
Chapter 3

Transductive PAC-Bayesian
learning

3.1. Basic inequalities

3.1.1. The transductive setting. In this chapter the observed sample (Xi,

Yi)N
i=1 will be supplemented with a test or shadow sample (Xi, Yi)

(k+1)N
i=N+1 . This point

of view, called transductive classification, has been introduced by V. Vapnik. It may
be justified in different ways.

On the practical side, one interest of the transductive setting is that it is often a
lot easier to collect examples than it is to label them, so that it is not unrealistic to
assume that we indeed have two training samples, one labelled and one unlabelled.
It also covers the case when a batch of patterns is to be classified and we are allowed
to observe the whole batch before issuing the classification.

On the mathematical side, considering a shadow sample proves technically fruit-
ful. Indeed, when introducing the Vapnik–Cervonenkis entropy and Vapnik–Cervo-
nenkis dimension concepts, as well as when dealing with compression schemes, albeit
the inductive setting is our final concern, the transductive setting is a useful detour.
In this second scenario, intermediate technical results involving the shadow sample
are integrated with respect to unobserved random variables in a second stage of the
proofs.

Let us describe now the changes to be made to previous notation to adapt them
to the transductive setting. The distribution P will be a probability measure on the
canonical space Ω = (X×Y)(k+1)N , and (Xi, Yi)

(k+1)N
i=1 will be the canonical process

on this space (that is the coordinate process). Unless explicitly mentioned, the
parameter k indicating the size of the shadow sample will remain fixed. Assuming
the shadow sample size is a multiple of the training sample size is convenient without
significantly restricting generality. For a while, we will use a weaker assumption than
independence, assuming that P is partially exchangeable, since this is all we need in
the proofs.

Definition 3.1.1. For i = 1, . . . , N , let τi : Ω → Ω be defined for any

111



112 Chapter 3. Transductive PAC-Bayesian learning

ω = (ωj)
(k+1)N
j=1 ∈ Ω by⎧⎪⎨⎪⎩

τi(ω)i+jN = ωi+(j−1)N , j = 1, . . . , k,

τi(ω)i = ωi+kN ,

and τi(ω)m+jN = ωm+jN , m �= i, m = 1, . . . , N, j = 0, . . . k.

Clearly, if we arrange the (k + 1)N samples in a N × (k + 1) array, τi performs
a circular permutation of k + 1 entries on the ith row, leaving the other rows
unchanged. Moreover, all the circular permutations of the ith row have the form
τ j
i , j ranging from 0 to k.

The probability distribution P is said to be partially exchangeable if for any
i = 1, . . . , N , P ◦ τ−1

i = P.
This means equivalently that for any bounded measurable function h : Ω → R,

P(h ◦ τi) = P(h).
In the same way a function h defined on Ω will be said to be partially exchange-

able if h ◦ τi = h for any i = 1, . . . , N . Accordingly a posterior distribution ρ : Ω →
M1

+(Θ,T) will be said to be partially exchangeable when ρ(ω, A) = ρ
[
τi(ω), A

]
, for

any ω ∈ Ω, any i = 1, . . . , N and any A ∈ T.

For any bounded measurable function h, let us define Ti(h) = 1
k+1

∑k
j=0 h ◦ τ j

i .
Let T (h) = TN ◦ · · · ◦T1(h). For any partially exchangeable probability distribution
P, and for any bounded measurable function h, P

[
T (h)

]
= P(h). Let us put

σi(θ) = 1
[
fθ(Xi) �= Yi

]
, indicating the success or failure of fθ

to predict Yi from Xi,

r1(θ) =
1
N

N∑
i=1

σi(θ), the empirical error rate of fθ

on the observed sample,

r2(θ) =
1

kN

(k+1)N∑
i=N+1

σi(θ), the error rate of fθ on the shadow sample,

r(θ) =
r1(θ) + kr2(θ)

k + 1
=

1
(k + 1)N

(k+1)N∑
i=1

σi(θ), the global error
rate of fθ,

Ri(θ) = P
[
fθ(Xi) �= Yi

]
, the expected error

rate of fθ on the ith input,

R(θ) =
1
N

N∑
i=1

Ri(θ) = P
[
r1(θ)

]
= P

[
r2(θ)

]
, the average expected

error rate of fθ on all inputs.

We will allow for posterior distributions ρ : Ω → M1
+(Θ) depending on the shadow

sample. The most interesting ones will anyhow be independent of the shadow labels
YN+1, . . . , Y(k+1)N . We will be interested in the conditional expected error rate of
the randomized classification rule described by ρ on the shadow sample, given the
observed sample, that is, P

[
ρ(r2)|(Xi, Yi)N

i=1

]
. This is a natural extension of the

notion of generalization error rate: this is indeed the error rate to be expected
when the randomized classification rule described by the posterior distribution ρ
is applied to the shadow sample (which should in this case more purposefully be
called the test sample).
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To see the connection with the previously defined generalization error rate, let us
comment on the case when P is invariant by any permutation of any row, meaning
that

P
[
h(ω ◦ s)

]
= P

[
h(ω)

]
for all s ∈ S({i + jN ; j = 0, . . . , k})

and all i = 1, . . . , N , where S(A) is the set of permutations of A, extended to
{1, . . . , (k + 1)N} so as to be the identity outside of A. In other words, P is as-
sumed to be invariant under any permutation which keeps the rows unchanged.
In this case, if ρ is invariant by any permutation of any row of the shadow sam-
ple, meaning that ρ(ω ◦ s) = ρ(ω) ∈ M1

+(Θ), s ∈ S({i + jN ; j = 1, . . . , k}),
i = 1, . . . , N , then P

[
ρ(r2)|(Xi, Yi)N

i=1

]
= 1

N

∑N
i=1 P

[
ρ(σi+N )|(Xi, Yi)N

i=1

]
, meaning

that the expectation can be taken on a restricted shadow sample of the same size as
the observed sample. If moreover the rows are equidistributed, meaning that their
marginal distributions are equal, then

P
[
ρ(r2)|(Xi, Yi)N

i=1

]
= P

[
ρ(σN+1)|(Xi, Yi)N

i=1

]
.

This means that under these quite commonly fulfilled assumptions, the expectation
can be taken on a single new object to be classified, our study thus covers the case
when only one of the patterns from the shadow sample is to be labelled and one is
interested in the expected error rate of this single labelling. Of course, in the case
when P is i.i.d. and ρ depends only on the training sample (Xi, Yi)N

i=1, we fall back
on the usual criterion of performance P

[
ρ(r2)|(Zi)N

i=1

]
= ρ(R) = ρ(R1).

3.1.2. Absolute bound. Using an obvious factorization, and considering for the
moment a fixed value of θ and any partially exchangeable positive real measurable
function λ : Ω → R+, we can compute the log-Laplace transform of r1 under T ,
which acts like a conditional probability distribution:

log
{

T
[
exp(−λr1)

]}
=

N∑
i=1

log
{

Ti

[
exp(− λ

N σi)
]}

≤ N log
{

1
N

N∑
i=1

Ti

[
exp

(
− λ

N σi

)]}
= −λΦ λ

N
(r),

where the function Φ λ
N

was defined by equation (1.1, page 2). Remarking that

T
{

exp
[
λ
[
Φ λ

N
(r) − r1

]]}
= exp

[
λΦ λ

N
(r)
]
T
[
exp(−λr1)

]
we obtain

Lemma 3.1.1. For any θ ∈ Θ and any partially exchangeable positive real measur-
able function λ : Ω → R+,

T
{

exp
[
λ
{
Φ λ

N

[
r(θ)

]
− r1(θ)

}]}
≤ 1.

We deduce from this lemma a result analogous to the inductive case:

Theorem 3.1.2. For any partially exchangeable positive real measurable function
λ : Ω × Θ → R+, for any partially exchangeable posterior distribution π : Ω →
M1

+(Θ),

P

{
exp

[
sup

ρ∈M1
+(Θ)

ρ
[
λ
[
Φ λ

N
(r) − r1

]]
− K(ρ, π)

]}
≤ 1.
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The proof is deduced from the previous lemma, using the fact that π is partially
exchangeable:

P

{
exp

[
sup

ρ∈M1
+(Θ)

ρ
[
λ
[
Φ λ

N
(r) − r1

]]
− K(ρ, π)

]}
= P

{
π
{

exp
[
λ
[
Φ λ

N
(r) − r1

]]}}
= P

{
Tπ
{

exp
[
λ
[
Φ λ

N
(r) − r1

]]}}
= P

{
π
{

T exp
[
λ
[
Φ λ

N
(r) − r1

]]}}
≤ 1.

3.1.3. Relative bounds. Introducing in the same way

m′(θ, θ′) =
1
N

N∑
i=1

∣∣∣1[fθ(Xi) �= Yi

]
− 1

[
fθ′(Xi) �= Yi

]∣∣∣
and m(θ, θ′) =

1
(k + 1)N

(k+1)N∑
i=1

∣∣∣1[fθ(Xi) �= Yi

]
− 1

[
fθ′(Xi) �= Yi

]∣∣∣,
we could prove along the same line of reasoning

Theorem 3.1.3. For any real parameter λ, any θ̃ ∈ Θ, any partially exchangeable
posterior distribution π : Ω → M1

+(Θ),

P

{
exp

[
sup

ρ∈M1
+(Θ)

λ
[
ρ
{
Ψ λ

N

[
r(·) − r(θ̃),m(·, θ̃)

]}
−
[
ρ(r1) − r1(θ̃)

]]
− K(ρ, π)

]}
≤ 1,

where the function Ψ λ
N

was defined by equation (1.21, page 35).

Theorem 3.1.4. For any real constant γ, for any θ̃ ∈ Θ, for any partially ex-
changeable posterior distribution π : Ω → M1

+(Θ),

P

{
exp

[
sup

ρ∈M1
+(Θ)

{
−Nρ

{
log
[
1 − tanh

(
γ
N

)[
r(·) − r(θ̃)

]]}
− γ

[
ρ(r1) − r1(θ̃)

]
− N log

[
cosh

(
γ
N

)]
ρ
[
m′(·, θ̃)

]
− K(ρ, π)

}]}
≤ 1.

This last theorem can be generalized to give

Theorem 3.1.5. For any real constant γ, for any partially exchangeable posterior
distributions π1, π2 : Ω → M1

+(Θ),

P

{
exp

[
sup

ρ1,ρ2∈M1
+(Θ)

{
−N log

{
1 − tanh

(
γ
N

)[
ρ1(r) − ρ2(r)

]}
− γ

[
ρ1(r1) − ρ2(r1)

]
− N log

[
cosh

(
γ
N

)]
ρ1 ⊗ ρ2(m′)

− K(ρ1, π
1) − K(ρ2, π

2)
}]}

≤ 1.
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To conclude this section, we see that the basic theorems of transductive PAC-
Bayesian classification have exactly the same form as the basic inequalities of in-
ductive classification, Theorems 1.1.4 (page 4), 1.4.2 (page 35) and 1.4.3 (page 37)
with R(θ) replaced with r(θ), r(θ) replaced with r1(θ) and M ′(θ, θ̃) replaced with
m(θ, θ̃).

Thus all the results of the first two chapters remain true under the hypotheses
of transductive classification, with R(θ) replaced with r(θ), r(θ) replaced with r1(θ)
and M ′(θ, θ̃ ) replaced with m(θ, θ̃).

Consequently, in the case when the unlabelled shadow sample is observed, it is
possible to improve on the Vapnik bounds to be discussed hereafter by using an ex-
plicit partially exchangeable posterior distribution π and resorting to localized or
to relative bounds (in the case at least of unlimited computing resources, which of
course may still be unrealistic in many real world situations, and with the caveat,
to be recalled in the conclusion of this study, that for small sample sizes and com-
paratively complex classification models, the improvement may not be so decisive).

Let us notice also that the transductive setting when experimentally available,
has the advantage that

d(θ, θ′) =
1

(k + 1)N

(k+1)N∑
i=1

1
[
fθ′(Xi) �= fθ(Xi)

]
≥ m(θ, θ′) ≥ r(θ) − r(θ′), θ, θ′ ∈ Θ,

is observable in this context, providing an empirical upper bound for the difference
r(θ̂) − ρ(r) for any non-randomized estimator θ̂ and any posterior distribution ρ,
namely

r(θ̂) ≤ ρ(r) + ρ
[
d(·, θ̂)

]
.

Thus in the setting of transductive statistical experiments, the PAC-Bayesian frame-
work provides fully empirical bounds for the error rate of non-randomized estima-
tors θ̂ : Ω → Θ, even when using a non-atomic prior π (or more generally a non-
atomic partially exchangeable posterior distribution π), even when Θ is not a vector
space and even when θ �→ R(θ) cannot be proved to be convex on the support of
some useful posterior distribution ρ.

3.2. Vapnik bounds for transductive classification

In this section, we will stick to plain unlocalized non-relative bounds. As we have
already mentioned, (and as it was put forward by Vapnik himself in his seminal
works), these bounds are not always superseded by the asymptotically better ones
when the sample is of small size: they deserve all our attention for this reason. We
will start with the general case of a shadow sample of arbitrary size. We will then
discuss the case of a shadow sample of equal size to the training set and the case of
a fully exchangeable sample distribution, showing how they can be taken advantage
of to sharpen inequalities.

3.2.1. With a shadow sample of arbitrary size. The great thing with the
transductive setting is that we are manipulating only r1 and r which can take only
a finite number of values and therefore are piecewise constant on Θ. This makes it
possible to derive inequalities that will hold uniformly for any value of the parameter



116 Chapter 3. Transductive PAC-Bayesian learning

θ ∈ Θ. To this purpose, let us consider for any value θ ∈ Θ of the parameter the
subset Δ(θ) ⊂ Θ of parameters θ′ such that the classification rule fθ′ answers the
same on the extended sample (Xi)

(k+1)N
i=1 as fθ. Namely, let us put for any θ ∈ Θ

Δ(θ) =
{
θ′ ∈ Θ; fθ′(Xi) = fθ(Xi), i = 1, . . . , (k + 1)N

}
.

We see immediately that Δ(θ) is an exchangeable parameter subset on which r1 and
r2 and therefore also r take constant values. Thus for any θ ∈ Θ we may consider
the posterior ρθ defined by

dρθ

dπ
(θ′) = 1

[
θ′ ∈ Δ(θ)

]
π
[
Δ(θ)

]−1
,

and use the fact that ρθ(r1) = r1(θ) and ρθ(r) = r(θ), to prove that

Lemma 3.2.1. For any partially exchangeable positive real measurable function λ :
Ω × Θ → R such that

(3.1) λ(ω, θ′) = λ(ω, θ), θ ∈ Θ, θ′ ∈ Δ(θ), ω ∈ Ω,

and any partially exchangeable posterior distribution π : Ω → M1
+(Θ), with P prob-

ability at least 1 − ε, for any θ ∈ Θ,

Φ λ
N

[
r(θ)

]
+

log
{
επ
[
Δ(θ)

]}
λ(θ)

≤ r1(θ).

We can then remark that for any value of λ independent of ω, the left-hand side
of the previous inequality is a partially exchangeable function of ω ∈ Ω. Thus this
left-hand side is maximized by some partially exchangeable function λ, namely

arg max
λ

{
Φ λ

N

[
r(θ)

]
+

log
{
επ
[
Δ(θ)

]}
λ

}

is partially exchangeable as depending only on partially exchangeable quantities.
Moreover this choice of λ(ω, θ) satisfies also condition (3.1) stated in the previous
lemma of being constant on Δ(θ), proving

Lemma 3.2.2. For any partially exchangeable posterior distribution π : Ω →
M1

+(Θ), with P probability at least 1 − ε, for any θ ∈ Θ and any λ ∈ R+,

Φ λ
N

[
r(θ)

]
+

log
{
επ
[
Δ(θ)

]}
λ

≤ r1(θ).

Writing r = r1+kr2
k+1 and rearranging terms we obtain

Theorem 3.2.3. For any partially exchangeable posterior distribution π : Ω →
M1

+(Θ), with P probability at least 1 − ε, for any θ ∈ Θ,

r2(θ) ≤
k + 1

k
inf

λ∈R+

1 − exp

(
− λ

N
r1(θ) +

log
{
επ
[
Δ(θ)

]}
N

)
1 − exp

(
− λ

N

) − r1(θ)
k

.
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If we have a set of binary classification rules {fθ; θ ∈ Θ} whose Vapnik–Cervo-
nenkis dimension is not greater than h, we can choose π such that π

[
Δ(θ)

]
is

independent of θ and not less than
(

h

e(k + 1)N

)h

, as will be proved further on in

Theorem 4.2.2 (page 144).
Another important setting where the complexity term − log

{
π
[
Δ(θ)

]}
can eas-

ily be controlled is the case of compression schemes, introduced by Little et al.
(1986). It goes as follows: we are given for each labelled sub-sample (Xi, Yi)i∈J ,
J ⊂ {1, . . . , N}, an estimator of the parameter

θ̂
[
(Xi, Yi)i∈J

]
= θ̂J , J ⊂ {1, . . . , N}, |J | ≤ h,

where

θ̂ :
N⊔

k=1

(
X × Y

)k → Θ

is an exchangeable function providing estimators for sub-samples of arbitrary size.
Let us assume that θ̂ is exchangeable, meaning that for any k = 1, . . . , N and any
permutation σ of {1, . . . , k}

θ̂
[
(xi, yi)k

i=1

]
= θ̂

[
(xσ(i), yσ(i))k

i=1

]
, (xi, yi)k

i=1 ∈
(
X × Y

)k
.

In this situation, we can introduce the exchangeable subset{
θ̂J ; J ⊂ {1, . . . , (k + 1)N}, |J | ≤ h

}
⊂ Θ,

which is seen to contain at most

h∑
j=0

(
(k + 1)N

j

)
≤
(

e(k + 1)N
h

)h

classification rules — as will be proved later on in Theorem 4.2.3 (page 144). Note
that we had to extend the range of J to all the subsets of the extended sample,
although we will use for estimation only those of the training sample, on which
the labels are observed. Thus in this case also we can find a partially exchangeable
posterior distribution π such that

π
[
Δ(θ̂J)

]
≥
(

h

e(k + 1)N

)h

.

We see that the size of the compression scheme plays the same role in this complexity
bound as the Vapnik–Cervonenkis dimension for Vapnik–Cervonenkis classes.

In these two cases of binary classification with Vapnik–Cervonenkis dimension
not greater than h and compression schemes depending on a compression set with
at most h points, we get a bound of

r2(θ) ≤
k + 1

k
inf

λ∈R+

1 − exp

⎛⎝− λ

N
r1(θ) −

h log
(

e(k+1)N
h

)
− log(ε)

N

⎞⎠
1 − exp

(
− λ

N

)
− r1(θ)

k
.
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Let us make some numerical application: when N = 1000, h = 10, ε = 0.01, and
infΘ r1 = r1(θ̂) = 0.2, we find that r2(θ̂) ≤ 0.4093, for k between 15 and 17,
and values of λ equal respectively to 965, 968 and 971. For k = 1, we find only
r2(θ̂) ≤ 0.539, showing the interest of allowing k to be larger than 1.

3.2.2. When the shadow sample has the same size as the training sam-

ple. In the case when k = 1, we can improve Theorem 3.1.2 by taking advantage
of the fact that Ti(σi) can take only 3 values, namely 0, 0.5 and 1. We see thus that
Ti(σi)−Φ λ

N

[
Ti(σi)

]
can take only two values, 0 and 1

2 −Φ λ
N

(1
2 ), because Φ λ

N
(0) = 0

and Φ λ
N

(1) = 1. Thus

Ti(σi) − Φ λ
N

[
Ti(σi)

]
=
[
1 − |1 − 2Ti(σi)|

][
1
2 − Φ λ

N
(1
2 )
]
.

This shows that in the case when k = 1,

log
{

T
[
exp(−λr1)

]}
= −λr +

λ

N

N∑
i=1

Ti(σi) − Φ λ
N

[
Ti(σi)

]
= −λr +

λ

N

N∑
i=1

[
1 − |1 − 2Ti(σi)|

][
1
2 − Φ λ

N
(1
2 )
]

≤ −λr + λ
[
1
2 − Φ λ

N
(1
2 )
][

1 − |1 − 2r|
]
.

Noticing that 1
2 − Φ λ

N
(1
2 ) = N

λ log
[
cosh( λ

2N )
]
, we obtain

Theorem 3.2.4. For any partially exchangeable function λ : Ω×Θ → R+, for any
partially exchangeable posterior distribution π : Ω → M1

+(Θ),

P

{
exp

[
sup

ρ∈M1
+(Θ)

ρ
[
λ(r − r1)

− N log
[
cosh( λ

2N )
](

1 − |1 − 2r|
)]

− K(ρ, π)
]}

≤ 1.

As a consequence, reasoning as previously, we deduce

Theorem 3.2.5. In the case when k = 1, for any partially exchangeable posterior
distribution π : Ω → M1

+(Θ), with P probability at least 1 − ε, for any θ ∈ Θ and
any λ ∈ R+,

r(θ) − N
λ log

[
cosh( λ

2N )
](

1 − |1 − 2r(θ)|
)

+
log
{
επ
[
Δ(θ)

]}
λ

≤ r1(θ);

and consequently for any θ ∈ Θ,

r2(θ) ≤ 2 inf
λ∈R+

r1(θ) −
log
{
επ
[
Δ(θ)

]}
λ

1 − 2N
λ log

[
cosh( λ

2N )
] − r1(θ).

In the case of binary classification using a Vapnik–Cervonenkis class of
Vapnik–Cervonenkis dimension not greater than h, we can choose π such that
− log

{
π
[
Δ(θ)

]}
≤ h log(2eN

h ) and obtain the following numerical illustration of
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this theorem: for N = 1000, h = 10, ε = 0.01 and infΘ r1 = r1(θ̂) = 0.2, we find an
upper bound r2(θ̂) ≤ 0.5033, which improves on Theorem 3.2.3 but still is not un-
der the significance level 1

2 (achieved by blind random classification). This indicates
that considering shadow samples of arbitrary sizes some noisy situations yields a
significant improvement on bounds obtained with a shadow sample of the same size
as the training sample.

3.2.3. When moreover the distribution of the augmented sample is ex-

changeable. When k = 1 and P is exchangeable meaning that for any bounded
measurable function h : Ω → R and any permutation s ∈ S

(
{1, . . . , 2N}

)
P
[
h(ω ◦

s)
]

= P
[
h(ω)

]
, then we can still improve the bound as follows. Let

T ′(h) =
1

N !

∑
s∈S

(
{N+1,...,2N}

)h(ω ◦ s).

Then we can write

1 − |1 − 2Ti(σi)| = (σi − σi+N )2 = σi + σi+N − 2σiσi+N .

Using this identity, we get for any exchangeable function λ : Ω × Θ → R+,

T

{
exp

[
λ(r − r1) − log

[
cosh( λ

2N )
] N∑

i=1

(
σi + σi+N − 2σiσi+N

)]}
≤ 1.

Let us put

A(λ) = 2N
λ log

[
cosh( λ

2N )
]
,(3.2)

v(θ) =
1

2N

N∑
i=1

(σi + σi+N − 2σiσi+N ).(3.3)

With this notation
T
{

exp
{
λ
[
r − r1 − A(λ)v

]}}
≤ 1.

Let us notice now that

T ′[v(θ)
]

= r(θ) − r1(θ)r2(θ).

Let π : Ω → M1
+(Θ) be any given exchangeable posterior distribution. Using the

exchangeability of P and π and the exchangeability of the exponential function, we
get

P

{
π
[
exp

{
λ
[
r − r1 − A(r − r1r2)

]}]}
= P

{
π
[
exp

{
λ
[
r − r1 − AT ′(v)

]}]}
≤ P

{
π
[
T ′ exp

{
λ
[
r − r1 − Av

]}]}
= P

{
T ′π

[
exp

{
λ
[
r − r1 − Av

]}]}
= P

{
π
[
exp

{
λ
[
r − r1 − Av

]}]}
= P

{
Tπ
[
exp

{
λ
[
r − r1 − Av

]}]}
= P

{
π
[
T exp

{
λ
[
r − r1 − Av

]}]}
≤ 1.

We are thus ready to state
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Theorem 3.2.6. In the case when k = 1, for any exchangeable probability dis-
tribution P, for any exchangeable posterior distribution π : Ω → M1

+(Θ), for any
exchangeable function λ : Ω × Θ → R+,

P

{
exp

[
sup

ρ∈M1
+(Θ)

ρ
{

λ
[
r − r1 − A(λ)(r − r1r2)

]}
− K(ρ, π)

]}
≤ 1,

where A(λ) is defined by equation (3.2, page 119).

We then deduce as previously

Corollary 3.2.7. For any exchangeable posterior distribution π : Ω → M1
+(Θ),

for any exchangeable probability measure P ∈ M1
+(Ω), for any measurable exchange-

able function λ : Ω × Θ → R+, with P probability at least 1 − ε, for any θ ∈ Θ,

r(θ) ≤ r1(θ) + A(λ)
[
r(θ) − r1(θ)r2(θ)

]
−

log
{
επ
[
Δ(θ)

]}
λ

,

where A(λ) is defined by equation (3.2, page 119).

In order to deduce an empirical bound from this theorem, we have to make
some choice for λ(ω, θ). Fortunately, it is easy to show that the bound holds uni-
formly in λ, because the inequality can be rewritten as a function of only one
non-exchangeable quantity, namely r1(θ). Indeed, since r2 = 2r − r1, we see that
the inequality can be written as

r(θ) ≤ r1(θ) + A(λ)
[
r(θ) − 2r(θ)r1(θ) + r1(θ)2

]
−

log
{
επ
[
Δ(θ)

]
λ

.

It can be solved in r1(θ), to get

r1(θ) ≥ f
(
λ, r(θ),− log

{
επ
[
Δ(θ)

]})
,

where

f(λ, r, d) =
[
2A(λ)

]−1
{

2rA(λ) − 1

+
√[

1 − 2rA(λ)
]2 + 4A(λ)

{
r
[
1 − A(λ)

]
− d

λ

}}
.

Thus we can find some exchangeable function λ(ω, θ), such that

f
(
λ(ω, θ), r(θ),− log

{
επ
[
Δ(θ)

]})
= sup

β∈R+

f
(
β, r(θ),− log

{
επ
[
Δ(θ)

]})
.

Applying Corollary 3.2.7 (page 120) to that choice of λ, we see that

Theorem 3.2.8. For any exchangeable probability measure P ∈ M1
+(Ω), for any

exchangeable posterior probability distribution π : Ω → M1
+(Θ), with P probability

at least 1 − ε, for any θ ∈ Θ, for any λ ∈ R+,

r(θ) ≤ r1(θ) + A(λ)
[
r(θ) − r1(θ)r2(θ)

]
−

log
{
επ
[
Δ(θ)

]}
λ

,

where A(λ) is defined by equation (3.2, page 119).
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Solving the previous inequality in r2(θ), we get

Corollary 3.2.9. Under the same assumptions as in the previous theorem, with
P probability at least 1 − ε, for any θ ∈ Θ,

r2(θ) ≤ inf
λ∈R+

r1(θ)
{

1 + 2N
λ log

[
cosh( λ

2N )
]}

−
2 log

{
επ
[
Δ(θ)

]}
λ

1 − 2N
λ log

[
cosh( λ

2N )
][

1 − 2r1(θ)
] .

Applying this to our usual numerical example of a binary classification model
with Vapnik–Cervonenkis dimension not greater than h = 10, when N = 1000,
infΘ r1 = r1(θ̂) = 10 and ε = 0.01, we obtain that r2(θ̂) ≤ 0.4450.

3.3. Vapnik bounds for inductive classification

3.3.1. Arbitrary shadow sample size. We assume in this section that

P =
( N⊗

i=1

Pi

)⊗∞
∈ M1

+

{[(
X × Y

)N ]N}
,

where Pi ∈ M1
+

(
X × Y

)
: we consider an infinite i.i.d. sequence of independent

non-identically distributed samples of size N , the first one only being observed.
More precisely, under P each sample (Xi+jN , Yi+jN )N

i=1 is distributed according
to
⊗N

i=1 Pi, and they are all independent from each other. Only the first sample
(Xi, Yi)N

i=1 is assumed to be observed. The shadow samples will only appear in the
proofs. The aim of this section is to prove better Vapnik bounds, generalizing them
in the same time to the independent non-i.i.d. setting, which to our knowledge has
not been done before.

Let us introduce the notation P
′[h(ω)

]
= P

[
h(ω) | (Xi, Yi)N

i=1

]
, where h may be

any suitable (e.g. bounded) random variable, let us also put Ω =
[
(X × Y)N

]N.

Definition 3.3.1. For any subset A ⊂ N of integers, let C(A) be the set of circular
permutations of the totally ordered set A, extended to a permutation of N by taking
it to be the identity on the complement N \ A of A. We will say that a random
function h : Ω → R is k-partially exchangeable if

h(ω ◦ s) = h(ω), s ∈ C
(
{i + jN ; j = 0, . . . , k}

)
, i = 1, . . . , N.

In the same way, we will say that a posterior distribution π : Ω → M1
+(Θ) is

k-partially exchangeable if

π(ω ◦ s) = π(ω) ∈ M1
+(Θ), s ∈ C

(
{i + jN ; j = 0, . . . , k}

)
, i = 1, . . . , N.

Note that P itself is k-partially exchangeable for any k in the sense that for any
bounded measurable function h : Ω → R

P
[
h(ω ◦ s)

]
= P

[
h(ω)

]
, s ∈ C

(
{i + jN ; j = 0, . . . , k}

)
, i = 1, . . . , N.

Let Δk(θ) =
{

θ′ ∈ Θ ;
[
fθ′(Xi)

](k+1)N

i=1
=
[
fθ(Xi)

](k+1)N

i=1

}
, θ ∈ Θ, k ∈ N

∗, and let

also rk(θ) =
1

(k + 1)N

(k+1)N∑
i=1

1
[
fθ(Xi) �= Yi

]
. Theorem 3.1.2 shows that for any
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positive real parameter λ and any k-partially exchangeable posterior distribution
πk : Ω → M1

+(Θ),

P

{
exp

[
sup
θ∈Θ

λ
[
Φ λ

N
(rk) − r1

]
+ log

{
επk

[
Δk(θ)

]}]}
≤ ε.

Using the general fact that

P
[
exp(h)

]
= P

{
P
′[exp(h)

]}
≥ P

{
exp

[
P
′(h)

]}
,

and the fact that the expectation of a supremum is larger than the supremum of
an expectation, we see that with P probability at most 1 − ε, for any θ ∈ Θ,

P
′
{

Φ λ
N

[
rk(θ)

]}
≤ r1(θ) −

P
′
{

log
{
επk

[
Δk(θ)

]}}
λ

.

For short let us put

d̄k(θ) = − log
{
επk

[
Δk(θ)

]}
,

d′k(θ) = −P
′
{

log
{
επk

[
Δk(θ)

]}}
,

dk(θ) = −P

{
log
{
επk

[
Δk(θ)

]}}
.

We can use the convexity of Φ λ
N

and the fact that P
′(rk) = r1+kR

k+1 , to establish
that

P
′
{

Φ λ
N

[
rk(θ)

]}
≥ Φ λ

N

[
r1(θ) + kR(θ)

k + 1

]
.

We have proved

Theorem 3.3.1. Using the above hypotheses and notation, for any sequence πk :
Ω → M1

+(Θ), where πk is a k-partially exchangeable posterior distribution, for any
positive real constant λ, any positive integer k, with P probability at least 1− ε, for
any θ ∈ Θ,

Φ λ
N

[
r1(θ) + kR(θ)

k + 1

]
≤ r1(θ) +

d′k(θ)
λ

.

We can make as we did with Theorem 1.2.6 (page 11) the result of this theorem
uniform in λ ∈ {αj ; j ∈ N

∗} and k ∈ N
∗ (considering on k the prior 1

k(k+1) and on
j the prior 1

j(j+1) ), and obtain

Theorem 3.3.2. For any real parameter α > 1, with P probability at least 1 − ε,
for any θ ∈ Θ,

R(θ) ≤

inf
k∈N∗,j∈N∗

1 − exp
{
−αj

N r1(θ) − 1
N

{
d′k(θ) + log

[
k(k + 1)j(j + 1)

]}}
k

k+1

[
1 − exp

(
−αj

N

)]
− r1(θ)

k
.
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As a special case we can choose πk such that log
{
πk

[
Δk(θ)

]}
is independent of

θ and equal to log(Nk), where

Nk =
∣∣{[fθ(Xi)

](k+1)N

i=1
; θ ∈ Θ

}∣∣
is the size of the trace of the classification model on the extended sample of size
(k+1)N . With this choice, we obtain a bound involving a new flavour of conditional
Vapnik entropy, namely

d′k(θ) = P
[
log(Nk) |(Zi)N

i=1

]
− log(ε).

In the case of binary classification using a Vapnik–Cervonenkis class of Vapnik–
Cervonenkis dimension not greater than h = 10, when N = 1000, infΘ r1 = r1(θ̂) =
0.2 and ε = 0.01, choosing α = 1.1, we obtain R(θ̂) ≤ 0.4271 (for an optimal value
of λ = 1071.8, and an optimal value of k = 16).

3.3.2. A better minimization with respect to the exponential parame-

ter. If we are not pleased with optimizing λ on a discrete subset of the real line,
we can use a slightly different approach. From Theorem 3.1.2 (page 113), we see
that for any positive integer k, for any k-partially exchangeable positive real mea-
surable function λ : Ω × Θ → R+ satisfying equation (3.1, page 116) — with Δ(θ)
replaced with Δk(θ) — for any ε ∈)0, 1) and η ∈)0, 1),

P

{
P
′
[
exp

[
sup

θ
λ
[
Φ λ

N
(rk) − r1

]
+ log

{
εηπk

[
Δk(θ)

]}]}
≤ εη,

therefore with P probability at least 1 − ε,

P
′
{

exp
[
sup

θ
λ
[
Φ λ

N
(rk) − r1

]
+ log

{
εηπk

[
Δk(θ)

]}]}
≤ η,

and consequently, with P probability at least 1−ε, with P
′ probability at least 1−η,

for any θ ∈ Θ,

Φ λ
N

(rk) +
log
{
εηπk

[
Δk(θ)

]}
λ

≤ r1.

Now we are entitled to choose

λ(ω, θ) ∈ arg max
λ′∈R+

Φλ′
N

(rk) +
log
{
εηπk

[
Δk(θ)

]}
λ′ .

This shows that with P probability at least 1− ε, with P
′ probability at least 1− η,

for any θ ∈ Θ,

sup
λ∈R+

Φ λ
N

(rk) − d̄k(θ) − log(η)
λ

≤ r1,

which can also be written

Φ λ
N

(rk) − r1 −
d̄k(θ)

λ
≤ − log(η)

λ
, λ ∈ R+.

Thus with P probability at least 1 − ε, for any θ ∈ Θ, any λ ∈ R+,

P
′
[
Φ λ

N
(rk) − r1 −

d̄k(θ)
λ

]
≤ − log(η)

λ
+
[
1 − r1 +

log(η)
λ

]
η.



124 Chapter 3. Transductive PAC-Bayesian learning

On the other hand, Φ λ
N

being a convex function,

P
′
[
Φ λ

N
(rk) − r1 −

d̄k(θ)
λ

]
≥ Φ λ

N

[
P
′(rk)

]
− r1 −

d′k
λ

= Φ λ
N

(
kR + r1

k + 1

)
− r1 −

d′k
λ

.

Thus with P probability at least 1 − ε, for any θ ∈ Θ,

kR + r1

k + 1
≤ inf

λ∈R+
Φ−1

λ
N

[
r1(1 − η) + η +

d′k − log(η)(1 − η)
λ

]
.

We can generalize this approach by considering a finite decreasing sequence η0 =
1 > η1 > η2 > · · · > ηJ > ηJ+1 = 0, and the corresponding sequence of levels

Lj = − log(ηj)
λ

, 0 ≤ j ≤ J,

LJ+1 = 1 − r1 −
log(J) − log(ε)

λ
.

Taking a union bound in j, we see that with P probability at least 1 − ε, for any
θ ∈ Θ, for any λ ∈ R+,

P
′
[
Φ λ

N
(rk) − r1 −

d̄k + log(J)
λ

≥ Lj

]
≤ ηj , j = 0, . . . , J + 1,

and consequently

P
′
[
Φ λ

N
(rk) − r1 −

d̄k + log(J)
λ

]
≤
∫ LJ+1

0

P
′
[
Φ λ

N
(rk) − r1 −

d̄k + log(J)
λ

≥ α

]
dα ≤

J+1∑
j=1

ηj−1(Lj − Lj−1)

= ηJ

[
1 − r1 −

log(J) − log(ε) − log(ηJ)
λ

]
− log(η1)

λ
+

J−1∑
j=1

ηj

λ
log
(

ηj

ηj+1

)
.

Let us put

d′′k
[
θ, (ηj)J

j=1

]
= d′k(θ) + log(J) − log(η1)

+
J−1∑
j=1

ηj log
(

ηj

ηj+1

)
+ log

(εηJ

J

)
ηJ .

We have proved that for any decreasing sequence (ηj)J
j=1, with P probability at

least 1 − ε, for any θ ∈ Θ,

kR + r1

k + 1
≤ inf

λ∈R+
Φ−1

λ
N

[
r1(1 − ηJ) + ηJ +

d′′k
[
θ, (ηj)J

j=1

]
λ

]
.

Remark 3.3.1. We can for instance choose J = 2, η2 = 1
10N , η1 = 1

log(10N) ,
resulting in

d′′k = d′k + log(2) + log log(10N) + 1 − log log(10N)
log(10N)

−
log
(

20N
ε

)
10N

.
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In the case where N = 1000 and for any ε ∈)0, 1), we get d′′k ≤ d′k + 3.7, in the case
where N = 106, we get d′′k ≤ d′k +4.4, and in the case N = 109, we get d′′k ≤ d′k +4.7.

Therefore, for any practical purpose we could take d′′k = d′k + 4.7 and ηJ = 1
10N

in the above inequality.

Taking moreover a weighted union bound in k, we get

Theorem 3.3.3. For any ε ∈)0, 1), any sequence 1 > η1 > · · · > ηJ > 0, any
sequence πk : Ω → M1

+(Θ), where πk is a k-partially exchangeable posterior distri-
bution, with P probability at least 1 − ε, for any θ ∈ Θ,

R(θ) ≤ inf
k∈N∗

k + 1
k

inf
λ∈R+

Φ−1
λ
N

[
r1(θ) + ηJ

[
1 − r1(θ)

]
+

d′′k
[
θ, (ηj)J

j=1

]
+ log

[
k(k + 1)

]
λ

]
− r1(θ)

k
.

Corollary 3.3.4. For any ε ∈)0, 1), for any N ≤ 109, with P probability at least
1 − ε, for any θ ∈ Θ,

R(θ) ≤ inf
k∈N∗

inf
λ∈R+

k + 1
k

[
1 − exp(− λ

N )
]−1

{
1 − exp

[
− λ

N

[
r1(θ) + 1

10N

]
−

P
′[log(Nk) | (Zi)N

i=1

]
− log(ε) + log

[
k(k + 1)

]
+ 4.7

N

]}
− r1(θ)

k
.

Let us end this section with a numerical example: in the case of binary classi-
fication with a Vapnik–Cervonenkis class of dimension not greater than 10, when
N = 1000, infΘ r1 = r1(θ̂) = 0.2 and ε = 0.01, we get a bound R(θ̂) ≤ 0.4211 (for
optimal values of k = 15 and of λ = 1010).

3.3.3. Equal shadow and training sample sizes. In the case when k =
1, we can use Theorem 3.2.5 (page 118) and replace Φ−1

λ
N

(q) with
{
1 − 2N

λ ×

log
[
cosh( λ

2N )
]}−1

q, resulting in

Theorem 3.3.5. For any ε ∈)0, 1), any N ≤ 109, any one-partially exchangeable
posterior distribution π1 : Ω → M1

+(Θ), with P probability at least 1 − ε, for any
θ ∈ Θ,

R(θ) ≤ inf
λ∈R+

{
1 + 2N

λ log
[
cosh( λ

2N )
]}

r1(θ) +
1

5N
+ 2

d′1(θ) + 4.7
λ

1 − 2N
λ log

[
cosh( λ

2N )
] .

3.3.4. Improvement on the equal sample size bound in the i.i.d. case.

Finally, in the case when P is i.i.d., meaning that all the Pi are equal, we can improve
the previous bound. For any partially exchangeable function λ : Ω × Θ → R+, we
saw in the discussion preceding Theorem 3.2.6 (page 120) that

T
[
exp

[
λ(rk − r1) − A(λ)v

]]
≤ 1,
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with the notation introduced therein. Thus for any partially exchangeable positive
real measurable function λ : Ω × Θ → R+ satisfying equation (3.1, page 116), any
one-partially exchangeable posterior distribution π1 : Ω → M1

+(Θ),

P

{
exp

[
sup
θ∈Θ

λ
[
rk(θ) − r1(θ) − A(λ)v(θ)

]
+ log

[
επ1

[
Δ(θ)

]]}
≤ 1.

Therefore with P probability at least 1 − ε, with P
′ probability 1 − η,

rk(θ) ≤ r1(θ) + A(λ)v(θ) +
1
λ

[
d̄1(θ) − log(η)

]
.

We can then choose λ(ω, θ) ∈ arg min
λ′∈R+

A(λ′)v(θ)+
d̄1(θ) − log(η)

]
λ′ , which satis-

fies the required conditions, to show that with P probability at least 1 − ε, for any
θ ∈ Θ, with P

′ probability at least 1 − η, for any λ ∈ R+,

rk(θ) ≤ r1(θ) + A(λ)v(θ) +
d̄1(θ) − log(η)

λ
.

We can then take a union bound on a decreasing sequence of J values η1 ≥ · · · ≥
ηJ of η. Weakening the order of quantifiers a little, we then obtain the following
statement: with P probability at least 1− ε, for any θ ∈ Θ, for any λ ∈ R+, for any
j = 1, . . . , J

P
′
[
rk(θ) − r1(θ) − A(λ)v(θ) − d̄1(θ) + log(J)

λ
≥ − log(ηj)

λ

]
≤ ηj .

Consequently for any λ ∈ R+,

P
′
[
rk(θ) − r1(θ) − A(λ)v(θ) − d̄1(θ) + log(J)

λ

]
≤ − log(η1)

λ
+ ηJ

[
1 − r1(θ) −

log(J) − log(ε) − log(ηJ)
λ

]
+

J−1∑
j=1

ηj

λ
log
(

ηj

ηj+1

)
.

Moreover P
′[v(θ)

]
= r1+R

2 − r1R, (this is where we need equidistribution) thus
proving that

R − r1

2
≤ A(λ)

2

[
R + r1 − 2r1R

]
+

d′′1
[
θ, (ηj)J

j=1

]
λ

+ ηJ

[
1 − r1(θ)

]
.

Keeping track of quantifiers, we obtain

Theorem 3.3.6. For any decreasing sequence (ηj)J
j=1, any ε ∈)0, 1), any one-

partially exchangeable posterior distribution π : Ω → M1
+(Θ), with P probability

at least 1 − ε, for any θ ∈ Θ,

R(θ) ≤ inf
λ∈R+{

1 + 2N
λ log

[
cosh( λ

2N )
]}

r1(θ) +
2d′′1

[
θ, (ηj)J

j=1

]
λ

+ 2ηJ

[
1 − r1(θ)

]
1 − 2N

λ log
[
cosh( λ

2N )
][

1 − 2r1(θ)
] .
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3.4. Gaussian approximation in Vapnik bounds

3.4.1. Gaussian upper bounds of variance terms. To obtain formulas which
could be easily compared with original Vapnik bounds, we may replace p − Φa(p)
with a Gaussian upper bound:

Lemma 3.4.1. For any p ∈ (0, 1
2 ), any a ∈ R+,

p − Φa(p) ≤ a

2
p(1 − p).

For any p ∈ (1
2 , 1),

p − Φa(p) ≤ a

8
.

Proof. Let us notice that for any p ∈ (0, 1),

∂

∂a

[
−aΦa(p)

]
= − p exp(−a)

1 − p + p exp(−a)
,

∂2

∂2a

[
−aΦa(p)

]
=

p exp(−a)
1 − p + p exp(−a)

(
1 − p exp(−a)

1 − p + p exp(−a)

)
≤
{

p(1 − p) p ∈ (0, 1
2 ),

1
4 p ∈ (1

2 , 1).

Thus taking a Taylor expansion of order one with integral remainder:

−aΦ(a) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ap +
∫ a

0

p(1 − p)(a − b)db

= −ap +
a2

2
p(1 − p), p ∈ (0, 1

2 ),

−ap +
∫ a

0

1
4
(a − b)db = −ap +

a2

8
, p ∈ (1

2 , 1).

This ends the proof of our lemma. �

Lemma 3.4.2. Let us consider the bound

B(q, d) =
(

1 +
2d

N

)−1 [
q +

d

N
+

√
2dq(1 − q)

N
+

d2

N2

]
, q ∈ R+, d ∈ R+.

Let us also put

B̄(q, d) =

{
B(q, d) B(q, d) ≤ 1

2 ,

q +
√

d
2N otherwise.

For any positive real parameters q and d

inf
λ∈R+

Φ−1
λ
N

(
q +

d

λ

)
≤ B̄(q, d).

Proof. Let p = inf
λ

Φ−1
λ
N

(
q +

d

λ

)
. For any λ ∈ R+,

p − λ

2N
(p ∧ 1

2 )
[
1 − (p ∧ 1

2 )
]
≤ Φ λ

N
(p) ≤ q +

d

λ
.
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Thus

p ≤ q + inf
λ∈R+

λ

2N
(p ∧ 1

2 )
[
1 − (p ∧ 1

2 )
]
+

d

λ

= q +

√
2d(p ∧ 1

2 )
[
1 − (p ∧ 1

2 )
]

N
≤ q +

√
d

2N
.

Then let us remark that B(q, d) = sup

{
p′ ∈ R+ ; p′ ≤ q +

√
2dp′(1 − p′)

N

}
. If

moreover 1
2 ≥ B(q, d), then according to this remark 1

2 ≥ q +
√

d
2N ≥ p. Therefore

p ≤ 1
2 , and consequently p ≤ q +

√
2dp(1−p)

N , implying that p ≤ B(q, d). �

3.4.2. Arbitrary shadow sample size. The previous lemma combined with
Corollary 3.3.4 (page 125) implies

Corollary 3.4.3. Let us use the notation introduced in Lemma 3.4.2 (page 127).
For any ε ∈)0, 1), any integer N ≤ 109, with P probability at least 1 − ε, for any
θ ∈ Θ,

R(θ) ≤ inf
k∈N∗

k + 1
k

{
B̄
[
r1(θ) +

1
10N

, d′k(θ) + log
[
k(k + 1)

]
+ 4.7

]}
− r1(θ)

k
.

3.4.3. Equal sample sizes in the i.i.d. case. To make a link with Vapnik’s
result, it is useful to state the Gaussian approximation to Theorem 3.3.6 (page 126).
Indeed, using the upper bound A(λ) ≤ λ

4N , where A(λ) is defined by equation (3.2)
on page 119, we get with P probability at least 1 − ε

R − r1 − 2ηJ ≤ inf
λ∈R+

λ

4N

[
R + r1 − 2r1R

]
+

2d′′1
λ

=

√
2d′′1(R + r1 − 2r1R)

N
,

which can be solved in R to obtain

Corollary 3.4.4. With P probability at least 1 − ε, for any θ ∈ Θ,

R(θ) ≤ r1(θ) +
d′′1(θ)

N

[
1 − 2r1(θ)

]
+ 2ηJ

+

√
4d′′1(θ)

[
1 − r1(θ)

]
r1(θ)

N
+

d′′1(θ)2

N2

[
1 − 2r1(θ)

]2 +
4d′′1(θ)

N

[
1 − 2r1(θ)

]
ηJ .

This is to be compared with Vapnik’s result, as proved in Vapnik (1998, page
138):

Theorem 3.4.5 (Vapnik). For any i.i.d. probability distribution P, with P prob-
ability at least 1 − ε, for any θ ∈ Θ, putting

dV = log
[
P(N1)

]
+ log(4/ε),

R(θ) ≤ r1(θ) +
2dV

N
+

√
4dV r1(θ)

N
+

4d2
V

N2
.
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Recalling that we can choose (ηj)2j=1 such that ηJ = η2 = 1
10N (which brings a

negligible contribution to the bound) and such that for any N ≤ 109,

d′′1(θ) ≤ P
[
log(N1) | (Zi)N

i=1

]
− log(ε) + 4.7,

we see that our complexity term is somehow more satisfactory than Vapnik’s, since
it is integrated outside the logarithm, with a slightly larger additional constant
(remember that log 4 � 1.4, which is better than our 4.7, which could presumably
be improved by working out a better sequence ηj , but not down to log(4)). Our

variance term is better, since we get r1(1 − r1), instead of r1. We also have
d′′1
N

instead of 2
dV

N
, because we use no symmetrization trick.

Let us illustrate these bounds on a numerical example, corresponding to a situ-
ation where the sample is noisy or the classification model is weak. Let us assume
that N = 1000, infΘ r1 = r1(θ̂) = 0.2, that we are performing binary classification
with a model with Vapnik–Cervonenkis dimension not greater than h = 10, and
that we work at confidence level ε = 0.01. Vapnik’s theorem provides an upper
bound for R(θ̂) not smaller than 0.610, whereas Corollary 3.4.4 gives R(θ̂) ≤ 0.461
(using the bound d′′1 ≤ d′1 + 3.7 when N = 1000). Now if we go for Theorem 3.3.6
and do not make a Gaussian approximation, we get R(θ̂) ≤ 0.453. It is interesting
to remark that this bound is achieved for λ = 1195 > N = 1000. This explains why
the Gaussian approximation in Vapnik’s bound can be improved: for such a large
value of λ, λr1(θ) does not behave like a Gaussian random variable.

Let us recall in conclusion that the best bound is provided by Theorem 3.3.3
(page 125), giving R(θ̂) ≤ 0.4211, (that is approximately 2/3 of Vapnik’s bound),
for optimal values of k = 15, and of λ = 1010. This bound can be seen to take ad-
vantage of the fact that Bernoulli random variables are not Gaussian (its Gaussian
approximation, Corollary 3.4.3, gives a bound R(θ) � 0.4325, still with an optimal
k = 15), and of the fact that the optimal size of the shadow sample is significantly
larger than the size of the observed sample. Moreover, Theorem 3.3.3 does not as-
sume that the sample is i.i.d., but only that it is independent, thus generalizing
Vapnik’s bounds to inhomogeneous data (this will presumably be the case when
data are collected from different places where the experimental conditions may not
be the same, although they may reasonably be assumed to be independent).

Our little numerical example was chosen to illustrate the case when it is non-
trivial to decide whether the chosen classifier does better than the 0.5 error rate
of blind random classification. This case is of interest to choose “weak learners”
to be aggregated or combined in some appropriate way in a second stage to reach
a better classification rate. This stage of feature selection is unavoidable in many
real world classification tasks. Our little computations are meant to exemplify the
fact that Vapnik’s bounds, although asymptotically suboptimal, as is obvious by
comparison with the first two chapters, can do the job when dealing with moderate
sample sizes.
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