidence set can estimate η.

Theorem 4.2 Under the hypotheses of Theorem 4.1, for every r > 0 and
every σ2 > 0,

lim sup P[\HCrti(α),η) - 4p(/,ξ2,σ2)| > Kp~ιl2] = 0
m->oo, K^oo a v e ( ξ 2 ) < σ 2 Γ

(4.6) lim sup

m->oo, K-+00 a Ve(ξ2)<

For every e > 0,

(4.7)
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Moreover,

(4.8) liminf inf r ^ > 0
V ' m-+oo ave(ξ 2)<σ 2r '

and

(4.9) lim sup |P(τ; E CTi(α)) - α\ = 0.
m " > o o ( 2 ) 2

Theorems 3.1 and 3.2 in Beran and Dumbgen (1998) imply the two
theorems above for the case i = 1. The results for i = 2 are proved by-
straightforward modification of the argument, the salient difference being
that

(4.10) σ\ - σ2 = \p/(p - g)]{ave[δ(g) Wi] + 2ave[e(g)W2]

with e{q) = 1 - e(g), Wi = (z - ξ)2 - σ2 and W2 = ξ{z - ξ).
According to Theorem 4.2, the asymptotic geometrical loss of each con-

fidence set is four times the asymptotic risk of the estimator at the center of
the confidence. This is a compelling reason for using confidence sets centered
at superefficient REACT estimators in place of the classical confidence set
centered at the least squares estimator.

4.2 Computing saturated and unsaturated fits

Computation of fws &nd of the unsaturated and saturated nested selection

shrinkage vectors fNS,u(k) and fNS,s(k) is accomplished by finite search. To

compute / M , let g = (z2 — σ2)/z2 and observe that

(4.11) fM = argminp(/) = argminave[(/ - g)2z2].

Let B = {b G Rp: b\ > 62 > . . . > bp}. A further argument given in Beran
and Dumbgen (1998) shows that

(4.12) fM = /+ with / = argminave[(6 - g)2z2}.
beB

Algorithms for isotonic weighted least squares yield /.

When / is unsaturated down to order A;,

(4.13) p(f) = p-1 Σ W + k 2 " *2)(1 - h)2] +P'1 Σ ( ^ ? - *2)
»=1 i=k

On the other hand, when / is saturated up to order fe,

(4.14) p(f) = p-'kσ2 +P- 1 J2 [σ2ff + {zf - σ2)(l - 0).
i=k+l

Thus, as in the preceding paragraph, algorithms for isotonic weighted least

squares suffice to compute fM,u(k) and /M,s(fc)
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