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ABSTRACT. The SiZer technique is used to study the homogeneity of a point process
of Internet traffic flow start times. It is seen that a homogenous Poisson process is an
inappropriate model, because it does not yield observed statistically significant bursti-
ness. Some Weibull waiting processes gives better, but still inadequate performance.
A clustered Poisson process gives the best fit.

1. INTRODUCTION

Simulation of Internet traffic is a challenging and interesting problem. It is important

for both Internet researchers (who try to improve the performance of the Internet itself),

and also for testing of many types of Internet based business applications. There is

a strong need for involvement of creative statisticians, both in the development of the

simulation methods, and in the assessment of their performance. This paper discusses

an example demonstrating the usefulness of the relatively new statistical method, SiZer,

and showing that simulation model development and statistical model assessment can

and should interact.

Most of Internet traffic is composed of IP (Internet Protocol) flows. These are the

transfers of data from one computer to another, as described in RFC 791, see Postel

(1981). An IP flow is defined herein as a set of packets carrying IP datagrams that

share the same sending and receiving addresses (more specifically, that have identi-

cal IP addressing 5-tuples consisting of protocol number, source IP address and port

number, and destination IP address and port number). Transport protocols, such as

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol), provide

higher-level communication services built on top of IP that support the exchange of

information between applications. Web browsing, email, telnet and many others use

TCP over IP, while audio/video streaming, name resolution, and other applications

use UDP over IP. IP is therefore the fundamental building block of the Internet, and

its complex behavior is the result of aggregating the communication patterns of very
87



88 Marron, Hernandez-Campos and Smith

diverse applications. Consequently, modeling IP is a remarkably challenging problem

that has attracted a lot of attention over the last decade.

One way to simulate overall traffic is to simulate the flows, and then to aggregate

them. There are three essential components of this, the point process of flow starts,

the duration distribution of the flow, and the structure of the transmission within the

flow. In this paper only the point process of the flow start times is considered. See

Paxson (1994), Danzig, Jamin, Caceres, Mitzel, and Estrin (1992), Cleveland, Lin and

Sun (2000), Feldmann (2000) and Cao, Cleveland, Lin and Sun (2001) for important

work on this. See Garrett and Willinger (1994), Leland, Taqqu, Willinger, and Wilson

(1994) and Paxson and Floyd (1995) and Crovella and Bestavros (1996) for access to the

large literature on flow duration distributions, and some very interesting implications

of that work. See Kulkarni, Marron and Smith (2000) for an approach to simulation

of within flow traffic structure.

Figure 1 is a real data visualization of the point process of the start times of n =

115548 IP flows. Each dot represents one flow start, with the x coordinate representing

the start time, and a "jittered" random y coordinate to separate the dots for easy

viewing. Because showing all of the data would result in massive overplotting, only a

random sample of 2000 is shown here. All data sets in this paper are one dimensional

(events occurring in time), with some vertical jittering (see e.g. pages 121-122 of

Cleveland 1993) occasionally added just for visualization. The data were collected at

the main link between the University of North Carolina at Chapel Hill and the rest

of the Internet, on a Sunday morning in 2000. The methodology used in this traffic

capturing effort is described in Smith, Hernandez-Campos, Jeffay and Ott (2001). Here

all packets in a time interval of approximately 40 minutes are considered, and a dot is

shown the first time a new pair of sending and receiving address is observed. To avoid

the boundary effect of dots piling up on the left end (indicating flows extending beyond

the left in an unobservable way), the left 20% of the picture is not shown. Using this

visualization, it is hard to notice structure in the data that is different from a random

uniform distribution of the points.

A simple model for random uniformly distributed events, such flow start times as

shown in Figure 1, is a Poisson point process. See any standard probability text

covering point processes, e.g. Chapter 3 of Resnick (1987), for a detailed description
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FIGURE 1. Visualization of IP flow start times, from main link between

UNC and the Internet Random sample of 2000 from 111822.

and development. Such a model is characterized by independent exponential inter-

arrival times (time spacing between consecutive dots). If the data are binned to any

equally spaced grid, the bin counts are independent, and have a Poisson distribution

with the same mean parameter over different bins. This mean parameter is called the

"intensity", and the full process is called a "Homogeneous Poisson Process". A very

relevant variation is the "Nonhomogeneous Poisson Process", where the intensity is a

function of location, i.e. the points are more dense in some locations and more sparse

in others.

The goal of this paper is the careful investigation of the time varying intensity

function of the point process shown in Figure 1, and the intensity of some simulation

models. This function can be estimated using essentially kernel density estimation

methods. A critical question is whether or not "bumps" observable in the kernel

smooth represent important departures from the standard homogeneity structure, or

instead could be explained by the natural sampling variability inherent to the Poisson
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Process. The SiZer method is a powerful and convenient visual device for answering

this question.

A quick introduction to SiZer, together with an analysis of the data in Figure 1 is

given in Section 2. It is seen that the data in Figure 1 is clearly not a homogeneous

Poisson model. In particular, the data exhibit more "clumping" than a standard ho-

mogeneous Poisson Process (i.e. a tendency towards "more than random clustering").

The SiZer analysis shows that this difference is statistically significant. This motivates

a search for a start time model with characteristics closer to the data.

Cleveland, Lin and Sun (2000) and Cao, Cleveland, Lin and Sun (2001) have sug-

gested that inter-arrival times may be better fit by non-exponential Weibull distribu-

tions. They construct a start time model by combining Weibull interarrivals with an

appropriate long range dependence structure.

In this paper, independent Weibull inter-arrival times (with shape parameter less

than 1) are aggregated to give a non-Poisson start time process, that might be expected

to yield clumping of the type found in Section 2. Such processes are considered in

Section 3, where SiZer is used to understand the characteristics of two variations of this.

Unfortunately, sensible estimates of the Weibull shape parameter do not give the right

level of bumps. While bumpiness similar to that in the real data can be generated

using a deliberately tuned Weibull shape parameter, it is seen that the inter-arrival

times are then completely inappropriate.

This motivates an alternate model, the "Clustered Poisson Process", considered in

Section 4. It is seen that an appropriately tuned version of this model has much better

SiZer properties, that are much closer to those of the real data. Hence the Clustered

Poisson Process is recommended for further investigation as a leading candidate for the

simulation of IP flow start times. Moreover, these results highlight the importance of

the inclusion of flow dependencies in traffic models. The behavior of some applications

that drive Internet traffic provides an intuitive explanation of these dependencies. In

particular, the start times of worldwide web flows naturally cluster around web pages.

2. INITIAL SIZER ANALYSIS

SiZer (shortening of Significance of ZERo crossings of the derivative) is a method for

understanding statistically significant features in smoothing methods. These meth-

ods include scatterplot smoothing, i.e. nonparametric regression, and smoothed his-

tograms, i.e. kernel density estimation. Poisson intensity estimation is very closely
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related to kernel density estimation. In particular, Homogeneous Poisson Process data,

conditioned on the sample size (the total number of points in the picture), have a uni-

form probability density. So finding nonhomogeneity of point process data is equivalent

to finding non-constancy in the slope of the corresponding density.

A SiZer analysis of the data shown in Figure 1 appears in Figure 2. The top panel

shows a number of blue curves, which are kernel density estimates, reflecting the local

intensity (i.e. higher where there are more, lower where there are less) of the points

displayed in Figure 1 (a subset of which are displayed as jittered green dots). There

are several blue curves corresponding to different levels of "smoothing". The level of

smoothing is roughly the binwidth of the underlying histograms, but more precisely is

the "bandwidth", i.e. the standard deviation of the smoothing window functions.

Some of the blue curves appear quite smooth, suggesting clear homogeneity of the

point process in Figure 1. These correspond to a large bandwidth. Others, corre-

sponding to smaller bandwidths, suggest some regions of nonhomogeneity, i.e. "bumps"

in the distribution of points (suggesting "burstiness") in Figure 1.

But do these bumps represent important underlying structure, i.e. genuine nonho-

mogeneity of the process, or are they simply artifacts of the natural Poisson variability?

This important question is addressed using the SiZer method developed by Chaudhuri

and Marron (1999). A detailed introduction, with examples, can be found at the web

site:

h t t p : //www. s t a t . unc. edu/f aculty/marron/DataAnalyses/SiZer_Intro. html.

An important component of SiZer is the "scale space" view of smoothing, where a wide

family of smooths, such as those in the top panel of Figure 2, is considered.

The density estimation version of the SiZer map, shown in the bottom panel of

Figure 2, is based on confidence intervals (at significance level a — 0.05) for the slopes

of the kernel density estimates. Experimentation shows that changing this significance

level over reasonable values (a = 0.001 t o α = 0.2) results in generally small changes

in the SiZer map The rows of the map indicate different scales (i.e. bandwidths), and

each row corresponds to a blue curve shown in the top panel. When the confidence

interval is completely above 0, the slope is significantly increasing, and the color blue

is used. When it is completely below 0, it goes down, where red is used. When

the confidence interval contains 0, the slope is unclear, and the color purple is used.

Visual correspondence between the scales (bandwidths) and the inference being done
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in the SiZer map is given by the dashed white curves. These show the "effective

window width" of the smooths, in terms of plus or minus two standard deviations of

the Gaussian window function at each level of resolution.

The confidence intervals used in SiZer are based on standard central limit theory

calculations. This requires a reasonable number of data points in each window. This

is not an issue in this paper, because of the large size of the data sets. For smaller

data sets, the fourth color of gray is used in locations where there is not enough data

for reliable inference.

An important issue is to make the confidence intervals simultaneous, i.e. to take the

multiple comparison problem into account. This is done using an "effective number

of independent blocks" adjustment.

The SiZer map in Figure 2 shows a large amount of nonhomogeneous structure in

the data displayed in Figure 1. The red at the top shows that at larger scales there is

statistically significant downward trend in start times. This is caused by the fact that

simply cutting off the first 20% of the flows is only a crude boundary adjustment, and

even over this range, flows are still a little more likely to start at the beginning than

at the end. The effect is not strong, but with n = 115548 data points, SiZer will find

even small departures from homogeneity.

The lower part of the SiZer map shows many red and blue regions. These correspond

to "finer scale views of the data", i.e. the use of smaller bandwidths (essentially

histogram binwidths). The red and blue colors show that the slopes of the blue curves,

which make up the bumps in the top panel, are steeper than would be generated by a

homogeneous Poisson process. In other words this point process is more bursty than

data simulated from a naive Poisson model.

This idea is checked in Figure 3, where the SiZer analysis is repeated for data simu-

lated from a homogeneous Poisson Process. These simulated data use the same time

interval, and are conditioned on the same number n = 115548 of points. Note first

that the family of blue curves in the top panel of Figure 3 include some very smooth

(large scale) members, and some wiggly (fine scale) members. The magnitudes of the

small scale wiggles appear to be perhaps smaller in Figure 3 than in Figure 2. The

corresponding SiZer maps show that this difference is very marked in the sense of

statistical significance. The Figure 3 SiZer is almost completely purple, indicating that
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FIGURE 2. SiZer analysis of the full data set from Figure 1. The family

of intensity estimates appears in top panel, and SiZer map in the bottom.

The SiZer map reveals statistically significant burstiness.

the wiggles in the top panel are no larger than expected due to the natural variability

in a homogeneous Poisson process.

There are some blue and red regions in the SiZer map, that are caused by boundary

effects. In all the SiZer maps shown in this paper, boundary effects are mitigated using

a simple "reflection" adjustment, where the data are reflected beyond the endpoints

and included in the estimation process. See e.g. Section 2.10 of Silverman (1986) or
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FIGURE 3. SiZer analysis of simulated homogeneous Poisson process

data, showing that SiZer does not label bursts here as statistically sig-

nificant.

Section 6.2.3.5 of Scott (1992) for description and further discussion. While this ap-

proach significantly decreases boundary effects, these show that they do not disappear

completely.
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3. A WEIBULL WAITING TIME MODEL

The lesson from Figure 2, that the point process of inter-arrival times is not exactly a

Poisson process, has already been observed in other contexts. For example, Cleveland,

Lin and Sun (2000) and Feldmann (2000) show that a Weibull distribution with a

shape parameter less than one (thus not exponential, in the direction of "heavier tails")

frequently provides a better fit to the distribution of packet inter-arrival times.

Heavier tailed inter-arrival time distributions are expected to produce "more than

the usual burstiness" in the overall process, as observed in Figure 2, because there will

be more longer and also more shorter interarrivals than expected for the exponential

waiting time. This motivates a careful look at the inter-arrival time distribution.

The distribution of the inter-arrival times for the data of Figure 1 is analyzed in

Figure 4A, using a Q-Q (Quantile vs. Quantile) plot. This is a graphical method for

assessing the goodness of fit of the exponential distribution to the data. The main

Q-Q plot is the red curve, which shows the data quantiles (i.e. the sorted data values)

on the vertical axis, with the corresponding theoretical quantiles, from the exponential

distribution, on the horizontal axis. When the theoretical distribution is a good fit

to the data, the red curve should be "close" to the forty five degree line through the

origin, shown here as a diagonal green line. A serious practical hurdle for this type

of analysis, has been understanding what is meant by "close", because the red curve

never completely follows the diagonal green line due to sampling variability. The

envelope of blue curves provides a simple visual accounting for this natural variability.

Each of these curves is a similar Q-Q plot, where the "data" are simulated from the

theoretical distribution (with the same sample size of n = 115548), to reflect the

variability inherent to the sampling process. Good visual impression comes from

overlaying 100 such blue curves. When the theoretical distribution is a good fit to

the data, the red curve should lie mostly within the blue envelope. The observed

substantial departures of the red curve from the blue envelope indicate strong lack of

fit between the data and the theoretical distribution.

In Figure 4A, the theoretical distribution (with quantiles shown on the horizontal

axis) is the Exponential distribution (i.e. the Weibull distribution with shape parameter

a = 1), with scale parameter σ = 0.0157 (taken to be the sample mean, which is the

maximum likelihood estimate).
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FIGURE 4. (A) Q-Q analysis (red curve), of the data from Figure 1

compared to an Exponential distribution (with parameters shown). Blue

envelope shows sample variability, making it clear that the Exponential

distribution is a poor fit.

Figure 4A shows that the Exponential distribution does not provide an acceptable

fit to the inter-arrival times for the point process data shown in Figure 1, because the

red curve is far outside the blue envelope in several places. Furthermore, it is seen

that the real data have a "heavier tail" than the exponential because the red curve is

well above the blue envelope for the larger quantiles. This is completely consistent

with the lesson from Figure 2, that the original data axe not well fit by a homogeneous

Poisson process.

The Q-Q plot in Figure 4A also suggests that perhaps a fairly simple modification

of the theoretical distribution could yield an appropriate fit. In particular, some

modification of the Weibull shape parameter might work. This path is pursued in
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FIGURE 4. (B) Q-Q analysis (red curve), of the data from Figure 1

compared to a Weibull distribution (with parameters shown, estimated by

quantile matching). Blue envelope shows this Weibull distribution gives

an acceptable fit.

Figure 4B, where the theoretical underlying exponential distribution has been replaced

by a more general Weibull distribution. This time the Weibull parameters a and σ

have been estimated by "quantile matching", in particular they have been chosen to

make the theoretical 0.99 and 0.999 quantiles the same as the data (i.e. the red curve

crosses the green line at these two points indicated by circles in Figure 4B).

This Q-Q plot (the red curve) lies almost entirely within the blue envelope, suggesting

that this Weibull distribution gives an acceptable fit to the data. The estimated shape

parameter is a = 0.90, which means a tail that is heavier than for the Exponential

distribution, which appears to be consistent with the statistically significant burstiness

observed using the SiZer method in Figure 2.

A natural way to use this information in an improved start time simulation model,

is to use independent Weibull variables (with parameters σ = 0.0148 and a = 0.90)
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to generate the spacings (inter-arrival times) between the events in a point process.

It is seen in Figure 4B that the Weibull distribution is correct, but the assumption

of independence is not so clear. This issue is addressed in Figure 5, where a SiZer

analysis is used to assess the burstiness of this independent Weibull(0.9) point process.

As above n = 115548 data points were simulated. The total time span shown is the

sum of the simulated realizations.

The magnitude of wiggles in the blue family of intensity estimates in the top panel

looks more like the simulated data in Figure 3 than the real data in Figure 2. This

impression is confirmed by the SiZer map in the bottom panel, which shows that none

of the bursts are statistically significant. The SiZer map also shows a small amount

of boundary effect, as in Figure 3. This shows that the point process in Figure 2 is

clearly not an independent Weibull(0.9) inter-arrival process. While the Weibull(0.9)

distribution is correct, the independence is not. Generating dependent processes is

much more complicated (because a dependence structure needs to be specified). Some

ideas for addressing this problem are given in Section 4.

A surprising feature in the SiZer map is the red band near the top. This indicates

a statistically significant downward trend, which suggests that the heavy tail of the

Weibull inter-arrival distribution creates some perhaps unexpected type of spurious

dependence.

An interesting side issue is whether any independent Weibull inter-arrival time

process could generate the type of burstiness observed in Figure 2. In particular,

heavier tailed Weibull distributions should induce both longer and shorter waiting

times, which should result in significant burstiness. Some experimentation with the

Weibull shape parameter showed that a = 0.45 was quite interesting in this respect.

The resulting SiZer analysis is shown in Figure 6 (using the simulation scheme as

for Figure 5, except that now a = 0.45). Other values of a will be of interest to

some, but are omitted here to save space. However, these can by viewed in the files

UNC2000FlowSimWeibToylIntArrs20.ps, UNC2000FlowSimWeibToy2IntArrs20.ps,

UNC2000FlowSimWeibToy3IntArrs20.psandUNC2000FlowSimWeibToy4IntArrs20.ps

in the web directory h t tp : / /www.unc .edu/depts / s ta t i s t ics /pos tscr ip t /papers /

marron/NetworkData/StartTimeSiZer/

The magnitude of the wiggles in the top panel of Figure 7 is similar to those in Figure

2, although the "frequency" may not be the same. The corresponding structure in the
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FIGURE 5. SiZer analysis of start times simulated by Weibull(0,90) re-

newal model. Shows structure closer to homogeneous Poisson process,

than to real data.

SiZer maps are similar near the medium scales, i.e. window widths near log10 h « 1.5.

However, they are different at the finer scales, i.e. the smaller window widths. This

shows that while the independent Weibull(0.45) inter-arrival process gets the medium

scale burstiness approximately correct, it only does so at the cost of introducing some

fine scale burstiness that is not present in the real data.
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FIGURE 6. SiZer analysis of start times simulated by Weibull(0.45) re-

newal model. Shows features similar to real data, but with some differ-

ences.

If one is willing to ignore this additional small scale burstiness it might be tempting

• to use this as a simulation model for IP flow start times. In this case one should

check how well the Weibull (0.45) inter-arrival times approximate the true inter-arrival

times. The Q-Q plot, for comparing the original data with the theoretical distribution

of Weibull(0.45) is shown in Figure 7.
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FIGURE 7. Q-Q analysis of start times simulated by Weϊbull(0.45) re-

newal model. Shows this model clearly inappropriate.

Figure 7 shows that the Weibull (0.45) is an extremely poor fit of the inter-arrival

distribution on the data shown in Figure 1. The conclusion of this section is that

independence of the inter-arrival distribution is an unworkable assumption.

4. A CLUSTERED POISSON MODEL

There are many possibilities for generation of point processes with dependent inter-

arrival times. A sensible approach is to start with simple processes, and to at least

initially give most weight to models with substantial physical interpretation. Gennady

Samorodnitsky suggested the simple and intuitive Clustered Poisson model as satisfy-

ing these criteria. This model was also proposed and studied by Santiee, Nuzman,

Sweldens, and Weiss (2001).

The Clustered Poisson model starts with an underlying homogeneous Poisson Process.

At each of those event times, a random number of additional "nearby" points is gen-

erated and the combined set of points are the events of the full process. This process

makes physical sense for many applications that communicate using IP, such as the

world-wide web. Web browsers usually make a first request to download the source

code of a given web page. If a page has embedded objects (such as graphics, banner ads

or internal frames), the web browser opens a new connection for each object download

(this behavior corresponds to the non-persistent version of HTTP, which accounted

for 85% of all the HTTP flows in the data set. See Smith, Hernandez-Campos, Jeffay

and Ott (2001) for more details.) Studies of web traffic, such as Mah (1997), Barford

and Crovella (1998) and Smith, Hernandez-Campos, Jeffay and Ott (2001), show that

most pages do have embedded objects, and the size of these objects is small. As a

consequence, accurate modeling of this flow arrival process is critical.



102 Marron, Hernandez-Campos and Smith

As a simple first attempt, clusters were simulated according to a Poisson distribution,

with mean parameter λ. Because of the above idea of web pages calling for additional

flows, cluster points always appear later in time than the initial Poisson point. A

very simple distribution for the cluster points is the right triangular density, supported

on the interval [0,τ], with peak at 0. This reflects the idea that cluster points are

somewhat more likely to be closer to the original Poisson point, and have a compactly

supported distribution (perhaps related to the original flows round trip time). All

of the above choices should be regarded as crude first approximations. It would be

very interesting to update these assumptions, particularly based upon the study of the

underlying processes at work with IP flows.

These assumptions reduce the model choice to only the choice of λ and r, as well as

the Poisson intensity of the original process. For each λ, the latter was chosen to give a

similar number of points, over nearly the same time interval as the original data in Fig-

ure 1. Choice of the parameters λ and r, was then done with a trial and error process,

with the goal of emulating the SiZer performance of Figure 2. Some of the intermedi-

ate steps are interesting, but are not shown here to save space. These can be found

in the files UNC2000FlowSimClustPoislls20.ps, UNC2000FlowSimClustPoisl2s20.ps,

UNC2000FlowSimClustPoisl3s20.ps and UNC2000FlowSimClustPoisl4s20.ps in the

above web directory, but are not shown here to save space.

The best simulated result, using the parameters λ = 16 and τ = 20, is shown in

Figure 8.

The wiggles in the top panel of Figure 8 have a visually similar random structure

to those in the top panel of Figure 2. The SiZer map also has a somewhat similar

structure for the medium and also small scales (in the sense of a similar distribution).

The large scale structure is different, but again this seems to be within the range of

"reasonable distributional differences".

Another type of confirmation comes from a Q-Q analysis, as in Figure 4. This showed

a reasonable fit of the Weibull distribution, except for some boundary distortion. It

is not shown here to save space, but is available in the file

UNC2000FlowSimClustPoisl4QQlog.ps in the above web directory.

Hence the Clustered Poisson model is recommended for further work as a candidate

model for the simulation of IP flow start times. It is expected that a deeper analysis of
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FIGURE 8. SiZer analysis of start times simulated by Clustered Poisson

model. Suggests similar structure to real data, analysed in Figure 2.

the cluster number parameter λ, and the cluster distribution, will reveal new insights

about the working of Internet traffic.

5. ACKNOWLEDGEMENT

The research of J. S. Marron was supported by Cornell University's College of Engi-

neering Mary Upson Fund and NSF Grant DMS-9971649. Most of the data analysis

in this paper was done in the stimulating environment of the course OR 778, taught



104 Marron, Hernandez-Campos and Smith

by the first author in the Fall of 2001 at the Cornell University School of Operations

Research and Industrial Engineering.

REFERENCES

[1] Barford, P. and Crovella, M. (1998) Generating representative web workloads for network and

server performance evaluation. Proceedings of the ACM SIGMETRICS Conference, Madison, WI,

July 1998.

[2] Chaudhuri. P. and Marron, J. S. (1999) SiZer for exploration of structure in curves, Journal of

the American Statistical Association, 94, 807-823.

[3] Cleveland, W. S. (1993) Visualizing Data, Hobart Press, Summit, New Jersey, U.S.A.

[4] Cleveland, W. S., Lin, D. and Sun, D. X. (2000) IP packet generation: statistical models for TCP

start times based on connection-rate superposition, Performance Evaluation Review: Proc. ACM

Sigmetrics 2000, 28, 166-177.

[5] Cao, J., Cleveland, W. S., Lin, D. and Sun, D. X. (2001) On the nonstationarity of internet

traffic, Proceedings of ACM SIGMETRICS '01, 102-112.

[6] Crovella, M. E. and A. Bestavros, A. (1996) Self-similarity in world wide web traffic evidence and

possible causes, Proceedings of the ACM SIGMETRICS 96, pages 160-169, Philadelphia, PA.

[7] Danzig, P. B., Jamin, S., Caceres, R., Mitzel, D. and Estrin, D. (1992) An Empirical Work-

load Model for Driving Wide-area TCP/IP Network Simulations, Internetworking: Research and

Experience, 3, 1-26.

[8] Feldmann, A. (2000) Characteristics of TCP connection arrivals, Self-Similar Network Traffic

and Performance Evaluation, K. Park and W. Willinger, eds., John Wiley, New York.

[9] Garrett, M. W. and Willinger, W. (1994). Analysis, Modeling and Generation of Self-Similar

Video Traffic, Proceeding of the ACM Sigcom '94, London, UK, 269-280.

[10] Kulkarni, V. G., Marron, J. S. and Smith, F. D. (2000) A Cascaded On-Off Model for TCP

Connection Traces, unpublished manuscript.

[11] Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D. V. (1994). On the Self-Similar Nature

of Ethernet Traffic (Extended Version), IEEE/ACM Trans, on Networking, 2, 1-15.

[12] Mah, B. A. (1997) An empirical model of HTTP network traffic, Proceedings of the IEEE Inter-

national Conference on Computer Communication, Kobe, Japan.

[13] Paxson, V. (1994) Empirically-Derived Analytic Models of Wide-Area TCP, Connections.

IEEE/ACM Transactions on Networking, 2, 316-336.

[14] Paxson, V. and Floyd, S. (1995) Wide Area traffic: the failure of Poisson modeling, IEEE/ACM

Transactions on Networking, 3, 226-244.

[15] Postel, J. (1981) Internet Protocol, Internet Request for Comments (RFC), no. 791, September

1981.

[16] Resnick, S. I. (1987) Extreme Values, Regular Variation and Point Processes, Springer-Verlag,

New York.



A SiZer analysis of IP Flow start times 105

[17] Santiee, I., Nuzman, C, Sweldens, W. and Weiss, A. (2001) A compound model for TCP con-

nection arrivals: empirical study with a general framework, to appear in the Proceedings of ITC

2001, Brazil, Sep 2001.

[18] Scott, D. W. (1982) Multivariate Density Estimation Theory, Practice and Visualization, Wiley,

New York.

[19] Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis, Chapman and Hall,

London.

[20] Smith, F. D., Hernandez-Campos, F., Jeffay, K. and Ott, D. (2001) What TCP/IP Protocol

Headers Can Tell Us About The Web, Proceedings of the ACM SIGMETRICS/Performance.

J. S. MARRON

SCHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING

CORNELL UNIVERSITY ITHACA

NEW YORK 14853

AND DEPARTMENT OF STATISTICS

UNIVERSITY OF NORTH CAROLINA CHAPEL HILL

NC 27599-3260

marron@email. unc. edu

FELIX HERNANDEZ-CAMPOS

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF NORTH CAROLINA

CHAPEL HILL, NC 27599-3175

fhernand@cs. unc. edu

F. D. SMITH

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF NORTH CAROLINA

CHAPEL HILL, NC 27599-3175

smithfdύcs. unc. edu






