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Abstract

A secretary problem which allows the applicant to refuse an offer
of acceptance with probability 1— p (0 <p <1) is considered with the
objective of minimizing the expected rank of the applicant selected.
The optimal rule is derived and an explicit solution to the problem, as
the number of applicants becomes infinite, is obtained. The memory-
length-one rules of the problem are also discussed.
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1. Introduction and summary

Before discussing our problems, we state the basic framework of the
secretary problem and review briefly the two standard problems. A set of
n rankable applicants (1 being the best and n the worst) appear before us
one at a time in random order with all n! permutations equally likely. When
the i-th applicant appears, we must decide either to accept (select) or reject
it based on the observed rank of the applicant relative to those preceding
it,l < i < n. If no selection has been made prior to the n-th applicant, then
the last one must be selected. An offer of selection is accepted with certainty
by the applicant.

According to the criterion of optimality, the secretary problem is often
distinguished into two standard problems the rank minimization problem,
in which the objective is to minimize the expected (absolute) rank of the ap-
plicant selected and the probability maximization problem, in which the ob-
jective is to maximize the probability of selecting the best applicant. Chow
et al.(1964) showed that, as n —> oo, the minimal expected rank for the
rank minimization problem tends to the value Πĵ LiU + f)1^1"1"*7 ~ 3.8695.
Bruss and Ferguson(1993) also considered this problem in the full informa-
tion setting where the decision is based on the actual values associated with
the applicants, assumed to be independent and identically distributed from
a known distribution (see also Assaf and Samuel-Cahn(1996)). As for the
probability maximization problem, Lindley(1961) showed that the limiting
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maximal probability is e" 1 . See also Gilbert and Mosteller(1966) and Dynkin
and Yushkevich(1969).

In this note, we first generalize the rank minimization problem to include
the possibility of an applicant refusing an offer. We assume for simplicity
that each applicant only accepts an offer of selection with a known probabil-
ity p (0 < p < 1), independent of the rank of the applicant and all else. In
other words, an offer is refused with probability q = 1 —p. The availability of
the applicant can be only ascertained by making an offer and stopping when
it accepts. For this problem to make sense it is assumed that, if the pro-
cess terminates with no applicant selected, the risk is n, which corresponds
to choosing the worst. In Section 2, we show that, the limiting minimal
expected rank for this problem tends to the value

oo ,

πj1 —))
+ PJ/ )

Smith(1975) solved the probability maximization problem with uncertain
selection, showing that the limiting maximal probability of selecting the best
becomes pι/q. Thus the result (1.1) would complete a two by two factorial
design of the standard secretary problems.

Rubin and Samuels(1977) considered the standard secretary problems
(with certain selection) with severe memory constraint, called the memory -
length-one rule, where we are only allowed to remember just one of the pre-
viously observed applicants. That is, the only thing we can observe about a
current applicant is whether it is better or worse than the currently remem-
bered one. The remarkable result is that the limiting expected rank can be
kept finite even with such a severe constraint. The nature of truly optimal
memory-length-one rule remains unknown, but Rubin and Samuels(1977)
obtained, through the argument of the infinite secretary problem (see, e.g.,
Gianini and Samuels(1976)), the value 7.414 as an upper bound for the
limiting minimal expected rank. In Section 3, we attempt to obtain such
an upper bound for the problem with uncertain selection. Two kinds of
memory-length-one rules (MODEL 1 and MODEL 2) will be examined and
a simple upper bound

could be obtained as a function of p from MODEL 1.

For further information of the secretary problem, the reader is referred

to Ferguson(1989) and Samuels(1991).



Minimal Expected Ranks 129

2. Minimal rank for the problem with uncertain selection

Let X r, 1 < r < n, denote the absolute rank of the r-th applicant and
let also Yr, 1 < r < n, denote the rank of the r-th applicant relative to those
preceding it, that is, Yr = 1+ number of X\, ,Xr-ι which are less than
Xr. It is easy to see that Yr are independent random variables having its
probability distribution P{Yr = j} = 1/r for 1 < j < r, 1 < r < n and that,
for j < i < n — r + j ,

P{Xr = i\Yr=j}=

Thus E[Xr I Yr = j], which is the conditional expected rank of the r-th
applicant given that its relative rank is j and simply denoted by Q r j , is
calculated as

n-r+j , 1 v

QrJ = Σ iP{Xr = i\Yr=j}= (j±l) j . (2.1)

Our problem is to find a rule among all rules which minimizes the expected
rank of the applicant selected.

Let vr, 0 < r < n, denote the minimal expected rank attainable when we
haven't stopped by time r. Suppose that the r-th applicant has appeared
and Yr = j is just observed. Since the applicant only accepts an offer with
probability p, the expected risk incurred is pQrj + qvr or vr, depending on
whether we make an offer or not. Hence, the backward induction equations
for generating an optimal rule are given by, for r < n,

vr-i = - 2 J min{pQrj + QVn vr}->

or equivalently
r

t;r_i = - Y) min{Qr j - υΓ, 0} + vr (2.2)

starting with the end condition vn — n.

Let

Sr = —Γ^r L 1 < Γ < n,

L n + 1 J
where [x] denotes the greatest integer < x. sr is non-decreasing in r be-
cause tv is, from (2.2), non-decreasing in r, while Qr,j is decreasing in r
and increasing in j. From Eq.(2.2), an optimal rule makes an offer to the
r-th applicant if Yr < sr until an offer is in effect accepted or the process
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terminates with no offer accepted, vo is the minimal expected rank under an
optimal rule. Though Eq.(2.2) enables us to calculate vo for any n, a closed
form expression for VQ for sufficiently large n will shed light on the solution.

Theorem 2.1

Let v* = limn_+oo vo> Then

Proof. We appeal to the heuristic method of Robbins (1991). Eq.(2.2) can
be written as

vr - vr_i = - }^(vr - Qr>j) = - <̂  srvr - '- \. (2.3)
r j r ^ r -f l Δ y

Dividing both the left and the right sides of (2.3) by 1/n and letting n —• oo

and r —> oo in such a way that r/n —• ί, we obtain, if we put vf(t) =

limn,r->00(vr - Vr-O/n""1,

^W-=.(*)+ 2 ^ - 0 , (2-4)

which is valid for all t such that s < tv(i) < s + 1 which follows from the
definition of sr. Define the sequence of t's, 0 < t\ < Ϊ2 < * * * < 1 by the
equations :

taυ(t8) = s, 5 = 1,2,..-, (2.5)

so that the differential equation (2.4) is satisfied in the interval t8 <t < tβ+χ.
Eq.(2.4) can be integrated to yield

or

3s^ (2 e)

where As is an integration constant.

We have, from (2.5) and (2.6)
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Thus

*£+! = L 2 / 1

ta I S V I +

and the repeated use of this leads to

+ps \\TTFs

and hence
oo

+ - 1

because t s —» 1 as 5 —• oo.

Thus the theorem is immediate from the fact that υ* = v(tι)

Table 1 gives some numerical values of v*.

Table 1. The limiting minimal expected rank υ*

P
0.1

0.5
0.9

23.
6.

4.

V*

2635 '
2101

1389

3. Memory-length-one rules

We start with describing the finite problem to give a feeling for a memory-
length-one rule, though our concerns consist not in the finite problem but
in the limiting problem. On arrival of an applicant, we have three choices
to offer, to ignore or to remember and discard the previously remembered
one. A rule of the problem can be described by a sequence of choices
{Wr/Br\ r = 1,2, , n}, where Wr and Br denote any of offer, ignore or
remember, Wr being the choice if the r-th applicant is worse than the pre-
viously remembered one and Br the choice if it is better. Since our problem
includes the uncertainty of selection, the choice "offer" leads to the following
two cases depending on the possible subsequent actions to be taken if the
current applicant refuses an offer:

(1) The current applicant is newly remembered, and so the previously re-

membered
one is discarded.

(2) The current applicant is discarded, and the previously remembered one

remains
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unchanged.

Smith(1975) showed that, for the probability maximization problem with

uncertain selection, the memory-length-one rule does not prevent us from

using the optimal rule in case(l), namely the optimal rule is, for some r*

( ignore/remember (r < r*)

ignore/offer (r > r*).
For the rank minimization problem, we distinguish the problem into two
models, MODEL 1 and MODEL 2, according to which case ((1) or (2)) is
assumed. It is not difficult to show that, as in the problem with certain
selection, the optimal memory-length-one rule among the class that only
includes three out of the nine possible choices is of the following form for
both models

ignore/remember (r < αn)

ignore/offer (αn <r<rn)
Wr/Br = {

remember/remember (r = rn)

W'τ_rJB'r_Tn (r > rn),

where {W//JB£ i = 1, , n — rn} is the optimal rule for the same problem
with n — rn + 1 applicants.

We now turn to the corresponding infinite problem. As in Gianini and
Samuels(1976), the arrival times of the best, the second best, etc., applicants
are an infinite sequence of independent random variables, each uniformly
distributed on the interval (0, 1). It is noted that the minimal expected
rank of the infinite problem gives an upper bound for the minimal expected
rank of any finite problem (see Rubin and Samuels(1977) for reasoning). As
a continuous analogue of the 3-action rule for the finite problem, we consider
only the class of rules that choose numbers

0 = Ro<Aι<R1< <Ak<Rk<-'<l

and alternately remembers the best applicant in each (Rk-ι,Ak) and then
makes an offer successively to the applicant in (Ak,Rk) better than the
remembered one. Let the A's and R's be chosen so that, for alii = 0,1,

= Λi(l - Λi)* (3.1)

and
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Let T be the stopping time and X be the rank of the applicant selected.
Then it is easy to see that the following useful relation, as derived by Rubin
and Samuels(1977) for their problem,

E(X) = E(XI{τ<Rl}) + P{T > Rύ^r^ (3.3)

still holds for our problem.

Prom (3.3), E(X) is finite if and only if P{T > i?i} < 1 - Rι and written as

E ( χ ) _ (1 - RύE(XI{τ<Rl})
E { X ) - 1-R1-P{T>R1}

 ( 3 4 )

Our task is to find the two parameters d and R\ which minimize the
E(X) subject to (3.1) and (3.2). Hereafter we discuss two models separately.

3.1. M O D E L 1

Let fτ(t),A\ < t < i?i, be the density function of Γ. To derive frit)-,
we rely on the following lemma, which is interesting on its own.

Lemma 3.1
Let Z\, Z2, be α sequence of random variables with Z^ uniformly dis-

tributed on the interval (0, Zfc-i), Zo = t < 1.

(i) The density function and the distribution function of Zχ,i > 1, are re-
spectively given by

and

β

(ii) Let N(s,t) denote the number of Z\,Zi,- whose value exceed s for

0 < s < t, namely
N(s,t) = maxjfc : Z& > 5},

where max</> = 0. Then N(s,t) is distributed as a Poisson random variable

with parameter log(ί/s).

Proof. (i) By induction on i.
(ii) Since the event N(s, t) = m occurs if and only if Zm+ι < s < Zm occurs,

we have from (i) that

P{N(s,t) = m} = P{Zm+1 < s < Zm}
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m + i (s) - Fm(s)

s\{\og(t/s)Γ
t) ml

which completes the proof.

Prom the assumption of the infinite problem, Zk defined in Lemma 3.1
can be interpreted as the arrival time of the last candidate that appears prior
to Zk-ι (for simplicity, we refer to a relatively best applicant as a candidate
in this model). So the number of candidates that appear in time interval
(s,£) has the same distribution as N(s,t) defined in Lemma 3.1 (ii). Thus,
by conditioning on N(Aι, ί), we have, for A\ < t < R±,

fτ{t) =
ra=O

oo

ss

(from Lemma 3.1(ϋ)) (3.5)

m=0
(from the assumption of the infinite problem)

We have from (3.5)

P{T > RΛ = 1 - / fτ(t)dt = dP
JAΛ'Ai

and

E(XI{T<Rly) =

where the second equality follows since MODEL 1 makes an offer only to a
candidate and since the fc-th best applicant in (0, t] has expected rank k/t
(now fc = 1).
Thus we have from (3.4),
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For fixed d, the right side of (3.6) is minimized at 1 —i?i = dP/2. Substituting
and minimizing with respect to d, we find that 1 — R\ is the unique root
x G (0,1) of the equation

The upper bound for E(X), as given in (1.2), can be obtained by approxi-
mating 1-R1 = dPl2 by (1+p)" 1 in the right side of (3.6) (1-Λi > (1+p)" 1

from (3.7), but the difference is rather small). Table 2 gives the optimal val-
ues of i?χ, d and the corresponding E{X) and U(p) for given p. U(p) gives
a good approximation to E{X).

Table 2. The optimal values of the two parameters R\ and d, and the
corresponding value of E(X) in MODEL 1. U(p) is an approximation to

E(X)

p Rι d E(X) U(p)

0.1 0.074 0.214 63.02 64.91

0.5 0.291 0.253 13.60 13.85

0.9 0.430 0.288 8.10 8.20

3.2. MODEL 2

In this model, during the time interval (Aχ,Rι) the remembered ap-
plicant, best in (0,Aι), remains unchanged. Let M be the rank of this
(remembered) applicant among those that appear in (0, i?i). Consider now
the m + 1 best applicants in (0, i?i). Then from the model assumption,
M = m + 1 occurs if and only if the (m + l)-st best applicant appears in
(0, A\) and m best ones in (Aι,Rχ). Thus

) m , m = 0,l, (3.8)

because the arrival times of the above m +1 best applicants are independent

random variables, each uniformly distributed on the interval (0, Rι).

Suppose that M = m + 1. Then, for A\ < t < Ri, in order for T > t to

occur, each of m best applicants in (Ai,i?i) must refuse an offer if it were

to appear prior to t, and vice versa. Thus

P{T > t I M = m + 1} = {l - p ( ^ Z ^ - ) }" • (3-9)

Therefore, from (3.9), the density of T conditional on M = m + 1 is given

by

fτ(t I M = m + 1) = ^-P{T<t\M = m + l}
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rap
(1 - d)Rλ

By conditioning on M, we have from (3.10)

7 7 1 = 1

and

m=0

Thus we have from (3.4)

Λ - 1)(1 - Ri){d(p + qd)~ι + 1}

For fixed d? the right side of (3.11) is minimized at 1 — Rι = \/d/(p + qd).
Substituting and minimizing with respect to d, we find that 1 — R\ is the
root x G (0,1) of the equation

qxA(x2 - x - 1) + pxs + x2 + x - 1 = 0.

Table 3 gives the optimal values of R\,d and the corresponding E(X) for
given p.

Table 3. The optimal values of the two parameters R\ and d,

and the corresponding value of E(X) in MODEL 2

p Rι d E(X)

0.1 0.266 0.105 47.95
0.5 0.395 0.225 12.39
0.9 0.447 0.284 7.99

3.3. Comparison between two models

Tables 2 and 3 show that, for each p, MODEL 2 has larger value of i?χ,
but smaller value of d, compared with MODEL 1 and that MODEL 2 gives
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better performance than MODEL 1. In additions to the comparison of R\
and d between two models, it seemes interesting to compare the number of
potential applicants in (̂ 4i, Rι) to which an offer could be made if the process
hasn't stopped before its arrival. Let TV* be the corresponding quantity in
MODEL i, i = 1,2. The distribution of N2 is immediate from (3.8), that is,

P{N2 = k} = P{M = k + l}

= d{l-d)k, fc = 0,l, .

Thus

By the way, a bit of consideration yields

iV2

3=1

Hence we have by conditioning on N2

E(Nλ) = E{E{N1\N2))

= -logd.

Table 4 gives the numerical values of E(Nι) and E(N2). E(N2) is much
larger than E(Nι) especially for small p and very sensitive to the change of

P
We conclude this note by pointing out from Tables 1 and 3 that E(X)

for MODEL 2 is approximately two times as large as υ*.

Table 4. Comparison between E(Nι) and E(N2)

P
0.1
0.5
0.9

E\

1
1
1

[Nl)
.54
.38
.25

E(N2)
8.57
3.45
2.52
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