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Some results on the Gittins index

for a normal reward process

Yi-Ching Yao1

Academia Sinica

Abstract: We consider the Gittins index for a normal distribution with un-
known mean θ and known variance where θ has a normal prior. In addition
to presenting some monotonicity properties of the Gittins index, we derive an
approximation to the Gittins index by embedding the (discrete-time) normal
setting into the continuous-time Wiener process setting in which the Gittins
index is determined by the stopping boundary for an optimal stopping prob-
lem. By an application of Chernoff’s continuity correction in optimal stopping,
the approximation includes a correction term which accounts for the difference
between the discrete and continuous-time stopping boundaries. Numerical re-
sults are also given to assess the performance of this simple approximation.

1. Introduction

The classical multi-armed bandit problem is concerned with sequential design of
adaptive sampling from k statistical populations with distribution functions Fθi ,
i = 1, . . . , k (k ≥ 2) where θi denotes the unknown parameter of the ith population.
Specifically, the objective is to sample Y1, Y2, . . . sequentially from the k populations
so as to maximize the expected total discounted reward

EπEθ1,...,θk

( ∞∑
j=1

γjYj

)
=

∫
Eθ1,...,θk

( ∞∑
j=1

γjYj

)
dπ(θ1, . . . , θk),

where π is the prior distribution of (θ1, . . . , θk) and {γj} is a (deterministic) discount
sequence. The two most important types of discount sequence are uniform discount-
ing with finite horizon N > 0 (i.e. γj = 1 for j ≤ N and γj = 0 for j > N) and
geometric discounting with discount factor 0 < β < 1 (i.e. γj = βj−1, j = 1, 2, . . .).
While in general the optimal allocation rule can only be characterized via the
dynamic programming equations which admit no general closed-form solutions,
Gittins and Jones [13] showed that under geometric discounting, when the prior
distribution is a product measure dπ(θ1, . . . , θk) = dπ1(θ1) × · · · × dπk(θk), the
optimal allocation rule is to sample at each stage from the population with the
greatest (current) Gittins index. See also [11] and [21].

For a population with distribution function Fθ and (current) prior distribution
π(θ) of the unknown parameter θ, the Gittins index is defined by

(1) λ(π, β) = sup
ξ≥1

[
EπEθ

( ξ∑
n=1

βn−1Xn

)/
EπEθ

( ξ∑
n=1

βn−1

)]
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where the supremum is taken over all (integer-valued) stopping times ξ ≥ 1 and
X1, X2, . . . are (conditionally) iid with common distribution function Fθ (given θ).
Equivalently, λ(π, β) is the infimum of the set of solutions λ of the equation

(2)
λ

1 − β
= sup

ξ ≥ 0
Eπ Eθ

[
ξ∑

n=1

βn−1Xn + βξ λ

1 − β

]
.

In [12], computational methods for calculating Gittins indices are described and
applied to the normal, Bernoulli and negative exponential families with conjugate
priors, which involve using backward induction to approximate the right-hand side
of (2) with the supremum over ξ ≥ 0 replaced by the supremum over 0 ≤ ξ ≤ N for
some large horizon N . For β close to 1, such computational methods become time
consuming as a very large horizon N is required to yield an accurate approximation.
Thus it will be useful to have accurate analytic approximations to Gittins indices
especially for β close to 1.

In this paper, we consider the normal case with unknown mean θ and known vari-
ance where θ has a normal (conjugate) prior. Section 2 presents some monotonicity
properties of the Gittins index. In particular, it is shown that the Gittins index is
a nondecreasing function of the prior variance. In Section 3, a corrected diffusion
approximation to the Gittins index is derived by embedding the (discrete-time)
normal setting into the continuous-time Wiener process setting in which the Git-
tins index is determined by the stopping boundary for an optimal stopping problem
(first introduced in [2]). By an application of Chernoff’s continuity correction, the
approximation includes a correction term which accounts for the difference between
the discrete and continuous-time stopping boundaries. Numerical results are also
given to assess the performance of this simple approximation. To prepare for the
derivations, Sections 3.1 and 3.2 briefly review, respectively, some properties of the
Gittins index for a Wiener process and Chernoff’s continuity correction in optimal
stopping.

The monograph of Gittins [12] provides a comprehensive theory of dynamic
allocation indices and explores the class of problems whose optimal solutions can be
characterized by dynamic allocation indices. On the other hand, Lai [17] and Chang
and Lai [6] have proposed simple index-type adaptive allocation rules that are
asymptotically optimal in both the Bayes and frequentist senses either as N → ∞
(under uniform discounting) or as β → 1 (under geometric discounting). Brezzi
and Lai [5] have recently refined and modified these adaptive allocation rules in the
presence of switching costs, while Hu and Wei [15] have constructed asymptotically
optimal adaptive allocation rules subject to the irreversibility constraint. Various
applications of the theory of multi-armed bandits can be found in sequential clinical
trials, market pricing, labor markets and search problems; see e.g. [1, 8, 16, 19, 20].

2. Some monotonicity properties of the Gittins index for a normal
reward process

In this section, we consider the case that X1, X2, . . . are (conditionally) iid N(θ, σ2),
the unknown mean θ has a prior π = N(u, v) and the variance σ2 is known. The Git-
tins index is denoted by λ (u, v, σ2, β). By location and scale equivariance properties
(cf. [12], Section 6.4),

(3) λ (u, v, σ2, β) = u + r λ (0, v/r2, σ2/r2, β)

for r > 0.
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Lemma 1. The Gittins index λ (u, v, σ2, β) is nonincreasing in σ2.

Proof. We prove the lemma by a simple randomization argument. Fix 0 < σ2
1 < σ2

2 .
Let X1, X2, . . . be (conditionally) iid N(θ, σ2

1) given θ, which is assumed to have
a prior π = N(u, v). Let ε1, ε2, . . . be iid N(0, σ2

2 − σ2
1) (independent of the Xi).

Then X ′
1 = X1 + ε1, X ′

2 = X2 + ε2, . . . are (conditionally) iid N(θ, σ2
2) given θ. For

any stopping time ξ′ ≥ 1 with respect to the filtration F ′ generated by X ′
1, X

′
2, . . . ,

we have

Eπ Eθ

ξ′∑
n=1

βn−1X ′
n = Eπ Eθ

ξ′∑
n=1

βn−1Xn + Eπ Eθ

∞∑
n=1

βn−1 εn 1{ξ′≥n}

= Eπ Eθ

ξ′∑
n=1

βn−1Xn .

Since every stopping time ξ′ with respect to F ′ may be viewed as a randomized
stopping time with respect to F (the filtration generated by X1, X2, . . . ), it follows
that

λ(u, v, σ2
2 , β) = sup

ξ′≥1
Eπ Eθ

( ξ′∑
n=1

βn−1X ′
n

)/
Eπ Eθ

( ξ′∑
n=1

βn−1

)

≤ sup
ξ≥1

Eπ Eθ

( ξ∑
n=1

βn−1Xn

)/
Eπ Eθ

( ξ∑
n=1

βn−1

)

= λ(u, v, σ2
1 , β) ,

completing the proof.

Theorem 1. λ (0, v, σ2, β)/
√

v is nondecreasing in v.

Proof. For fixed 0 < v2 < v1, it follows from (3) and Lemma 1 that

λ(0, v2, σ2, β) =
√

v2/v1 λ(0, v1, σ2 v1/v2, β)

≤
√

v2/v1 λ(0, v1, σ2, β) ,

completing the proof.

Corollary 1. λ(u, v, σ2, β) = u + λ(0, v, σ2, β) is nondecreasing in u and v.

Remark 1. For the Wiener process setting, Bather [2] proved a result analogous
to Theorem 1 (see (7) and (8) below).

Remark 2. For a normal two-armed bandit in which the means of arms 1 and
2 have independent normal priors N(u1, v1) and N(u2, v2) and their variances are
known and equal, it follows from Corollary 1 that under geometric discounting,
it is optimal to pull arm 1 initially if u1 ≥ u2 and v1 ≥ v2. It seems natural to
conjecture that the same also holds under uniform discounting. Note that Berry [3]
made a similar conjecture regarding a Bernoulli two-armed bandit, which has not
been resolved (cf. [4], Section 7.3).

Remark 3. Along the lines of the proof of Theorem 1, it can be readily shown
that

λ(0, v1, σ2
1 , β)/

√
v1 ≥ λ(0, v2, σ2

2 , β)/
√

v2

if v1 ≥ v2 and v1/σ2
1 ≥ v2/σ2

2 . Note that for a normal distribution N(θ, σ2) where
θ has a normal prior N(0, v), v/σ2 may be referred to as the signal-to-noise ratio
since v is the second moment of the “signal” θ.
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3. Corrected diffusion approximation to the Gittins index for a normal
reward process

In Section 3.3, we derive an approximation to the Gittins index for a normal distrib-
ution whose mean is assumed to have a normal prior. To prepare for the derivations,
we briefly review, in Sections 3.1 and 3.2, some properties of the Gittins index for
a Wiener process and Chernoff’s continuity correction in optimal stopping.

3.1. Properties of the Gittins index for a Wiener process

Bather [2] showed that for a Wiener process {W (t), t ≥ 0} with drift coefficient
θ which has a normal prior N(u0, v0), the Gittins index λ∗(u0, v0, c) can be de-
termined by the solution to an optimal stopping problem (to be described below)
where c > 0 denotes the discount rate in continuous time (see also [6] and Section
6.6 of [12]). Here λ∗(u0, v0, c) is defined as the infimum of the set of solutions λ of
the equation (cf. (2) )

λ

∫ ∞

0

e−c tdt = sup
τ≥0

Eπ Eθ

[ ∫ τ

0

e−ctdW (t) + λ

∫ ∞

τ

e−ctdt

]

= sup
τ≥0

Eπ

[ ∫ τ

0

θe−ctdt + λ

∫ ∞

τ

e−ctdt

]
(4)

= sup
τ≥0

Eπ

[ ∫ τ

0

u(t) e−ctdt + λ

∫ ∞

τ

e−ctdt

]

= sup
τ≥0

Eπ

[
c−1u0 − c−1

(
u(τ) − λ

)
e−cτ

]
,

where the supremum is taken over all (real-valued) stopping times τ ≥ 0, π =
N(u0, v0) is the prior distribution of θ, and u(t) is the posterior mean of θ, i.e.

(5) u (t) = Eπ

[
θ | W (s), 0 ≤ s ≤ t

]
=

v−1
0 u0 + W (t)

v−1
0 + t

.

The last equality in (4) follows from integration by parts along with the fact that a
simple change of time transforms u into standard Brownian motion, cf. Y (v) below.

Define

v = v(t) = (v−1
0 + t)−1 (the posterior variance), s = v/c ,

Y (v) = u0 − u(t), and Z(s) = Y (cs)/
√

c .

It can be readily shown that {Y (v), 0 < v ≤ v0} is standard Brownian motion
(Y (v0) = 0 ) in the −v scale and {Z(s), 0 < s ≤ s0} (s0 = v0/c) is standard
Brownian motion (Z(s0) = 0 ) in the −s scale. Letting z0 = (λ−u0)/

√
c, it follows

that (4) is equivalent to

(6) z0 e−1/s0 = sup
0<S ≤s0

E
[
{Z(S) + z0} e−1/S

]

in the sense that λ is a solution of (4) if and only if z0 = (λ− u0)/
√

c is a solution
of (6), where the supremum on the right-hand side of (6) is taken over all stopping
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times 0 < S ≤ s0 (in the −s scale). It is more convenient to remove the restriction
of Z(s0) = 0 and rewrite (6) as

(6′) z0 e−1/s0 = sup
0<S ≤s0

E
[

Z(S) e−1/S | Z(s0) = z0

]
.

For the optimal stopping problem with payoff function g(z, s) = ze−1/s on the
right-hand side of (6′), it is easily shown that the continuation region is of the form
{(z, s) : z < b(s)} where b(s) > 0 is the optimal stopping boundary. Since z0 is a
solution of (6′) if and only if (z0, s0) is in the stopping region (i.e. z0 ≥ b(s0)), it
follows that λ∗(u0, v0, c), the infimum of the set of solutions λ of the equation (4),
satisfies b(s0) =

(
λ∗(u0, v0, c) − u0

)
/
√

c , i.e.

(7) λ∗(u0, v0, c) = u0 +
√

c b(s0) = u0 +
√

c b(v0/c) .

Bather [2] showed that

(8) b(s)/
√

s is a nondecreasing function of s ,

(9) b(s) ≤ s/
√

2 for all s > 0 , and lim
s→0

b(s)/s = 1/
√

2 ,

while Chang and Lai [6] derived the asymptotic expansion as s → ∞

(10) b(s) =
{

2s
[
log s − 1

2
log log s − 1

2
log 16π + o(1)

]}1/2

.

Based on (8)–(10) together with extensive numerical work (involving corrected
Bernoulli random walk approximations for Brownian motion), Brezzi and Lai [5]
have suggested the following closed-form approximation Ψ(s) to b(s)/

√
s

(11)
b(s)√

s
≈ Ψ(s) =




√
s/2 for s ≤ 0.2 ,

0.49 − 0.11 s−1/2 for 0.2 < s ≤ 1 ,

0.63 − 0.26 s−1/2 for 1 < s ≤ 5 ,

0.77 − 0.58 s−1/2 for 5 < s ≤ 15 ,{
2 log s − log log s − log 16π

}1/2

for s > 15 .

3.2. Chernoff’s continuity correction in optimal stopping

In his pioneering work, Chernoff [7] studied the relationship between the solutions of
the discrete and continuous-time versions of the problem of testing sequentially the
sign of the mean of a normal distribution. His result may be stated more generally
as follows. Let {B(t)} be standard Brownian motion and let g(x, t) be a smooth
payoff function for t ≤ T (horizon) for which the continuation region is of the form
{(x, t) : x < b(t)}. Consider a constrained optimal stopping problem where stopping
is permitted only at nδ, n = 1, 2, . . . where δ is a given (small) positive number.
Suppose that there exist stopping boundary points bδ(nδ), n = 1, 2, . . . such that
starting from B(n0δ) = x0 for any given n0 and x0, the optimal stopping rule is to
stop at the first n ≥ n0 at which B(nδ) ≥ bδ(nδ). So bδ(nδ) (or b(t), resp.) is the
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discrete-time (or continuous-time, resp.) stopping boundary for the constrained (or
unconstrained, resp.) optimal stopping problem. Then for fixed t < T , we have

(12) bδ(t) = b(t) − ρ
√

δ + o(
√

δ) as δ → 0 ,

where bδ(t) = bδ( [ t/δ ] δ ), ρ = ES2
τ+

/
2ESτ+ ≈ 0.583, τ+ = inf{n : Sn > 0},

Sn = X1 + · · · + Xn, and the Xi are iid N(0, 1).
Chernoff [7] derived (12) by relating the original problem to an associated stop-

ping problem in which there is a horizon at t = 0 and the payoff function is g(x, t) =
−t + x2 1{x<0, t=0}, t ≤ 0. For the associated stopping problem, stopping is permit-
ted at 0,−1,−2, . . . , and there exist stopping boundary points b−1 > b−2 > · · ·
such that starting from (x0, n0) with n0 < 0, the optimal stopping rule is to stop
at the first n0 ≤ n ≤ 0 at which

x0 + X1 + · · · + Xn−n0 ≥ bn (b0 = −∞).

Chernoff [7] and subsequently Chernoff and Petkau [9] and Hogan [14] showed that

lim
n→−∞

bn = −ES2
τ+

/
2 ESτ+

for normal, Bernoulli and general X (with finite fourth moment), respectively. Re-
cently, under mild growth conditions on g, Lai, Yao and AitSahlia [18] have proved
(12) when the Brownian motion process is replaced by a general random walk in
the constrained problem.

3.3. Approximating the Gittins index for a normal reward process

In this subsection, we consider the case that X1, X2, . . . are (conditionally) iid
N(θ, σ2) and the unknown mean θ has a prior π = N(u0, v0). Without loss of gen-
erality, we assume σ2 = 1. For notational simplicity, the Gittins index λ(u0, v0, 1, β)
will be abbreviated to λ(u0, v0, β). Recall that λ(u0, v0, β) is the infimum of the set
of solutions λ of the equation (2). As in Section 3.1, let {W (t), t ≥ 0} be a Wiener
process with drift coefficient θ which has a normal prior N(u0, v0). Noting that
(X1, X2, . . .) and (W (1), W (2)−W (1), . . .) have the same joint distribution, we can
rewrite (2) as

λ

1 − β
= sup

ξ ≥ 0
Eπ Eθ

[ ξ∑
n=1

βn−1

(
W

(
n
)
− W

(
n − 1

))
+ βξ λ

1 − β

]

= sup
ξ ≥ 0

Eπ

[ ξ∑
n=1

βn−1 u
(
n − 1

)
+ βξ λ

1 − β

]

= sup
ξ ≥ 0

Eπ

[
c

1 − β

∫ ξ

0

u
(
t
)
e−ctdt + βξ λ

1 − β

]

=
1

1 − β
sup
ξ ≥ 0

Eπ

[
u0 −

(
u(ξ) − λ

)
e−cξ

]
,

where u(t) is given in (5), c = − log β and the third equality follows since

E

[
c

1 − β

∫ n

n−1

u(t) e−ct1{ξ≥n} dt | W (s), 0 ≤ s ≤ n − 1
]

=
c

1 − β
1{ξ≥n}

∫ n

n−1

u(n − 1) e−ct dt = βn−1 u(n − 1)1{ξ≥n} .
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With the notation introduced in Section 3.1, we can further rewrite (2) as

λ − u0 = sup
V ∈{v0/(1+v0n) , n=0,1,...}

E

[(
λ − u0 + Y (V )

)
e−cV −1+c v−1

0

]

where the supremum is taken over all stopping times V taking values in { v0/(1 +
v0n), n = 0, 1, . . . }. In terms of Brownian motion Z(s) in the −s scale, (2) is
equivalent to

(13) z0e
−1/s0 = sup

S ∈{c−1v0/(1+v0n) , n=0,1,...}
E

[
Z(S) e−1/S | Z(s0) = z0

]

where z0 = (λ − u0)/
√

c , s0 = v0/c and the supremum is taken over all stopping
times S taking values in {c−1v0/(1 + v0n) , n = 0, 1, . . .}.

For the constrained optimal stopping problem on the right-hand side of (13),
there exist optimal stopping boundary points bv0

(
c−1v0/(1+v0n)

)
, n = 0, 1, . . . such

that the optimal stopping rule is to stop at the first n at which Z
(
c−1v0/(1+v0n)

)
≥

bv0

(
c−1v0/(1 + v0n)

)
. So bv0(v0/c) is the infimum of the set of solutions z0 of the

equation (13). It then follows that

(14) λ
(
u0, v0, β

)
= u0 +

√
c bv0(v0/c) .

Since in the constrained optimal stopping problem the permissible stopping time
points c−1v0/(1 + v0n), n = 0, 1, 2, . . . are not equally spaced, there is no rigorous
justification for applying (12) to relate the discrete and continuous-time stopping
boundaries bv0(t) and b(t) for the constrained and unconstrained problems. How-
ever, it can be argued heuristically that (12) applies when the spacing between
many successive permissible stopping time points is approximately constant ( cf.
bottom of page 47 in [10]). Thus we arrive at the following approximation

(15) bv0(v0/c) ≈ b(v0/c) − 0.583
√

δ

where

(16) δ =
c−1v0

1 + v0 · 0
− c−1v0

1 + v0 · 1
=

c−1v2
0

1 + v0
,

provided that v0/c is bounded away from 0 (the horizon of the optimal stopping
problem) and δ ≈ c−1v0

1+v0n − c−1v0
1+v0(n+1) for many (small to moderate) n’s. That is, we

expect the approximation (15) to be reasonably good if v0 is small and v0/c is not
too close to 0. It follows from (14), (15), (16) and (11) that

λ
(
u0, v0, β

)
≈ u0 +

√
c b(v0/c) − 0.583 v0

/√
1 + v0

≈ u0 +
√

v0 Ψ(v0/c) − 0.583 v0

/√
1 + v0 .(17)

Note that the continuation region for the constrained problem must be con-
tained in the continuation region for the unconstrained problem, so that bv0(v0/c) <
b(v0/c). Thus the uncorrected diffusion approximation u0+

√
cb(v0/c) overestimates

λ(u0, v0, β) = u0 +
√

c bv0(v0/c), which is recorded in the following theorem.

Theorem 2. λ(u0, v0, β) < u0 +
√

c b(v0/c) where c = log β−1.
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A related upper bound for λ(u0, v0, β) is given in Theorem 6.28 of Gittins [12],
which states, in our notation, that

(18) λ(u0, v0, β) < u0 +
√

1 − β b
(
v0/(1 − β)

)
.

Since b(s)/
√

s is nondecreasing in s by (8) and since c = log β−1 > 1 − β, we have

√
c b(v0/c) ≤

√
1 − β b

(
v0/(1 − β)

)
,

so that the upper bound given in Theorem 2 is sharper than (18).
In the approximation (15), the correction term 0.583

√
δ with δ given in (16)

appears to be a little too large since the spacing between successive permissible
stopping time points c−1v0

1+v0n − c−1v0
1+v0(n+1) is strictly less than δ for n ≥ 1. To com-

pensate for this overcorrection, we propose ( in view of (9) ) to replace b(v0/c) by
(v0/c)/

√
2 in (15), resulting in the following simple approximation

(19) λ
(
u0, v0, β

)
≈ u0 + v0/

√
2c − 0.583 v0

/√
1 + v0 .

Note that (19) agrees with (17) for v0/c ≤ 0.2 in view of (11).
In his Table 1, Gittins [12] tabulates n(1 − β)1/2 λ( 0, n−1, β ) for various values

of n and β. Our Table 1 compares n(1 − β)1/2 λ( 0, n−1, β ) with the corrected and
uncorrected approximations ( based on (17) and (19) )

(CA) n(1 − β)
1
2

[
1√
n

Ψ
(

1
nc

)
− 0.583 n−1

√
1 + n−1

]

= (1 − β)
1
2

[√
n Ψ

(
1
nc

)
− 0.583√

1 + n−1

]
,

(UA) n(1 − β)
1
2

1√
n

Ψ
(

1
nc

)
= (1 − β)

1
2
√

n Ψ
(

1
nc

)
,

(CA′) (1 − β)
1
2

[
1√
2c

− 0.583√
1 + n−1

]
,

(UA′)
√

(1 − β)/(2c) .

Remark 4. As explained earlier, the uncorrected approximations have positive bias
due to overestimation. The corrected approximations are reasonably accurate for
moderate to large n and for large β. For moderate n, (CA) (or (CA′), resp.) tends
to underestimate (or overestimate, resp.) n(1− β)1/2 λ(0, n−1, β). This observation
naturally leads to approximating n(1 − β)1/2 λ(0, n−1, β) by the average of (CA)
and (CA′), which is also included in Table 1. Overall, [ (CA) + (CA′) ]/2 has the
best performance, while (CA′) is better than (CA) except for small n and large β.

Remark 5. Table 1 of Gittins [12] suggests that n(1 − β)1/2 λ(0, n−1, β) is in-
creasing in n. For β = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, Gittins has numerically estimated
limn→∞ n(1 − β)1/2λ(0, n−1, β). These numbers are compared in Table 2 with the
limits (1− β)1/2[ (2c)−1/2 − 0.583 ] (or (1− β)1/2/(2c)1/2, resp.) obtained from the
corrected approximations (CA) and (CA′) (or uncorrected approximations (UA)
and (UA′), resp.) as n → ∞. It should be noted that the heuristic justification for
the corrected approximations requires v0/c = 1/(n c) not to be very close to 0.
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Table 1

Gittins indices and approximations

(β = 0.5, 0.7, 0.9, 0.95, 0.99, 0.995)

n

10 50 100 500 1000

β= 0.5

n(1 − β)1/2 λ(0, n−1, β) 0.211 0.224 0.226 0.227 0.227
[ (CA) + (CA′) ]/2 0.208 0.192 0.190 0.189 0.189
(CA) 0.208 0.192 0.190 0.189 0.189
(CA′) 0.208 0.192 0.190 0.189 0.189
(UA) 0.601 0.601 0.601 0.601 0.601
(UA′) 0.601 0.601 0.601 0.601 0.601

β= 0.7

n(1 − β)1/2 λ(0, n−1, β) 0.311 0.337 0.341 0.344 0.345
[ (CA) + (CA′) ]/2 0.264 0.332 0.331 0.329 0.329
(CA) 0.184 0.332 0.331 0.329 0.329
(CA′) 0.344 0.332 0.331 0.329 0.329
(UA) 0.489 0.648 0.648 0.648 0.648
(UA′) 0.648 0.648 0.648 0.648 0.648

β= 0.9

n(1 − β)1/2 λ(0, n−1, β) 0.415 0.480 0.493 0.504 0.506
[ (CA) + (CA′) ]/2 0.357 0.506 0.505 0.505 0.505
(CA) 0.201 0.506 0.505 0.505 0.505
(CA′) 0.513 0.506 0.505 0.505 0.505
(UA) 0.377 0.689 0.689 0.689 0.689
(UA′) 0.689 0.689 0.689 0.689 0.689

β= 0.95

n(1 − β)1/2λ(0, n−1, β) 0.425 0.519 0.540 0.562 0.566
[ (CA) + (CA′) ]/2 0.382 0.468 0.568 0.568 0.568
(CA) 0.190 0.367 0.568 0.568 0.568
(CA′) 0.574 0.569 0.568 0.568 0.568
(UA) 0.314 0.496 0.698 0.698 0.698
(UA′) 0.698 0.698 0.698 0.698 0.698

β= 0.99

n(1 − β)1/2λ(0, n−1, β) 0.353 0.499 0.549 0.618 0.633
[ (CA) + (CA′) ]/2 0.390 0.453 0.485 0.647 0.647
(CA) 0.130 0.257 0.322 0.647 0.647
(CA′) 0.650 0.648 0.647 0.647 0.647
(UA) 0.185 0.315 0.380 0.705 0.705
(UA′) 0.705 0.705 0.705 0.705 0.705

β= 0.995

n(1 − β)1/2λ(0, n−1, β) 0.304 0.457 0.516 0.614 0.638
[ (CA) + (CA′) ]/2 0.424 0.437 0.470 0.562 0.665
(CA) 0.181 0.209 0.274 0.458 0.665
(CA′) 0.667 0.665 0.665 0.665 0.665
(UA) 0.221 0.250 0.315 0.499 0.706
(UA′) 0.706 0.706 0.706 0.706 0.706

Remark 6. Brezzi and Lai [5] have proposed a simple approximation to Gittins
indices for general distributions which is justified by making use of the functional
central limit theorem as β → 1. For Bernoulli distributions (with beta conjugate
priors), their approximation provides fairly accurate results. When applied to nor-
mal distributions, their approximation reduces to the uncorrected approximation
(UA). It will be of great interest to see whether and how Chernoff’s continuity
correction can apply to approximate Gittins indices for nonnormal distributions.
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Table 2

The limits of Gittins indices and approximations

β limn→∞ n(1 − β)1/2 λ(0, n−1, β) (CA) and (CA′) (UA) and (UA′)
0.5 0.227 0.189 0.601
0.6 0.283 0.257 0.626
0.7 0.345 0.329 0.648
0.8 0.417 0.409 0.669
0.9 0.509 0.505 0.689
0.95 0.583 0.568 0.698
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