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Abstract

Infinite parameter estimates can occur in Cox proportional-hazards
models when a linear combination of the covariates monotonically in-
creases or decreases with the failure times. Considered here are meth-
ods for computing extended mazimum likelihood estimates for Cox mod-
els. An extended estimate is a pair of vectors: a direction vector for
the infinite component, and a vector that optimizes the “stratified”
log-likelihood of Bryson and Johnson (1981). A method of identifying
problems that have extended estimates and an algorithm for finding
them is given along with an example illustrating their use.

Key Words: Computer algorithms; Cox regression; Linear programming;
Solutions at infinity.

1 Introduction

When the maximizer of a likelihood is at infinity, many standard compu-
tational algorithms fail because they are not designed to deal with such
solutions. Haberman (1974, appendix B) defines and gives an example of
such estimates for frequency data. He calls the estimates obtained extended
mazimum likelihood estimates. Because these estimates contain infinite val-
ues, they do not exist in the usual sense, and many authors (Silvapulle and
Burridge, 1986, Albert and Anderson, 1984, Hamada and Tse, 1988) have
felt that detecting the presence of infinite estimates is sufficient. Bryson
and Johnson (1981) note that infinite estimates can be common in the Cox
(1972) proportional-hazards model, at least in a simulation study of a model
with sample size 20. They also note that infinite estimates occur when the
failure times are monotone with a linear function of the covariates, and they
give an algorithm in which parameter estimates are computed based upon a
“stratified” likelihood, where the stratification is determined by inspection
of the covariates. Baker, Clarke, and Lane (1985) discuss an algorithm for
computing extended maximum likelihood estimates in sparse contingency
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tables, and Clarkson and Jennrich (1991) give algorithms for computing ex-
tended maximum likelihood estimates in linear-parameter models. While the
algorithms in these two papers are not applicable to the Cox proportional-
hazards likelihood, they are similar to the algorithms developed here.

An intuitive explanation of why standard algorithms fail on problems
with infinite maximizers is that for such problems in a neighborhood a so-
lution some large changes in the parameter vector give very small changes
in the log-likelihood assuming the latter is bounded. This suggests that the
Hessian of the log-likelihood and the Fisher information matrix are nearly
singular. Since standard algorithms typically invert one or the other of these
matrices during their iteration process, the process breaks down when these
matrices become to close to singular.

Our interest in extended maximum likelihood is that in some cases, in-
cluding those mentioned above and the Cox proportional-hazards model,
the log-likelihood has a finite supremum, but may not have a maximum.
Extended maximum likelihood programs are designed to produce suprema
and extended estimates even when the maximum does not exist. While the
extended estimates may be infinite, useful functions of them can be well de-
fined and finite, for example means in the context of log-linear models and
relative hazard rates in the context of the Cox proportional-hazards model.
Extended estimates may also be used to form likelihood ratio statistics and
likelihood ratio confidence intervals. All of this can be much more valuable
than simply failing to find a maximum.

In the next section theorems on extended maximum likelihood estimates
in Cox proportional-hazards models are given. These are used as the basis
of a computing algorithm given in Section 4. Section 3 gives a linear pro-
gramming algorithm for solving a system of linear inequalities required by
the algorithm in Section 4. Tied observation times are discussed in Section
5. Section 6 discusses an example and a simulation study of Johnson et al.
(1982). Concluding remarks are given in Section 7.

2 Theory of Extended Maximum Likelihood Esti-
mation in the Cox Proportional Hazards Model

Let t; < ty < --- < t, denote the observation times in a proportional hazards
model and for each ¢; let ; denote a p-vector of covariate values. Some of
the t; are failure times and the remainder are right censoring times. Let F
be the set of index values i for which ¢; is a failure time. The log-likelihood
for the Cox proportional-hazards model is (see, e.g., Kalbfleish and Prentice,
1980; Elandt-Johnson and Johnson, 1980; Lawless, 1982; Lee, 1980; Cox and
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Oakes, 1984):
—Th (__e’w_) 0
2\ T ep(zs)
where (3 is a vector of parameters to be estimated. Because right-censored ob-
servations which occur prior to the first failure do not enter the log-likelihood,
we assume, without loss of generality, that ¢, is a failure time. For now we
have assumed there are no tied observation times ¢;. These are discussed
later.

In applications of the Cox proportional-hazards model it occasionally
happens that there is no maximum likelihood estimate, that is, there is no
B in RP that maximizes £. We call (3, d) an extended maximum likelihood
estimate if

Jim £(6 + pd) = sup £ (2)

One may view (B,d) as a directed line. Assuming (3,d) is an extended
estimate, as one moves along the line in the direction d the value of £ ap-
proaches its supremum. One may also view extended estimation as ordinary
maximum likelihood estimation after extending the domain of £ to the set of
directed lines. An ordinary maximum likelihood estimate is an extended es-
timate with b = 0. The Cox proportional hazards model can have extended
maximum likelihood estimates that are not ordinary estimates.
Assuming it exists let

£a(B) = Jim €8+ pd) 3

Our approach to finding exterlded estimates will be to find an appropriate d
and maximize ¢; to produce 3.

For j = 2,...,n, let 4(j) be the index of the largest failure time before
t;. Let

aj = (Tj = To(j)) (4)

and let A be the matrix of such differences. Let d be any solution to the
inequality problem

Ad <0, (5)

such that Ad has the largest possible number of negative components. The
inequality in (5) means each component of Ad is less than or equal to zero.

In the next section we show how to use linear programming to find a
d that satisfies (5). The vector d need not be unique even up to a scalar
multiple. However, because the sum of two solutions to (5) is also a solution,
the components of Ad that are negative is unique. Our theory will show that
£ exists, has a finite maximizer 8, and that (3, d) is an extended maximum
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likelihood estimator. Moreover, £ has a finite maximizer if and only if Ad = 0
and when this is true § maximizes £.

Lemma 1: If i € 7 and j > 1,
(:cj - .’Bi)d S 0

Proof: The result clearly holds if j = i. If j > i, i = 4P(j) for some integer
p where ? is the p-fold composition of . Note that

Tj = Ti = (25 = Zq()) + -+ (Byp-1(5) = Top(j)

Multiplying by d gives
(zj —z;)d <0

because all of the terms on the right hand side are non-positive. e

Corollary 1: The sequence z;d, for ¢ € F is non-increasing.
Proof: I i,j € F and i < j, it follows from Lemma 1 that (z; — z;)d < 0.
Hence z;d > x;d.

Definition 1: R; = {j:j > i and (z; — z;)d = 0}
Theorem 1: £4(3) exists for all 3 € RP and is given by

e
= % (Zje&exp(xj m).

Proof: Consider £(3+pd). Its expansion (1) has terms that are the logarithms
of ratios of the form
exp(a:(8 + pd))  _ exp(z:6) _ expl(aif)
Yisiexp(zi(B+pd)  Xjsiexp(ziB+p(zj —x:i)d)  Yicr, exp(z;P)

(6)

as p — oo. Thus £4(0) exists for all § and is given by (6). e

Lemma 2: leti€ Fand j€ R;,. If k€ Fand i <k < j, then k € R;.
Proof: Note that
Tj—ZTi=Zj — T+ Tk — T4

Multiplying by d gives
0= (Cl)j —zi)d+ (zx — z;)d

By Lemma 1 both terms on the right are non-positive and hence (zp—x;)d =
0. Thus k € R;. o
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Definition 2: Z = {j:a;d =0}

Lemma 3: Ifi € F, j € R;, and j > i, then j € Z.
Proof: Note that

Tj = Ti = Tj = Ty(j) + Ty(5) — Ti

Multiplying on the right by d gives
0= (zj = 24())d + (255 = 2i)d

Since ¢ < v(j) and i,7v(j) € F, it follows from Lemma 1 that the terms on
the right are non-positive and hence zero. Thus ajd =0and j € Z. o

Theorem 2: The function ¢; has a finite maximizer.
Proof: We may write £4 in the form

La(B) =~ log( ) exp((z; — z:)d)) (7)
ieF JER;

Let M be the space spanned by the differences z; — x; for which i € F and
j € R;. These are the differences that appear in (7). If £; has no finite
maximizer, then there are 8, in M such that

£4(Bn) — sup ¥y

and such that 8, = ppv, with p, — oo and v, — v # 0. Let i € F and
j € R;. Then '
(zj—z)v<0 (8)

because otherwise £4(83,) — —o0.
If j € Z, then j € R,(;). Using (8), (zj — Z(;))v < 0. Thus

ajv<0

for all j € Z.
Since v # 0 and v € M, there is an ¢ € F and j € R; such that
(zj — z;)v # 0. From (8),
(.’Bj - :z;i)'v < 0. (9)

Let j be the smallest index in R; for which (9) holds. Note that
Tj = Ti = Tj = Ty(j) T To(j) — Ti
Multiplying by v and using (9) gives

0 > a;jv + (zy() — Ti)v
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By Lemma 2, y(j) € R; so the second term is non-positive. If it is negative,
Jj is not the smallest index in R; for which (9) holds. Thus the second term
is zero and ajv < 0. From (9), j # 3. By Lemma 3, j € Z and hence

ajv <0 (10)

for some j € Z.

Since a;d =0 and ajv <0 for all j € Z and ajd < 0 for all j € Z, for p
sufficiently large,

A(v+ pd) <0,

but from (10), A(v+ pd) has at least one more negative component than Ad.
This contradicts the definition of d and completes the proof. e

Theorem 3: If 3 maximizes £, then (8, d) is an extended maximum likeli-
hood estimator.

Proof: From (1) and (6), £ < £4. Thus

sup£ < sup by = £4(B) = lim £(3 + pd) < sup?
Hence lim,_,o €3 + pd) = sup?. e

Corollary 2: If B maximizes ¢4 and Ad = 0, then B maximizes £.
Proof: If Ad =0, R; = {j : j > i} and hence ¢4 = £. Because 3 maximizes
£4 it maximizes £.

Theorem 4: The function £ has a finite maximizer if and only if Ad = 0.
Proof: If Ad =0, R, = {j : j > i} and hence £ = {4 which has a finite
maximizer by Theorem 2.

If Ad # 0, (zj — z;)d < 0 for some ¢ € F and j > . From Lemma 1, if
i€ Fand j>i, (x; — z;)d < 0. Write £ in the form

B) = - ) log ) exp((z; — 2i)B)

ieF gt

Clearly £(8 + d) > £(B) for any 8 and hence £ has no finite maximizer. o

3 A linear programming algorithm for solving Ad<0
We are looking for a vector d such that

Ad<0 (11)
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and Ad has as many negative components as possible. This is equivalent to
finding a non-positive vector in the column space of A with as many negative
components as possible or equivalently a non-positive vector in the row space
of A’ with as many negative components as possible.

To find a non-positive vector in the row space of A’ with as many negative
components as possible let A be any matrix whose rows are a basis for the
row space of A’ and consider the linear programming problem:

min ¢d given fi&=b, 6>0

where b is a non-negative combination of the columns of A, ¢ is a row vector
of ones, and the minimization is with respect to 4. Because of the way
b is chosen, there is at least one non-negative solution § to the constraint
equations Ad = b. The tabular form of this problem is

Alb

c|0 (12)
Apply the simplex algorithm to the tableau (12) and consider the final
tableau when the algorithm stops. If the linear programming problem has a
solution, the reduced cost vector ¢ < 0 and v = ¢ — ¢ < 0. Moreover, v is a
linear combination of the rows of A. Thus v is a non-positive vector in the
row space of A’ that has as many negative components as possible.

It is possible that this is true even if the linear programming problem (12)
does not have a solution. This happens when every positive reduced cost
has only zeros above it. These reduced costs must equal the corresponding
initial costs and hence v will be zero in every column with a positive reduced
cost and negative in all others. Clearly v is a linear combination of the rows
of A’ that has as many negative components as possible.

Finally, what happens if there are positive reduced costs with negative
values above them? All other values above such reduced costs must be zero.
Hence there must be columns of the coefficient matrix of the form

1 0 -1
01 -1
00 O
00 O

Clearly if there is a non-positive linear combination of the rows of the current
coefficient matrix that is non-zero, it must be a non-positive linear combi-
nation of its last two rows. Thus any non-zero solution v must be a linear
combination of these two rows. We may proceed by creating a new tableau
of the form (12) with A equal to these two rows and applying the simplex
algorithm. If this produces a positive reduced cost with one or more negative
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coefficients above it, we may again reduce the number of rows in A. If we
run out of rows, the only non-positive vector in the row space of A’ is v = 0.
This procedure may be summarized as follows:

LP Algorithm: Let A be any matrix whose rows are a basis for the row
space of A', let b be any non-negative combination of the columns of A, and

let ¢ be a vector of ones of the same length as the rows of A. Form the
tableau (12).

1. Apply the simplex algorithm to (12).

2. If there are no positive reduced costs with negative values above them,
skip this step. Otherwise delete all rows of the current tableau that
contain a negative value above a positive reduced cost. If no rows
remain above the reduced costs, set v = 0 and stop. Otherwise replace
the reduced costs by c and go to 1.

3. Compute v = ¢ — ¢ where ¢ is the reduced cost vector. Stop.
Note that:

e The vector b may be zero.

e If A has full column rank, the initial A may be set equal to A’.

e All A after the initial A are in standard form.

e If the initial A is in standard form it is sufficient to choose any b > 0.
If the components of b are a random sample from the unit interval,
with probability one, the initial tableau and all later tableau will have
no degenerate basic solutions.

The last two observations are important because when A is in standard
form it is easy to put tableau (12) in standard form. Moreover, if there are no
degenerate basic solutions, one need not use a linear programing algorithm
designed to handle them.

Whatever the value of v, the equation Ad = v’ has a solution d. Any
such d satisfies (11) and Ad has as many negative components as possible.

4 An algorithm for extended maximum likelihood
estimation

Before defining an algorithm let ¢, - - -, ¢, be the distinct values of z;d for
i€Fandforr=1,---,m let

8 ={j: zyd=cr) (13)
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These are distinct sets. Let Zr be the Cox likelihood for the observations in
Sr. Then

fi=it o+
The expression on the right is called the Cox likelihood for the stratified data
S1,-++,Sm. There are standard algorithms for finding finite maximizers of

such likelihoods. We assume we have such an algorithm. The following
algorithm will find finite and extended maximizers of (1).

EMLE algorithm:

1. Form A as defined by (4) and apply the LP algorithm to find d.
2. Find the strata Si,- -+, Sy, defined by (13).

3. Apply the stratified Cox regression algorithm to the strata Sy,---,Snm,
to produce £3.

The pair (ﬁ, d) produced by the EMLE algorithm is an extended max-
imum likelihood estimate. If Ad = 0, § is a finite maximum likelihood
estimate.

5 Ties

Assume that t; < to < ... < t, so that tied observations are possible. Let
F be the set of failure times and as before assume t; € F. For each t € F,
let R, denote the set of indices for observations which fail or are censored
in the interval [t,00), let @ denote the indices ¢ such that ¢; = ¢, and let g
denote the number of indices in the set @;. Then (see, e.g., Cox and Oakes,
1984, page 103) the log-likelihood for tied observations is

B g [jeq, exp(:vjﬁ)>
)= 31 ( Lleg s

This log-likelihood is equivalent to (1) when there are no ties.
The difficulty with ties lies in defining A appropriately. We begin by re-
defining (). Given an observation time ¢;, let ¢t be the largest failure time

such that t < t;. If Q¢ # {j}, let v(j) = Q¢ — {j}. Otherwise let v(j) = Qs
where s is the largest failure time such that s < ;. Using this definition, let

aj=xj— Y (14)
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for j = 2,---,n and let A be the matrix with these vectors as rows. Find
a vector d such that Ad < 0 and Ad has as many negative components as
possible. For each t € F define the reduced risk set

Ry ={j:t€~(j) and a;d =0} (15)

Using these modified definitions, appropriately modified versions of the
results in Section 2 may be proved. The only changes required for the EMLE
algorithm are to replace (4) by (14) and Definition 1 by (15).

6 Examples

Consider the data:
t, Iy | g | 2
113 1-1{2
215|112
313111
41421
5131111

In the table z = (27 — z2)/2 is a monotone function of the failure times.

The EMLE algorithm was used to fit a Cox regression model to these
data. As expected, it split the observations into the two strata identified
by z. It required 5 iterations of the stratified Cox regression algorithm to
converge. The EMLE algorithm yielded the extended maximum likelihood
estimate (3, d) where

() oo ()

The same stratified algorithm applied to the single stratum S containing
all of the original data required 7 iterations to produce the estimate

G 154695
= | -16.0993

B=p+pd
to the precision displayed. Also €(B) = £4(B) = —2.2359 to the precision
displayed. The values of z;3 were

If p = 16.0993

(30.48, 30.76, —.1767, —.8052, —.1767) (16)
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These values appear to identify the same two strata as those identified by
the EMLE algorithm.

Because standard routines for proportional hazards models perform no
special computations for extended maximum likelihood estimates, it is of
interest to use this example as input to them. SURVREG (Preston and
Clarkson, 1983), and the user contributed SAS procedure COXREGR (SAS,
1983) reported that the Hessian of the log-likelihood was singular and stopped
the analysis, returning essentially nothing. The SYSTAT module SUR-
VIVAL (Steinberg and Colla, 1988), the user contributed SAS procedure
PHGLM (SAS, 1983), and the S-plus procedure COXPH (MathSoft, 1995)
did somewhat better. They converged with large (absolute) values for the
estimated parameters. The usual output statistics were also printed. For all
three programs the reported optimal log-likelihood agreed with that given
above to the precision displayed. Note, however, in other ways these pro-
grams failed. For example they reported finite maximum likelihood estimates
when in fact no such estimate exists. The S-plus procedure procedure did
give a warning message stating that the estimates might be infinite.

Motivated by a standard algorithm result like (16), one might use it to
divide the data into strata and re-apply the standard algorithm. In our
example this leads to the correct strata and the second application of the
standard algorithm will produce the correct first component of the extended
estimate (3,d) and a maximum value equal to sup£. Clarkson (1989) for-
malized this into an heuristic algorithm. It is attractive because it does not
require a linear programming step and involves only a minor modification
to a standard algorithm. Unfortunately, it also may not produce correct
results. It frequently does, but we are not ready to discuss this here.

In order to reassure the reader that infinite estimates do occur, note
that Johnson, Tolley, Bryson, and Goldman (1982, page 693) report an
infinite estimate occurrence rate of 22.39% for a Cox regression model with
a sample size of 40 and two covariates. They considered an unbalanced
two-way analysis of variance with cell means p;; and cell sizes n;; given by

(mj>=(:} }) <nij)=(1f é)

The cell means satisify a two-way additive model with zero row effect. Let
X be a 40 by 2 design matrix for such an analysis of variance model and let
3 be choosen so the cell means in X 3 are the values p;;. The rows of X were
used to define relative risks e%:#. These in turn were used together with type
II censoring to generate 24 failure and 16 censoring times so the resulting
survival data represent a random sample from a Cox regression model with
design matrix X. Type II censoring means the failure times precede the
censorimg times. A total of 10,000 data sets were generated. Of these 2,239
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did not have finite estimates.

7 Final comments

It is useful to consider the meaning of solutions at infinity from the point
of view of statistical practice. If £ does not have a finite maximizer, the
second component of the extended estimate (,3, d) defines the reduced risk
sets R;. Of the subjects at risk at failure time ¢;, those not in R; have zero
probability of failure and for the subjects j € R;, the relative risks are e%#.
If Ad < 0, that is if all components of Ad are negative, each R; contains
only one point and the extended estimator predicts failure perfectly. This is
actually the usual case when ¢ does not have a finite maximizer.

Assume we have a data set containing males and females with failure
represented by uterine cancer. If the males can be seperated from the females
by a linear function of the covariates, for example if sex is a covariate, then £
does not have a finite maximizer and each R; contains no males. This means
the extended maximum likelihood estimator correctly predicts that males
will not fail. One might also discover non-failures of greater interest. For
example one might find the R; also contain no non-smoking females. The
extended estimate predicts these cannot fail. This may not be true, but it
is consistant with the data set and model used.

To summarise, we have given a number of theoretical results about ex-
tended maximum likelihood estimates for Cox proportional-hazards models.
These were used along with a linear programming algorithm and a standard
Cox regression algorithm for stratified data to produce an algorithm for com-
puting extended maximum likelihood estimates. Because infinite estimates
are not common in practice, it may be reasonable to begin with a standard
algorithm and if it looks like it is producing an infinite estimate, switch to
an extended estimate algorithm. In any event, general programs must deal
with the possibility of extended estimates because they do in fact occur.

We would like to thank our reviewer for a number of insights that helped
to motivate our work and clearify its presentation.
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