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Abstract

An employer interviews a finite number n of applicants for a posi-
tion. They are interviewed one by one sequentially in random order.
As each applicant i is interviewed, two attributes are evaluated by the
amounts Xi and Yί, where X^s and Yί's a r e n°t necessarily mutually
independent, but {(Xi,Yi)}™=ι is ϋd sequence of continuous bivariate
random variables and the common distribution of (Xi,Yί)'s is known.
Suppose that the employer is under the condition of full-information
secretary problem without recall. We consider two kinds of the em-
ployer's objective and for each of the objectives the problems are for-
mulated by dynamic programming and the optimal policy is explicitly
derived.

1 Introduction

The present study is a continuation of the previous work by Sakaguchi and
Szajowski[6]. An employer interviews a finite number of applicants for a
position. They are interviewed one by one sequentially in random order.
Each applicant has two attributes Xi and Yί, which are not necessarily in-
dependent. The employer observes (Xi,Yι) sequentially one by one, as each
applicant appears, and he must choose (=stop at) one applicant without
recall (i.e. if applicant is once not chosen, she is rejected and cannot be
recalled later).

Let τ be the stopping time. Then the objective of the employer is to find
the stopping rule which derive τ* such that

(1°) E [XTI{Yτ > a)} —> max
r

*1991 mathematics Subject Classification 62L15, 90C39.Key words and phases, secre-
tary problem, optimally equation, optimal stopping rule, dynamic programming.
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where I(e) is the indicator of the event e, and a > 0 is a given fixed constant,

and

(2°) PτJxr=maxXt & Yr > α\—>max.

These two problems are studied for the cases, where {(-*Q,̂ )}™=i is an iid
sequence of r.v.s with common bivariate uniform and normal distributions.
Each of the problems is formulated by dynamic programming and the op-
timal stopping rule is explicitly derived. The problem (2°) belongs to the
so-called monotone case (see, for example, [3; 137^139] in the optimal stop-
ping theory, but the problem (1°) doesn't so.

Four examples of the solutions are given, and one of them shows that

if (Xi,Yi) is distributed as N 0,0;
1 0
0

then, for n = 10, we get

maxτ E [XTI(YT > 0.84)] = 0.517 and maxτ E [XτI{Yτ > -oo)] = 1.276.
An important and classical literature in secretary problems is Gilbert

and Mosteller [2]. Recent look for the secretary problem and its various
extensions can be found in Samuels [7]

2 Selecting better X under the required condition
that Y > α.

Let {(-X*, Yi)Yl=ι be a sequence of independent bivariate r.v.s as given in the
previous section. Observing the sequence (JQ, YJ), i = 1,2, , n, one by one
sequentially, we want to maximize EXT, where r is the stopping time, under
the required condition that Yτ > α, for a given α > 0. If we fail to stop
(=choose) until the (n — l)st observation, then we must stop at (Xn,l^),
with reward XnI(Yn > ά).

Denoting, by Vn, the expected reward obtained by employing the optimal
stopping rule where n is the number of remaining objects, the Optimality
Equation is

(1) Vn = E [XI(Y > α) V K-i] (n > 2; Vί = E [XI(Y > o)])

or equivalently,

(2) Vn = Tα(Vn-1) + Vn-i, (n = 2,3,4, .)

where

(3) Tα(s) = E [{XI{Y > α) - s}+]

is a convex non-increasing function of 5, for any fixed α > 0.

We consider the cases where (X, Y) has bivariate uniform distribution

and bivariate normal distribution.
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2.1 Bivariate uniform distribution

Let the r.v. (X, Y) be uniformly distributed on [0,1]2 with pdf

(4) p(x,i,) = l + 7(l-2x)(l-2y), | 7 | < 1.

The correlation coefficient is equal to (1/3)7. Since

q(x) = / p(x, y)dy =a {1 - 7 α ( l - 2x)} ,
Ja

q(x) =

and q{x)+ Q (x) = 1, we have

1 ί1
f1 ί1

Ta(s)= dx {xl{y>a)-sγp{x,y)dy
Jo Jo

= JQ(X — s)+q(x)dx, if s > 0.

Direct computation gives

(5) / (x - s)+q(x)dx =α / (x - s) {1 - 7 α ( l - 2x)} dx
Jo Js

Prom (2) and (5), {V }̂ is an increasing sequence starting from

K = E[XI(Y >a)]=a (± + ±Ίay

and is given by

Vn = ±a(l- Vn-ι)2 j l + i 7 α (1 + 2y n _ 1 ) |+F n _ 1 (n > 1; Vo = 0)

(6)
Summarizing the above findings, we finally get

Theorem 1 The optimal stopping rule for the problem (1°) for bivariate

uniform distribution (4) is to:

ί Stop, ifX > Vn-i and Y > α;
1 Continue, if otherwise,

where {Vn} is determined by the recursion (6). The optimal expected reward

for the n-object problem is Vn.
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If α I 0, the problem approaches the univariate version, and (6) becomes
Vn — ̂  (1 + Vn-ι) which is the well-known Moser's sequence. If 0 < α < 1,
and 7 = 0, the problem is the independent bivariate version, and (6) becomes

( concave
linear

convex

f 0 < 7 < l 1
if < 7 = 0 >, with values 5 (1 + Vn-ι) at o = 0, and Vn-\ at α = 1.

{ - l < 7 < 0 J
The values of Vn, for n = 1(1)10,15,20, 7 = -1.0(0.5)1.0 and α = 0.6,0.7

are given by Table 1.
As is seen by (6) and actually shown by Table 1, positive (negative) 7

makes the values of Vn larger (smaller), for all n and α, as I7I goes to unity.

2.2 Bivariate normal distribution

Let the r.v. (x, y) be normally distributed on (—00,00) , with pdf

JL/Λ ! , y - p χ \ ir \ 1
 J.

 x~py

= φ[x)— φ I — I = φ{y)— ψ I —

where </>(z) = (2π)- 1 / 2 e"( 1 / 2 ^ 2 . Prom (3), we have

roo

Ta(s) = dx {xl(y > a) - s}+ p(x, y)dy
J—oo

roo roo ra roo

= / dy (x- s)p(x, y)dx + (-s)+ / dy p(x, y)dx
Ja Js J—oo J—oo

(8) = Γφ(y)dy
Ja

where
rα

Φ(α) = / Φ(y)dy.

J—oo

roo _

(9) / (x-s)φ(x)dx = φ(s)-sΦ
Js

Since
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a

n \ 7
1
2
3
4
5
6
7
8
9
10
15
20
a

n \ 7
1
2
3
4
5
6
7
8
9
10
15
20

-1.0
0.1600
0.2639
0.3391
0.3972
0.4438
0.4823
0.5148
0.5428
0.5672
0.5886
0.6673
0.7181

-1.0
0.1150
0.1988
0.2637
0.3160
0.3595
0.3963
0.4281
0.4559
0.4805
0.5025
0.5852
0.6407

-0.5
0.1800
0.2962
0.3795
0.4429
0.4933
0.5345
0.5688
0.5981
0.6233
0.6453
0.7239
0.7729

-0.5
0.1325
0.2287
0.3028
0.3620
0.4108
0.4518
0.4869
0.5173
0.5439
0.5675
0.6545
0.7108

0.6

0.0
0.2000
0.3280
0.4183
0.4860
0.5388
0.5814
0.6164
0.6458
0.6709
0.6926
0.7680
0.8133
0.7

0.0
0.1500
0.2584
0.3409
0.4060
0.4590
0.5029
0.5399
0.5717
0.5992
0.6233
0.7097
0.7634

0.5
0.2200
0.3592
0.4554
0.5261
0.5802
0.6231
0.6579
0.6867
0.7110
0.7317
0.8023
0.8433

0.5
0.1675
0.2876
0.3778
0.4477
0.5036
0.5492
0.5872
0.6192
0.6466
0.6704
0.7532
0.8028

1.0
0.2400
0.3897
0.4907
0.5631
0.6175
0.6599
0.6937
0.7215
0.7446
0.7641
0.8293
0.8662

1.0
0.1850
0.3165
0.4133
0.4869
0.5446
0.5909
0.6288
0.6603
0.6870
0.7098
0.7876
0.8326

Table 1: Bivariate uniform version of Problem (1°). Values of Vn in (6) for
a = 0.6 and a = 0.7
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say, the first term of (8) becomes

(10) 0 " ^ Γ Φ(y)* (A==) dy.

The function Φ(s) is convex, decreasing, and approaches when 5 —> ±oo
to the polygon (-5) V 0 from upside. Also note that Φ(0) = (2π)~1/2 and
Φ(—s) = s + Φ(s) for all 5. By (9), it is clear that the integral (10) converges.
For more details about the function Φ(s), see DeGroot [1; Section 13.4^13.6],
and Sakaguchi [4].

Prom (2) and (3), {V }̂ is an increasing sequence starting from

Vί = E{XI(Y > α)} = Γ xΦ(x) Φ I α

/~
PXA dx = pφ{α).

J-00 \Λ/1-P2J

By (2) and (8)~(10) we get

Theorem 2 The optimal stopping rule for the problem (1°) for bivariate
normal distribution (7) is to:

ί Stop, if X> Vn-i andY>a
I Continue, if otherwise,

where {Vn} is determined by the recursion

vn = Λ/I-P2 Γ (Vn^^) +

\ 1 - p2 J

The optimal expected reward for the n-object problem is Vn.

If p = 0, the problem is independent bivariate version, and (11) becomes

(12) Vn =φ (a)

For pφQ, the infinite integral in (10) seems to have no simpler expression.
Table 2 shows the values of Vn, given by (12) for n = 1(1)10,15,20, when
p = 0 and a = 0.52,0.60,0.70,0.84, 1.00,1.28,1.65.

This table shows, for example, that for bivariate normal distribution

with mean vector (0,0) and covariance matrix 1 0
0 1

, you have

maxr E [XTI (Yτ > 0.84)] = 0.517, when n = 10. However, if you disregard
the requirement that Yτ > 0.84, and consider the corresponding univariate
version EXT —• maxτ, then you can get VΊo = 1.276, since you have, in this
case, the recursion Vn = Φ(T4ι_i) + Vn-\ (n = 0,1,2, •; V\ = 0).
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a

n \ Φ(o)
1
2
3
4
5
6
7
8
9
10
15
20

0.52

0.6985
0.000
0.120
0.223
0.313
0.392
0.462
0.526
0.583
0.635
0.683
0.877
1.019

0.60

0.7257
0.000
0.109
0.205
0.288
0.363
0.430
0.490
0.545
0.596
0.642
0.831
0.972

0.70

0.7580
0.000
0.097
0.182
0.258
0.327
0.389
0.446
0.498
0.546
0.590
0.773
0.911

0.84

0.7995
0.000
0.080
0.152
0.218
0.278
0.333
0.384
0.431
0.476
0.517
0.689
0.822

1.00

0.8413
0.000
0.063
0.122
0.176
0.226
0.273
0.317
0.359
0.397
0.434
0.591
0.716

1.28

0.8997
0.000
0.040
0.078
0.114
0.149
0.182
0.213
0.244
0.273
0.300
0.425
0.529

1.65

0.9505
0.000
0.020
0.039
0.058
0.076
0.094
0.112
0.129
0.145
0.162
0.238
0.308

Table 2: Bivariate normal version of Problem (1°). Values of Vn in (12) for

various a

3 Selecting best X with the condition that Y > a

In this section we want to select the bivariate continuous r.v. (XT,YT) that
satisfies

Pr < max X{ = Xτ and Yτ > a > —> max,

where r is the stopping time, for a given fixed 0 < a < 1. If (Xi,Yi)
satisfies X{ = maxi<t<i Xt = % and Y{ > α, then on-and-after the (i + l)-st
r.v., any (Xj,Yj) with Xj < x, are rejected even if Yj > a. If we fail to
stop (=select) until the (n - l)-st r.v., then we must stop at (Xn,Yn), with
reward / (maxi<i<n X% = Xn h Yn > a).

3.1 Bivariate uniform distribution with pdf (4)

Define state (x|n, i) to mean that no stop has yet been made, and we face
the i-th r.v. with X{ = max(Xi,X2, ,X<) = a; and Y{ > α. Denote by
vn,i{x) the expected reward obtained by employing the optimal rule for the
n-object problem at state (x\n,i). Since the common marginal distribution
of Xi's is uniform on [0,1], we easily have the Optimality Equation

(13)

(i = 1,2, ,n;0 < x < l]vnA
x) = λ)
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where q(z) = J^p(z^y)dy =α (1 — 7a (1 — 2z)) is the same one used in the
previous Subsection 2.1.

The one-step stopping region ([3]; pp. 137-139) corresponding to this op-
timality equation is

n-i+1 -m
Jb

m=2 m

B=Ux\n,ΐ)

which becomes, after simplification,

k 7 Π = 1

or equivalently,

{ v^ x~m — 1
(x|j) 1/ α> (1 — 7a) V, 1" 2ηax

m=l m m=2

by using j = n — i. Note that B does not involve n.

Lemma 3.1 For \η\ < \, the region B given by (14) is "closed" i.e. if once
a state enters B, the state never leaves B as the process goes on.

Proof. Let

Kj{x) = (1 - 7a)

m

m = 2

We have to prove Kj(x) > Kj-ι(z), for any 0 < x < z < 1, and |7| < 1.
For 0 < 7 < 1, we have Kό(x) > Kj(z), since ΣL=im~1 (x~m ~ !) a n d

xY^m=2 πι~1 (x~m ~ 1) a r e both decreasing in 0 < x < 1. For — 1 < 7 < 0,
we have by direct differentiation,

ϋ ζ (x) = - ( 1 + ηa) Σ x~m + 2 7 « Σ m~1 (x~m -1)<°>
m=2 m=2

i.e. Kj(x) is decreasing in 0 < x < 1. Hence we have

(*) Kj(x) < Kj(z) for 0 < x < z < 1, and |-y| < 1.

We also have

m=l m—2
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-(1 - 70) Σ m~ι (z-m - 1) - 2Ίaz £ m"1 (z"m - 1)
m = l m=2

= (1 - <yα) (*~j - l) /j + 27α (z-i - z) /(j + 1)

"1)7α} z~j"2j7a*"(i + 1 ) ( 1" 7 a ) ]

The function of z in [ •] above is convex and decreasing in 0 < z < 1, for
all | 7 | < 1, with the values +oc at z = 0, and 0 at 2 = 1. Hence we have
Kj(z) > Kj-ι(z). Combining this result with (*), completes the proof of
the lemma. •

Let dj (j = 1,2,3, •) be a unique root in [0,1] of the equation

(15) a \ (1 - 7α) j ^ m"1 (x"m - 1) + 2Ίax ^ m"1 {x~m - 1) \ = 1.
m = l ra=2

Prom Lemma 3.1, the l.h.s. of the equation (15) is smaller than unity,
if and only if x > dj. Note that the values of dj involve 0 < a < 1 and
- 1 < 7 < 1. If a ί 0, (15) reduces to the equation ΣL=i m~1 (x~m - 1) = 1>
which is well-known in the full-information secretary problem (see [2], [4] and
[6]). If 7 = 0 (i.e. bivariate independent uniform distribution), (15) reduces

It is well known that if one-step stopping region is realizable and "closed",
it becomes the optimal stopping region. Prom Lemma 3.1 we thus get

Theorem 3 The optimal stopping rule for the optimality equation (13), for
| 7 | ^ 1> i<s: St°P at the earliest [X^ Yι) that satisfies Y{ > a and X{ —
m&xι<t<iXt > dn-i, where each dj is given by a unique root in [0,1] of the
equation (15).

Table 3 shows the values of dj, for j = 1(1)10,15,20, 7 = -1.0(0.5)1.0,
and a = 0.6,0.7 and gives the following example:

Example 1. For n = 5, 7 = 0.5 and a — 0.6, the optimal stopping rule is:
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α

n 7
1

2

3
4
5

6

7
8

9

10

15

20

α

n 7
1
2

3

4

5

6

7
8

9

10

15

20

-1.0
0.2533

0.4313

0.5383

0.6102

0.6622

0.7016

0.7326

0.7576

0.7783

0.7957

0.8531

0.8852

-1.0

0.2045

0.3724

0.4793

0.5535

0.6084

0.6508

0.6846

0.7123

0.7354

0.7550

0.8209

0.8586

-0.5

0.2689

0.4661

0.5805

0.6546

0.7064

0.7447

0.7741

0.7975

0.8164

0.8321

0.8824

0.9095

-0.5

0.2170

0.4071

0.5249

0.6038

0.6602

0.7025

0.7355

0.7619

0.7834

0.8014

0.8597

0.8915

0.6

0.0

0.2857

0.5000

0.6185

0.6921

0.7421

0.7782

0.8055

0.8268

0.8439

0.8580

0.9021

0.9253

0.7
0.0

0.2308

0.4413

0.5660

0.6461

0.7015

0.7420

0.7729

0.7973

0.8169

0.8330

0.8842

0.9114

0.5

0.3038

0.5326

0.6523

0.7239

0.7713

0.8049

0.8299

0.8493

0.8647

0.8772

0.9162

0.9364

0.5

0.2457

0.4746

0.6029

0.6820

0.7351

0.7732

0.8018

0.8240

0.8417

0.8562

0.9015

0.9251

1.0

0.3232

0.5636

0.6822

0.7508

0.7953

0.8264

0.8493

0.8669

0.8808

0.8921

0.9268

0.9446

1.0

0.2620

0.5068

0.6359

0.7126

0.7629

0.7983

0.8246

0.8449

0.8609

0.8740

0.9143

0.9351

Table 3: Bivariate uniform version of Problem (2°). Values of dj in (15) for
α = 0.6 and α = 0.7



Best-Choice Problems 121

Tr ί Y\ > 0.6 & Xι > 0.7239 1 ,, ί Stop.
It \ ,, >, then < ,

1 otherwise J I observe

L I f ί y2 > 0.6 & I 2 > ^ i V 0.6523 1 t h e n f Stop.
1 otherwise y \ obserobserve

> 0.6 & I 3 > ^ i V l 2 V 0.5326 1 ί Stop.
1 botherwise J ' 1 observe

1
J '

L I f
y4 > 0.6 & I 4 > X i V l 2 V l 3 V 0.3038 1
otherwise J '

then/ S t°P*
\ observe (X^^Y^) Sz stop.

The reward at the earliest [2nd earliest,- , latest] stop is
I(Y1 > 0.6 kXι> max2<t<5Xt) [Ifo > 0.6 & X2 >

3.2 Bivariate normal distribution with pdf (7)

Definition of state (x|n, i) and value vn^{x) value are the same as in the
previous Subsection 3.1. The Optimality Equation is now

(16) vn9i(x) = maxf(Φ(αO)n-\

ωr*-1 Jχ°°Φ(Z) Φ ( ) ]

(i = 1,2, , n; —oo < x < oo; υn,n(^) = 1)

since/*p(z,y)dy = ̂ (z) Φ ( ^ g f ) > by (7).

The one-step stopping region corresponding to this optimality equation

is

B= <{x\n,i)
n

n—i(Φ(x))n-* >

X
ix
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which becomes

= { (x\3) i * Σ jΓ * ( τ r = ^ ) φ { z ) {φ{z)Γ~1
dz

(17)
where we have again set j = n — i, as was done in Subsection 3.1.

Prom (17) we obtain, for any |p| < 1,

(18) B = I (x\j) 1 >
m = l

1 [ ( φ W ) " m - l] I, </ α i -oo,

which is the optimal stopping region for the univariate normal distribution.
This is an evident result, since if X ~ N(0,1), then Φ(X) ~ U[0)ij.

Theorem 4 The optimal stopping rule for the Optimality Equation (??)
for biυariate normal distribution (7) is to: Stop at the earliest (Xi,Yi) that
satisfies Y{ > α and X{ = maxi<ί<^Xί > fn-ij where each fj is given by a
unique root in (—oo, oo) of the equation

( φ

m = l
Γ φ

dz =

Proof. Let the l.h.s. of (19) be Gj(x). Then Gj(x) is decreasing in
(—00,00), with limx-+-ooGj(x) = +00 and \imx^ooGj(x) = 0. Hence
Gj(x) = 1 has a unique root /j in (—00,00) and Gj(x) < 1, if and only
ii x> fj- It is easy to see that the region B given by (17) is "closed".D

The values of {/7}, when p = 0, are given for j = 1(1)10,15,20 and
a = 0.52,0.60,0.70,0.84, 1.00,1.28,1.65 in Table 4. That is, jfj, here, is the
unique root of the equation

(20) J2 m~1 [(φ(*)Γm - l] = (* («)) "'
ra=l ^ ^

Example 2. For n = 5, p = 0 and α = 0.84, the optimal stopping rule is:
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a

j \ Φ(o)

1
2

3
4

5
6

7

8

9

10
15

20

0.52

0.6985

-0.733

-0.145
0.168

0.377
0.531
0.652

0.751
0.834

0.905
0.968

1.198

1.351

0.60

0.7257

-0.788
-0.193

0.125
0.336
0.492
0.614
0.714

0.799
0.871

0.935

1.167
1.322

0.70

0.7580

-0.860
-0.254

0.069

0.283
0.442
0.566

0.668
0.753

0.827

0.891
1.127
1.284

0.84

0.7995

-0.966
-0.345
-0.014

0.206
0.369
0.496

0.600
0.688

0.763

0.829
1.070

1.230

1.00

0.8413

-1.094

-0.453
-0.112

0.115
0.282
0.412

0.519

0.609
0.687
0.754

1.001
1.165

1.28

0.8997

-1.334

-0.653
-0.292

-0.053
0.123
0.261
0.374

0.468

0.549
0.620
0.879

1.050

1.65

0.9505

-1.673
-0.929
-0.538
-0.280
-0.090
0.058
0.178

0.279
0.366
0.442

0.717
0.898

Table 4: Bivariate normal version of Problem (2°). Values of fj in (20) for

various a

Yι > 0.84 k Xι > 0.206 Ί x, ί Stop.
tiΓ r > t h e n { u

otherwise J 1 observe

I f

Yi > 0.84 & I 2 > ^ i V (-0.014)
otherwise

Stop,
observe

I Ys > 0.84 & l 3 > ^ i V l 2 V (-0.345)
otherwise

Stop,
observe

c y 4 > 0.84 & X4 > Xι V X 2 V X3 V (-0.966)

otherwise

Stop.
then

observe &; stop.

The stop reward at each stage is identical as in Example 1, with I5 > 0.6

replaced by Y5 > 0.84.

4 Final remarks.

1) The expected reward obtained by employing the optimal strategy, in The-

orem 3 as well as in Theorem 4, is Wn = max τ Pr {maxi<i<n X{ = Xτ and

YT > a} , and the explicit expression of Wn is presently not known.

2) We note that dό in Theorem 3 and fj in Eq.(20) following Theorem 4
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have interesting limiting expression as j —• oo. Writing dj in Theorem 3 as
dj = (1 + δ/j)~ι, i = 0,1,2, , substituting it into (15), and letting j —> oo,
we obtain

(21) ^ 1 ( t ) | ] \

since we have, as j —» oo, jlog(l + δ/j) —• 5 and Sm^i 7 7 1 " 1 (djm — 1)

Jo *~~1 ( e 5 ί ~-0 ^ Equation (21) has a unique root δ > 0, since

< 1. If 7 = 0 and a = 0.6, we get δ = 1.5763 by finding the root

of Jo
Similarly writing fj in Eq.(20) as Φ(/j) = (1 + ε/j) 1, we get, as j —> oo,

the equation

(22)

which has a unique root in ε > 0. Hence if p = 0 and α = 0.84 , we get

ε = 2.3613 by finding the root of / (e* - 1J Itdt = V" τ-τr = 5.
Jo ^ ^ T—ί ^ ^!

Z = l

3) We note that various similar problems like (1°) and (2°) stated in
Section 1 arise around the works done in the present paper, but they are
more difficult to derive explicit solutions. We show an example.

Let the objective be to derive the stopping rule τ that maximizes
E[XTI(YT = maxι<t<nYt)]' Define the state (x,y|n,i) to mean that no
stop has yet been made, and we face the i-th r.v. with Xi = x and
Yi = max(Yί,Y2, * ,¥ί) = V- Denote by vn^(x,y) the expected reward
obtained by employing the optimal rule for the n-object problem at state
(a:,y|n,i). Let the common distribution of {X^Yij's be bivariate uniform
given by (4). Then the Optimality Equation is vn^(x,y) = max(x, Anj(y)),
where n pi rl

= Σ y3~ι~ι dχl p(rf,j/)vnj{rf,t/W

(i = 1, 2, , n; (x, y) e [0,1]2 vn,n(x, y) =

To derive the optimal stopping rule we have to solve the above recursion
downward.

An,n-i{y) = Jo x'dx'j p{x',y')dy'=y Q + ^

Vn,n-l(x, y) = XV Λι,n-l(ί/)
ί1 f1

An,n-2(y) = dx' p(x', y') (xf V Antn-i(y')) dj/
JO Jy

vn,n-2 {χ,y) = xV An,n-2 (y)
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and so on. But the calculation until reaching vn,i(#, y) is a tediusly lengthy
job even for a small n.

4) However, the present work on the best-choice problem where the se-
quence of bivariate random variables is concerned is one of the other ap-
proaches than that was tried in Sakaguchi [5].

5) Similar problems are investigated in Sakaguchi and Szajowski [6]. In
this work, (XiYi) is a bivariate independent r.v., Y{S are in the condition of
secretary problem, i.e., Pr(Yi — j) = i~ι (j = 1,2, ,i). The problem of
maximizing E[XTI(YT = 1 &; l^+i, * ' >Yn > 2)], and others, are studied.
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