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Following a long-standing suggestion by Samuels and Steele we study the
problem of sequential selection of an increasing subsequence from a random
sample of size N, where N is geometrically distributed with parameter p.
The maximum expected length of a subsequence which can be selected by a
nonanticipating policy is shown to be asymptotic to p~ 12 asp—0.
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1. Introduction. There has been a great deal of interest in long in-
creasing subsequences of a random sequence (see surveys [10], [1]). A central
result in this vein says that the expected length of the longest increasing
subsequence in a sequence of n random items is asymptotic to 2n!/2 (see
[8],[11]).

Samuels and Steele [9] studied selection of a long increasing subsequence
as a dynamical decision problem. In their model, n i.i.d. items with known
continuous distribution are inspected in strict succession. Each item can
be selected or rejected only at the time it is inspected: once rejected, the
item cannot be recalled and if accepted cannot be discarded. The selected
sequence must increase. The objective it to maximize the expected length
of the selected sequence. Samuels and Steele showed that for n large the
maximum expected length is v ~ (2n)/? and demonstrated a policy which
attains this value asymptotically. Comparing v with the length of the longest
increasing subsequence, Samuels and Steele interpreted the ratio 2 : 21/2 a5
the long-run advantage of a prophet with complete foresight of the sequence
over an intelligent but non-clairvoyant gambler, who observes the items in
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time and must exploit nonanticipaiting policies.

In the same paper, Samuels and Steele introduced an analogous model
where the gambler does not know the number of observations, which is a
random variable N with given distribution. This selection problem is more
difficult than its fixed-n counterpart, because the uncertainty over N adds
a new component to the risk.

For concentrated distributions like Poisson (A — c0) or binomial (k —
00, p fixed) the generic value of N does not deviate much from its mean, and
EN is therefore a good estimate for the number of observations. For such
distributions the prophet’s value is about 2(EN)'/2, the gambler’s value is
about (2EN)Y/2 and the prophet-to-gambler ratio is still 21/2 (see [9], [5]).

The problem with N geometrically distributed (parameter p) was intro-
duced in [9] as the next most complex case. Motivated by their fixed-n result
Samuels and Steele put forth the conjecture that for p — 0

v~ cp_l/2

with some positive constant ¢ < 21/2.

Stating the conjecture Samuels and Steele kept an eye on the quantity
(2EN)Y/? which is relevant to concentrated distributions and amounts to
~ 21/2p=1/2 in the geometric case. However, in general E(2N Y1/2 provides
a much better asymptotic upper bound on v. To justify this bound we just
need to apply the fixed-n result to the informed version of the problem where
the gambler is told the value of N prior to the observation. In the geometric
case the new benchmark says that ¢ cannot be larger than (7/2)'/2.

Although the conjecture is settled trivially as it was stated, the sub-
stantial question implicit in the Samuels—Steele paper remains: what is the
gambler’s price for the ignorance about the value of N? In particular, is the
prophet-to-gambler ratio higher than 21/27

In this note we show that the Samuels—Steele constant is ¢ = 1. Because
the prophet’s value is asymptotic to

E(2N1/2) ~ 71,1/2p—1/2’

the prophet-to-gambler ratio increases from 2!/2 in the informed version of
the problem to 7'/2.

In [5] the problem with arbitrary random N was solved in full generality
and the main result of this note follows from the asymptotics for v proved
there. A good reason to present the geometric case separately is that it
can be treated by direct analysis of the optimality equation, along the lines
initiated in [9].

2. Setup. To set the problem formally, let X7, Xo,... be i.i.d. random
points sampled from a continuous distribution. A specific form of the dis-
tribution does not matter, so we will assume that it is uniform [0, 1]. Let N
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be independent of the X’s, with geometric distribution
P(N=j)=p(1-p), j=0,1,...

We consider decision policies which are adapted to Xi, Xs,... and, at
each stage j, prescribe either to select or to reject X;. To assure that the
selected sequence is ascending we require that X; could be accepted only if
X is greater than all items accepted so far.

More precisely, a policy is defined to be an infinite sequence of (finite)
stopping times 7 = (71,79,...), which are adapted to the Xj’s (but not to
N) and satisfy

1<nmn<m<..., Xn <Xp<...

Let
L, = #{i: 7 < N},

be the length of the subsequence selected by 7 from X,..., Xy. The per-
formance of 7 is measured by the expected value EL;. The basic quantity
of interest is the maximum expected length

v(p) =supEL,.
T

Note: although 7 selects infinitely many items we count only those which
fall within X, ..., X (which is an empty sequence if N = 0). In case 7; = j
the ith item selected by 7 is X; and this event depends solely on X1,..., X;.

To understand better the problem think first of the greedy policy which
selects all consecutive records. In particular, the greedy policy always selects
X1. The value of this policy is log p~!, that is the expected number of records
in X1,...,Xn. For p large there is a high probability for N < 1 and the
greedy policy does not perform wrong when selecting the first item whatever
its size.

In contrast to this, for small p the typical value of N is large. If X3
is large the greedy policy cannot be optimal because accepting X; blocks
selecting of many future items of smaller sizes. Quite naturally, the gambler
should set a limit on the size of the first item in order to optimize.

3. Asymptotic solution. A characteristic feature of the geometric
case is a kind of self-similarity of the selection problem. Namely, given that
at stage j the last selected item is of size z, further selection is possible only
from those forthcoming items which are larger than z. The number of such
items is geometrically distributed with parameter

p
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while their sizes are uniformly distributed on (z,1]. Upon obvious identifi-
cations the selection from X1, X;;0,... becomes equivalent to the original
problem with the modified parameter.

Applying this idea to the first observation and evaluating two possible
decisions we arrive at a dynamic programming equation

@ )= (1—zo)/lnm{v(m,l+v(]H(1 L) i
0

(This is a corrected version of the equation appearing in Samuels-Steele [9].
Also, note that the geometric distribution on top of their p. 946 should start
with k = 0.)

From the equation or directly from the definition of v(p) as a supremum
one sees readily that v(p)

(a) is continuous on (0, 1],

(b) is strictly decreasing,

(c) goes to infinity as p | 0,

(d) has the boundary value v(1) = 0.

Upon plugging (1) equation (2) becomes

1
3) o(p) = / (u(s) + 1 — v(p))s~2ds

where + denotes the positive part.
Define p(1) by v(p(1)) = 1. For p > p(1) taking the positive part is
redundant and (3) is easily solved as

(4) v(p) = logp™,

which does not look unexpectedly since the greedy policy is optimal for
sufficiently large p. It follows that p(1) = e

For other values of p there is no simple formula. One explanation for
this is that v is only piecewise analytical. Defining p(k) by v(p(k)) = k for
k=0,1,... we have

(d) v(p) is analytical on each interval [p(k + 1), p(k)],

(e) the (k + 1)th derivative at p(k) has a jump,
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as it will be clear from what follows.

For p > p(1) set s*(p) = 1 and for p < p(1) define s*(p) to be a single
solution to

(5) v(s)+1—v(p) =0.

Let p(v) be the inverse function to v(p).
For p < p(1) the integral term in (3) can be transformed as

s*(p) s*(p) v(s)
/ (v(s) +1—v(p))s~2ds = / s'2ds/ du
p P v

(p)-1

v(p) p(u)
= / du / s~ 2ds
v(p)-1 p(v)
v(p)
- / (L _ _L> du
vp)-1 \p(v)  p(u)
so that the inverse function satisfies
1 /” du
V= — — .
p(’U) v—1 p(u)
Substituting the reciprocal function
1
V) = —
q(v) ()

and differentiating we obtain for v > 1 a retarded differential equation

(6) q(v) =1+q(v) —q(v-1),
which should be complemented for v < 1 by
(7) q(v) =€’

in accord with (4). Now it is seen that ¢” has a jump at v = 1, whence the
properties (d) and (e) follow by induction in k.
Decomposing g(v) as

q(v) = €’ f(v)
leads to the retarded Cauchy problem for f(v)

flv)y=e?—elf(v-1), v>1

with the initial germ f(v) = 1, v € [0, 1]. The equation is solved recursively,
by integrating over consecutive intervals with integer endpoints: for v €
[k, k + 1] we have

fW=eF—e+ fk)+et /ku f(u—1)du.
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Computing for k = 1,2 by this formula we find
2
f)y=1+Z—e™ -2, ve|lL2]
e e

5 2 —y (B+ev  v?
=1+ —=+2-2"v_ —
f(v) +e2+e 2e ) +2e2’
The expressions become quickly involved as k grows, not to say about v(p)
which must be obtained by inverting p(v) = 1/(e f(v)).
To get around consider the Laplace transform

v € [2,3].

i = [ ~ gw)e .

Multiplying (6) by e~ and integrating in X € [1,00) yields

de* +1

qA) = A2eA —der + )

This cannot be simply inverted, but the asymptotic analysis of ¢(v) is now
easy via the behaviour of the Laplace transform at 0. Expanding at zero we

get
2 2 19
i) = — + — + — ...
WN=F*amtm’
where the rest is an entire function. Applying familiar Tauberian arguments

(see [4], p. 151) we obtain for v — oo

(8) av) = v + 2v+ 15 +o(1),
where the o term goes to zero faster than any inverse power of v.
Computing ¢(v) numerically shows that (8) gives an approximation of
supreme quality even for moderate values of v. For example, the numerical
value 19.7(2) computed by (8) for v = 4 coincides with the true value up to
four decimal points.
Inverting (8) leads to

Theorem 1 Forp — 0

o, In\Y2 1
U(P)‘—‘(Pl—ﬁ) -3t

where the remainder goes to zero faster than any power of p.

which is our main result. We see that the conjectured constant is ¢ = 1.
3. Selection policies. The optimal selection policy amounts to the
next rule. Suppose at stage j the size of the last item selected is y and the
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observed item X; = z is larger than y. Then X; should be selected if and
only if

p * P
®) pr-a-p) =" (p+(1—y)(1—p)>'

Stating it differently, the gambler should set certain thresholds. Let §*(y)
be the critical value of z which turns (9) into equality. If the size of the last
item selected so far is y the next selected item should be of size between y
and y + §*(y).

Asymptotics of v(p) implies

s*(p)=p+2° 7+

whence
85*(y) ~ 2(1 — y)/?p*/?

uniformly in y € [0,1]. We will prove next that taking the threshold sug-
gested by this formula results in a policy which is close to optimality for
large n.

Let 7 be a policy with a threshold function satisfying

(10) 8(y) ~ 2(1 - y)"/*p'2.
Theorem 2 Policy 7 is asymptotically optimal, that is
EL; ~p‘1/2, as p — 0.

Proof. Define Y; by setting Yy = 0 and, recursively,

Yiii = Xj+1y if YJ < Xj+1 <Y+ 5(){1)
171 Y5, otherwise.

The Markov sequence {Y;} describes the selection process by 7, with Y;

being the size of the last item selected from Xj,...,X;. Clearly, {Y;} is

weakly increasing: a jump occurs at index j exactly when 7 selects X;. Let

M (y) be the number of jumps and N(y) the number of observations until

{Y;} exceeds y.

We write = for ‘with probability tending to one as p — 0’. Because
the threshold function is smooth, the law of large numbers implies M (y) ~
p(y)p~1/2 for some smooth p with (0) = 0. To determine y take a small
increment A and note that

M(y) — M(y — A) = 24/4(y) + o(A),

because the (conditional) expected height of the first jump which follows
Y; = yis 6(y)/2. Letting A — 0 and integrating we get u(y) = 2-2(1—y)1/2.



108 Gnedin

Similarly, noting that the periods between successive jumps are geomet-
rically distributed we have

N(y) = N(y — A) » 24/ (5(y))* + o(B),

whence N(y) ~ v(y)p~! with v(y) = —log (1 — y)¥/2.

For a generic j of order p~1, Yj is close to y = 1 — %P, as it follows by
inverting N(y). The number of jumps to this time is then M(y) ~ p~1/2(2 -
2e77P). The expected number of choices from N observations is obtained
by averaging the number of jumps over the geometric distribution. Finally,
using the exponential approximation gives

oo
EL: ~p™2 Y p(1 - p)Y (2 — 2¢777) ~
j=0

o0
p_1/2/ e 2 —2¢7Y)dt = p~ /2. a
0

4. Selected sequence. The optimal policy is stationary in the sense
that the threshold which applies to X; depends only on the size Y; of the
last item accepted so far, but does not depend on j explicitly. In [5] an-
other asymptotically optimal policy is constructed, which has a threshold
depending only on index j, and not on Yj.

In other words, there are two very different almost optimal policies; the
first policy has time-independent thresholds, and the second policy has state-
independent thresholds. An explanation of this phenomenon lies in the con-
centration pattern which appeared in the proof of Theorem 2. That is to
say, the optimal sequence converges in a sense to a non-random process, so
that a deterministic dependence between state and space variables appears
in the limit.

To state it expicitly, let ¢,(t), ¢ > 0, be the piecewise linear function
which interpolates the random function pj +— Y; defined on the lattice
{pj}i=12,.- Set ¢(t) =1—e7".

Theorem 3 Suppose the threshold function satisfies (10). Then asp — 0
sup ¢y (t) — ¢(¢)] — 0
in probability. Furthermore, the length of the selected subsequence satisfies
L ~ 2p~'/2¢(T)
(in probability), where T is a standard exponential variable.

From a broader perspective this theorem is an instance of approximating
the path of a Markov chain by an integral curve of a differential equation,
as studied in [7]. Concentration resaults for increasing subsequences in the
fixed-n case are found in [3]. We refer to [5], [2], [6] for further results on
sequential selection of increasing subsequences.
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