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Estimating a Polya frequency function2

Jayanta Kumar Pal1,∗, Michael Woodroofe1,† and Mary Meyer 2,†

University of Michigan and University of Georgia

Abstract: We consider the non-parametric maximum likelihood estimation
in the class of Polya frequency functions of order two, viz. the densities with
a concave logarithm. This is a subclass of unimodal densities and fairly rich
in general. The NPMLE is shown to be the solution to a convex programming
problem in the Euclidean space and an algorithm is devised similar to the iter-
ative convex minorant algorithm by Jongbleod (1999). The estimator achieves
Hellinger consistency when the true density is a PFF2 itself.

1. Introduction

The problem of estimating a unimodal density and its mode has attracted a wide
interest in the literature, beginning with the work of Barlow [1], Prakasa Rao,
[7], Robertson [8] and Wegman [15], [16] and continuing through [9], [2], [3], [5],
and [4], who can be consulted for further references. Asymptotic properties of the
maximum likelihood estimators have been developed but may be messy and suffer
from some inconsistency in the region near the mode. Kernel estimation can avoid
the inconsistency, but must confront the choice of a bandwidth. Here we investigate
a smaller, easier version of the problem, estimating a Polya frequency function
of order two [hereafter PFF2]. By PFF2, we mean a density f whose logarithm
is concave over the support of f . Equivalently, a function f whose logarithm is
concave in the sense of Rockafellar [10]. Such functions are automatically unimodal.
Moreover, an estimated PFF2 supplies its own estimate of the mode. There is no
need to estimate the mode seperately.

The non-parametric maximum likelihood estimator [hereafter, NPMLE] for this
problem is derived in Section 2 and shown to be Hellinger consistent in Section 3.
Simulations are reported in Section 4. Rufibach and Duembgen [11] and Walther [14]
adopt a similar approach but obtain different results by different methods.

2. The NPMLE

Let F be the class of PFF2 densities and suppose that a sample X1, . . . , Xn ∼ f ∈ F
is available. The problem is to estimate f non-parametrically. Letting −∞ < x1 <
x2 < · · · < xn < ∞ denote the order statistics the log-likelihood function is

(2.1) �(g) =
n∑

i=1

log[g(xi)].
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This is to be maximized with respect to g ∈ F . Equivalently, this is to be maximized
with respect to non-negative g for which log(g) is concave and

(2.2)
∫ ∞

−∞
g(x)dx = 1.

If g ∈ F , write θi = log[g(xi)]. Then log[g(x)] ≥ [(x− xi−1)θi + (xi − x)θi−1]/(xi −
xi−1) for xi−1 ≤ x ≤ xi and, therefore,

(2.3)
∫ xi

xi−1

g(x)dx ≥
[eθi − eθi−1

θi − θi−1

]
(xi − xi−1)

for i = 2, . . . , n. It follows easily that (2.1) is maximized when g ∈ F has support
[x1, xn] and log(g) is a piecewise linear function with knots at x1, . . . , xn. For if
g ∈ F , let go be a function for which log(go) is piecewise linear, go(xi) = g(xi), i =
1, . . . , n, and go(x) = 0 for x /∈ [x1, xn]. Then, using (2.3), g(x) ≥ go(x) for all x
with equality for x ∈ {x1, . . . , xn}, and therefore,

1 =
∫ ∞

−∞
g(x)dx ≥

∫ xn

x1

g(x)dx ≥
∫ xn

x1

go(x)dx =
∫ ∞

−∞
go(x)dx.

So, there is a c ≤ 1 for which g∗ = go/c ∈ F and �(g) ≤ �(g∗).
Thus, finding the NPMLE may be reformulated as a maximization problem in

IRn. Let K be the set of θ = [θ1, θ2, . . . , θn] ∈ IRn for which

θi − θi−1

xi − xi−1
≥ θi+1 − θi

xi+1 − xi

for i = 2, . . . , n − 1. The reformulated maximization problem is to maximize θ1 +
· · · + θn among θ ∈ K subject to the constraint

(2.4)
n∑

i=2

[eθi − eθi−1

θi − θi−1

]
(xi − xi−1) = 1.

Introducing a Lagrange multiplier, it is necessary to maximize

(2.5) ψ(θ) =
n∑

i=1

θi − λ

n∑
i=2

[eθi − eθi−1

θi − θi−1

]
(xi − xi−1)

subject to (2.4), for appropriate λ, for θ ∈ K.
The partial derivatives of ψ are

∂ψ(θ)
∂θ1

= 1 − λ
[
− eθ1

θ2 − θ1
+

eθ2 − eθ1

(θ2 − θ1)2
]
(x2 − x1),

∂ψ(θ)
∂θ2

= 1 − λ
[ eθ2

θ2 − θ1
− eθ2 − eθ1

(θ2 − θ1)2
]
(x2 − x1)

− λ
[
− eθ2

θ3 − θ2
+

eθ3 − eθ2

(θ3 − θ2)2
]
(x3 − x2),

· · ·
∂ψ(θ)
∂θj

= 1 − λ
[ eθj

θj − θj−1
− eθj − eθj−1

(θj − θj−1)2
]
(xj − xj−1)

− λ
[
− eθj

θj+1 − θj
+

eθj+1 − eθj

(θj+1 − θj)2
]
(xj+1 − xj),
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· · ·
and

∂ψ(θ)
∂θn

= 1 − λ
[ eθn

θn − θn−1
− eθn − eθn−1

(θn − θn−1)2
]
(xn − xn−1).

At the maximizing θ, ∇ψ(θ)t1 = 0, so that

n = λ
[
− eθ1

θ2 − θ1
+

eθ2 − eθ1

(θ2 − θ1)2
]
(x2 − x1)

+ λ

n−1∑
j=2

{[ eθj

θj − θj−1
− eθj − eθj−1

(θj − θj−1)2
]
(xj − xj−1)

+ λ
[
− eθj

θj+1 − θj
+

eθj+1 − eθj

(θj+1 − θj)2
]
(xj+1 − xj)

}

+ λ
[ eθn

θn − θn−1
− eθn − eθn−1

(θn − θn−1)2
]
(xn − xn−1)

There is some cancelation here, and

n = λ

n∑
j=2

eθj − eθj−1

θj − θj−1
(xj − xj−1).

So, if (2.4) is to be satisfied, then

(2.6) λ = n.

Now let
ω1 = θ1

ωj =
θj − θj−1

xj − xj−1

for j = 2, . . . , n. Then,

(2.7) ω2 ≥ · · · ≥ ωn

and

(2.8) θj = ω1 +
j∑

i=2

(xi − xi−1)ωi

for j = 1, . . . , n, where an empty sum is to be interpreted as 0. Let

(2.9) φ(ω) = ψ(θ)

and ∆xj = xj − xj−1. Then

n∑
j=1

θj = nω1 +
n∑

i=2

(n − i + 1)∆xiωi,

n∑
i=2

eθi − eθi−1

θi − θi−1
∆xi =

n∑
j=2

eθj−1
e(xj−xj−1)ωj − 1

ωj

=
n∑

j=2

eθj−1ρ(∆xjωj)∆xj ,
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where

ρ(t) =
et − 1

t
.

So,

φ(ω) = nω1 +
n∑

i=2

(n − i + 1)∆xiωi − n

n∑
j=2

eθj−1ρ(∆xjωj)∆xj .

Using (2.8), it follows that at the maximizing θ (or ω)

∂φ(ω)
∂ω1

= n − n
n∑

j=2

eθj−1ρ(∆xjωj)∆xj = 0.

So, we are led to the problem of maximizing φ(ω), subject to (2.7) and ∂φ(ω)/∂ω1 =
0. Again using (2.8), the latter condition may be written

(2.10) e−ω1 =
n∑

j=2

e
∑j−1

i=2
∆xiωiρ(∆xjωj)∆xj .

To solve this, we need a version of the iterative concave majorant algorithm, similar
to that of Jongbloed [6]. We start with an initial value ω0 = (ω0

1 , . . . , ω0
n) for which

(2.7) and (2.10) are satisfied. One such choice is to assume f is a normal density
and estimate its mean and variance from the data. The corresponding ω0 can be
computed using a scaled piecewise linear version of log f . Let k = 0.

The idea behind our algorithm is to replace the concave function φ locally near
ωk by a quadratic form of the type

q(ω̃, ωk) =
1
2
(ω̃ − ωk + Γ(ωk)−1∇φ(ωk))tΓ(ωk)(ω̃ − ωk + Γ(ωk)−1∇φ(ωk))

where Γ is a diagonal matrix with entries ∂2φ(ω)/∂ω2
k and ∇φ is the gradient vector.

This maximization has a geometric solution given by the left hand slopes of the
concave majorant of the data cloud: (

∑l
i=1 dr

i ,
∑l

i=1[d
r
i ω

r
i + br

i ]), where

br
k =

∂

∂ωk
φ(ω)|ω=ωr ,

(2.11) dr
k = − ∂2

∂ω2
k

φ(ω)|ω=ωr .

This can be also characterized explicitly as,

ωr+1
i = min

2≤j≤i
max

i≤k≤n

∑k
h=j [d

r
hωr

h + br
h]∑k

h=j dr
h

.

Finally, to satisfy (2.7),

ωr+1
1 = − log

[ n∑
j=2

e
∑j−1

i=2
∆xiω

r+1
i ρ(∆xjω

r+1
j )∆xj

]
.

To implement this, we need to compute the partial derivatives (∂/∂ωk)φ(ω) for
k = 1, . . . , n. Clearly,

∂φ(ω)
∂ω1

= 0
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Table 1

Angular distances from the center R and line-of-sight
velocities V of stars in Fornax.

Star Date R V
arcmin km/sec

F1-1 29 Nov. 1992 14.5 55.8
F1-2 29 Nov. 1992 20.8 42.9
· · · · · ·

F9-8025 15 Dec. 2002 42.3 69.2

and

∂φ(ω)
∂ωk

= (n − k + 1)(xk − xk−1) − n

n∑
j=k+1

∆xkeθj−1ρ(∆xjωj)∆xj

− neθk−1ρ′(∆xkωk)∆x2
k

for k = 2, . . . , n; and the second derivatives are

∂2φ(ω)
∂ω2

k

= −n
[ n∑

j=k+1

∆x2
keθj−1ρ(∆xjωj)∆xj

+ eθk−1ρ′′(∆xkωk)∆x3
k

]
for k = 2, . . . , n. To achieve stability, we modify the algorithm using a line search
method as follows. It is not certain that the new point ω̃ will have a larger value of
φ. Therefore, we need to perform a binary search along the line segment joining ωk

and ω̃ to get a point ωk+1 such that φ(ωk+1) > φ(ωk). Finally, we stop the iteration
when two consecutive iterates have very close φ values.
Example. Walker et. al. [13] have reported the line-of-sight velocities of 178 stars
in the Fornax dwarf spheroidal galaxy. The nature of the data is reported in Table
1. The full data set can be found in [13]. Figure 1 displays the estimated density of
line-of-sight velocity, assuming that the later is a Polya frequency function2. The
sharp peak at the mode is, unfortunately, an artifact of the method.

3. Consistency

Let F be a distribution function with density f and suppose throughout that

(3.1) −∞ <

∫
IR

log(f)dF < ∞.

Let X1, X2, · · · ∼ind F ; and let F#
n be the empirical distribution function.

F#
n (x) =

#{k ≤ n : Xk ≤ x}
n

.

Further, let h denote the Hellinger distance between densities,

(3.2) h2(g1, g2) =
∫

IR

(
√

g1 −
√

g2)
2dx = 2

[
1 −

∫
IR

√
g1g2dx

]
.

The purpose of this section is to prove: If f is a PFF2 for which (3.1) is satisfied
and f̂n is the maximum likelihood estimator, then limn→∞ h2(f, f̂n) = 0 w.p.1.
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Fig 1. Estimated density of velocities for 178 stars.

Lemma 1. If f and g are densities and b > 0, then∫
IR

log(
b + g

b + f
)dF ≤ ε(b) − h2(f, g),

where

ε(b) = 2
∫

IR

√
b

b + f
dF.

Proof. In this case,

∫
IR

log
( b + g

b + f

)
dF ≤ 2

[ ∫
IR

√
b + g

b + f
dF − 1

]

≤ 2
[ ∫

IR

√
b

b + f
dF +

∫
IR

√
g

b + f
dF − 1

]

≤ ε(b) + 2
[ ∫

IR

√
gfdx − 1

]

= ε(b) − h2(f, g).
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Lemma 2. Let 0 < b, c < ∞. If g is unimodal and supx g(x) ≤ c, then

(3.3) |
∫

IR

log(b + g)d(F#
n − F )| ≤ 2 sup

x
|F#

n (x) − F (x)| log
(
1 +

c

b

)
.

Proof. Integrating by parts, the left side of (3.3) is

|
∫

IR

(F − F#
n )d log(b + g)|,

which is at most the right side.

Now let U be a class of unimodal densities; let �n denote the log-likelihood
function, so that

�n(g) =
n∑

i=1

log[g(Xi)] = n

∫
IR

log(g)dF#
n

for g ∈ U ; and let f̂n be the MLE in U (assumed to exist).

Theorem 3.1. If f ∈ U and Cn = supx f̂n(x) satisfies,

(3.4) log Cn = sup
x

log f̂n(x) = o[
√

n

log(n)
] w.p.1,

then
lim

n→∞
h(f, f̂n) = 0 w.p.1.

Proof. If f ∈ U , then

0 ≤ �n(f̂n) − �n(f) = n
[ ∫

IR

log(f̂n)dF#
n −

∫
IR

log(f)dF#
n

]
.

So, if b > 0, then

0 ≤
∫

IR

log(b + f̂n)dF#
n −

∫
IR

log(f)dF#
n = In + IIn + IIIn,

where

In =
∫

IR

log(b + f̂n)d(F#
n − F ),

IIn =
∫

IR

log
[b + f̂n

b + f

]
dF

and
IIIn =

∫
IR

log(b + f)dF −
∫

IR

log(f)dF#
n .

With Cn as in (3.4),

|In| ≤ 2 sup
x

|F#
n (x) − F (x)| log

(
1 +

Cn

b

)
→ 0 w.p.1

as n → ∞, by Lemma 2 and the consistency of F#
n . Also,

IIn ≤ ε(b) − h2(f, f̂n),
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by Lemma 1, and

lim
n→∞

IIIn =
∫

IR

[log(b + f) − log(f)]dF,

by the Strong Law of Large Numbers. So, w.p.1,

lim sup
n→∞

h2(f, f̂n) ≤
∫

IR

[log(b + f) − log(f)]dF + ε(b),

which approaches zero as b → 0.

Lemma 3. Let g be a PFF2 density. If 0 < g(a) ≤ g(b), then

g(b) ≤ 1
|b − a|

{
1 + log

[ g(b)
g(a)

]}
.

Proof. There is no loss of generality in supposing that a < b. Let h = log(g). Then

h(x) ≥ ha + (
x − a

b − a
)[hb − ha],

where ha and hb were written for h(a) and h(b). So,

∫ b

a

g(x)dx ≥
∫ b

a

exp
{
ha + (

x − a

b − a
)[hb − ha]

}
dx

= eha(
b − a

hb − ha
)
[
ehb−ha − 1

]
= (b − a)

gb − ga

log(gb/ga)
.

Of course,
∫ b

a
g(x)dx ≤ 1, and g(x) ≥ ga for a ≤ x ≤ b. So, ga ≤ 1/(b − a) and

gb ≤ ga + (
1

b − a
) log(

gb

ga
) ≤ (

1
b − a

)
{
1 + log

[ g(b)
g(a)

]}
,

as asserted.

Lemma 4. If a, b, x > 0 and x ≤ a log(x) + b, then x ≤ 2a log(2a) + 2b.

Proof. If x ≤ a log(x) + b, then

x ≤ a log(2a + x) + b ≤ a
[
log(2a) +

x

2a

]
+ b =

1
2
x + a log(2a) + b,

from which the lemma follows immediately.

Now let f̂n be the MLE in the class of PFF2 densities. Then f̂n attains its
maximum at an order statistic, say xm. If m ≤ n/2, let q = 	3n/4
 + 1; and if
m > n/2,let q = 	n/4
.

Theorem 3.2. If f is a PFF2 density, then

(3.5) C := sup
n≥1

f̂n(xm) < ∞ w.p.1.
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Proof. Let Kn = q or n − q, accordingly as m > n/2 or ≤ n/2. Then Kn ≥ n/4,
and

(3.6) f̂n(xm) ≤ 1
|xm − xq|

{
1 + log

[ f̂n(xm)

f̂n(xq)

]}
,

by Lemma 3. If f is a PFF2, then

�n(f) ≤ �n(f̂n) ≤ Kn log[f̂n(xq)] + (n − Kn) log[f̂n(xm)].

So,

log
[ f̂n(xm)

f̂n(xq)

]
≤ n

Kn
log[f̂n(xm)] − 1

Kn
�n(f)

(3.7)
≤ 4

[
log[f̂n(xm)] − 1

n
�n(f)

]
.

Combining (3.6) and (3.7),

f̂n(xm) ≤ 1
|xm − xq|

{
1 + 4 log[f̂n(xm)] − 4

n
�n(f)

}
= An log[f̂n(xm)] + Bn,

where
An =

4
|xm − xq|

and
Bn =

1
|xq − xm|

[
1 − 4

n
�n(f)

]
.

So,
f̂n(xm) ≤ 2An log(2An) + 2Bn,

by Lemma 4. Here supn An < ∞ and supn Bn < ∞, by (3.1) and the choices of m
and q, establishing the theorem.

From the choice of m = mn, (3.5) may be written C = supn supx f̂n(x).

Corollary 1. If U is the class of PFF2 densities and f ∈ U , then limn→∞ h2(f,

f̂n) = 0 w.p.1.

4. Simulations

To assess the speed of convergence, we conducted simulation study for different well-
known members of the PFF2 class. The densities we sampled from are: Gaussian,
Double exponential, Gamma (with shape parameter 3 and scale parameter 1), Beta
(with shape parameters 3 and 2) and Weibull (with parameters 3 and 1). Table 4
gives us the summary for approximate Hellinger distances between the estimate and
the true underlying density with increasing sample sizes 50, 100, 200, 500, 1000. We
also graphically show how the estimators look like in some of this examples. Figure 2
shows the corresponding plots for Normal, Double Exponential and Gamma for
sample sizes 50, 100, 200 respectively.
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Table 2

The Monte Carlo estimates of finite-sample Hellinger distances, for sample
size n = 50, 100, 200, 500, 1000 and number of replications M = 500

for five different log-concave densities. The upper figure is the
estimate and the lower is one standard deviation.

Sample Normal Double Gamma Beta Weibull
size (0,1) Exponential (3,1) (3,2) (3,1)
50 0.1658 0.1548 0.1518 0.1823 0.0854

± 0.0531 ± 0.0466 ± 0.0447 ± 0.0582 ± 0.0263
100 0.0680 0.1146 0.0934 0.0988 0.0947

± 0.0218 ± 0.0426 ± 0.0305 ± 0.0363 ± 0.0319
200 0.0624 0.0956 0.0532 0.1166 0.0312

± 0.0167 ± 0.0252 ± 0.0164 ± 0.0360 ± 0.0067
500 0.0290 0.0626 0.0088 0.0766 0.0347

± 0.0104 ± 0.0203 ± 0.0029 ± 0.0214 ± 0.0115
1000 0.0028 0.0139 0.0019 0.0170 0.0274

± 0.0010 ± 0.0031 ± 0.0007 ± 0.0031 ± 0.0089

Fig 2. The estimated log-concave density for different simulation examples. The sample sizes are
50,100 and 200 respectively for first, second and third columns. The three rows correspond to
simulations from a Normal(0,1), a double-exponential and a Gamma(3,2) density. The bold one
corresponds to the true density and the dotted one is the estimator.
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