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Implementing Shaffer’s multiple

comparison procedure for a large number

of groups
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Abstract: Shaffer (1986) presented two more powerful modifications (com-
monly referred to as S1 and S2) of Holm’s (1979) sequentially rejective Bon-
ferroni procedure. Unfortunately, use of the more-powerful S2 procedure has
been severely limited by the complexity of its implementation. This paper
presents a method of allowing Shaffer’s S2 procedure to be used in a much
larger class of problems.

Theoretical results concerning an aspect of Shaffer’s S2 procedure are de-
rived. Use of these results in implementing the procedure is described. Next,
two heuristics are described which greatly enhance the efficiency of the method.
Finally, an efficient algorithmic method of implementing Shaffer’s procedure
is outlined.

The present work allows Shaffer’s procedure for multiple comparisons to
be applied to a large number of groups. Unlike many other methods, no as-
sumptions about the joint distributions of the test statistics need be made.
Shaffer’s S2 method and other methods are illustrated by application to two
data sets; comparisons of the order of 11 clustering methods, and comparison
of the means of 44 states from the 1994 National Assessment of Educational
Progress Trial State Assessment of Reading at Grade 4.

1. Introduction

In performing multiple statistical tests, it may be important to control the proba-
bility of Type I error over the set (family) of related comparisons. The probability
of incorrectly rejecting one or more null hypothesis is termed the familywise error
rate (FWER). If each comparison is performed at the nominal significance level α,
the FWER can greatly exceed α. Controlling the overall Type I error rate is a
standard goal of multiple comparison procedures.

This paper examines the special case of examining all pairwise comparisons of a
number of groups, while maintaining the FWER at the nominal level α. Specifically,
a method is developed to implement Shaffer’s (1986) modification to the Holm
(1979) procedure.2 Although Shaffer’s S2 procedure has achieved some use in the
past two decades, its use has been limited by the complexity in implementing the
procedure. This paper presents a method of managing that complexity, allowing
Shaffer’s procedure to be used in a much larger class of problems.

1Educational Testing Service, Rosedale Road, Princeton, NJ 08541, USA. e-mail:
jdonoghue@ets.org
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2Shaffer’s (1986) paper actually presentes two methods, commonly referred to as S1 and S2

(e.g., Holland & Copenhaver, 1988; Rasmussen, 1993). Unless otherwise indicated, this paper will
be concerned with the S2 procedure. See Section 1.2.1 for more details.
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1.1. Background

A wealth of multiple comparison procedures is available; no attempt will be made
to summarize them here. The interested reader is referred to any of several excellent
recent reviews of procedures available (e.g., Hochberg & Tamhane, 1987; Hsu, 1996;
Shaffer, 1995; Toothaker, 1991; Westfall, Tobias, Rom, Wolfinger, & Hochberg,
1999).

Two observations help place the present paper within this extensive literature.
First, some multiple comparison procedures, such as the early Honestly Signifi-
cant Difference method (Tukey, 1949) and other early multiple range methods for
pairwise comparisons, are based on distribution assumptions such as multivariate
normality of observations. Other, more recent methods are based on the Simes
inequality, which also requires some assumptions about the joint distribution of
the test statistics. As discussed below, Shaffer’s procedure does not require such
assumptions; only the probabilities of the individual statistical tests, and the struc-
ture of the tests, e.g., all pairwise comparisons, are needed.

A fundamentally different approach is control of the False Discovery Rate FDR
(Benjamini & Hochberg, 1995). This approach abandons control of the familywise
Type I error. Instead, it limits the expected proportion of false rejections among
the rejected hypotheses, while Shaffer’s procedure is designed to control the more
stringent FWER. Clearly, the choice between controlling the FWER and the FDR
depends upon the specific testing situation.

1.1.1. Bonferroni inequality

Probably the earliest (and still widely used) multiple comparison procedure is based
on the Bonferroni inequality, which states that the overall probability of at least
one false rejection of the null hypothesis (i.e., the FWER) is less than or equal to
the sum of the probabilities of the individual events. Thus, to control the familywise
Type I error at αof a set of R comparisons, each test is performed at α′ = α/R.

The Bonferroni logic has the advantages that it is simple to apply and is ap-
plicable across a wide variety of situations. However, for even a moderate number
of comparisons R, the Bonferroni method becomes very conservative. There are
modifications to the Bonferroni procedure that enhance the power of the procedure
while still maintaining FWER control. The modifications examined in this paper
make use of a sequential logic to control the Type I error rate.

1.2. Modifications to the Bonferroni–Sequential procedures

In sequentially rejective testing procedures (e.g., Holm, 1979; Shaffer, 1986; Hom-
mel, 1988; Hochberg, 1988), the p-values associated with the R tests are sorted
from smallest to largest (P1 ≤ P2 ≤ · · · ≤ PR), with the associated hypotheses
ordered identically H1, . . . , HR. The critical probability to be used is a function
of the comparison; P� is tested against α�. For the unmodified Bonferroni proce-
dure, α� ≡ α/R. Sequentially rejective procedures gain power over the unmodified
Bonferroni procedure by modifying α� for each �. FWER is maintained by the
closed nature of the procedure (Marcus, Peritz, & Gabriel, 1976; Grechanovsky &
Hochberg, 1999). So-called step-down procedures, such as Holm (1979) or Shaffer
(1986), maintain FWER by testing step �+1 only if the hypothesis associated with
step�was rejected (i.e., P� ≤ α�). Step-up procedures (e.g., Hochberg, 1988; Dunnett
& Tamhane, 1992) proceed in the opposite fashion, first testing PR against αR and
proceeding to H�−1 only if H� was not rejected. See Liu (1996), Grechanovsky and
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Hochberg (1999), and Finner and Roters (2002), for recent reviews of step-down
and step-up procedures.

Holm (1979) proposed a sequentially-rejective Bonferroni procedure, the ear-
liest proposed generally-applicable sequential procedure. Holm’s step-down proce-
dure tests P1 against α1 = α/R. If the associated hypothesis is rejected, test P2 at
α2 = α/(R − 1), and so on, testing P� at α� = α/(R − � + 1) until one hypothesis
H�(1 ≤ � ≤ R) is not rejected, at which point testing stops. The hypotheses associ-
ated with tests 1, 2, . . . , �− 1 are declared significant, while hypotheses H� through
HR are not rejected (see Westfall & Young, 1993, pp. 72–74 for a theoretical dis-
cussion).

1.2.1. Shaffer’s modified Bonferroni procedure (step-down)

Shaffer (1986) pointed out that it is often possible to make use of the logical in-
terrelationships among the hypotheses to reduce the family size in successive steps
beyond that in the Holm procedure. Consider the problem of all pairwise compar-
isons of some function f(·) of G groups (i.e., f1 = f2 = · · · = fG). An example would
be all pairwise comparisons of the means of the G groups. The smallest p-value P1

is compared to the Bonferroni critical value α1 = α/R, where R = G∗(G−1)/2. For
subsequent tests, however, the family size t� is determined by the largest number
of pairwise hypotheses that can be true simultaneously, given the results of tests
1, . . . , � − 1.

Shaffer actually presented two procedures, commonly referred to as S1 and S2
(e.g., Holland & Copenhaver, 1987, 1988; Rasmussen, 1993). S1 uses the maximum
number of hypotheses that could be true at step �, given that �−1 hypotheses have
been rejected. Shaffer gave a simple recursive formula to generate this number.

In the second method, S2, the actual bound t� is determined conditional on
which specific hypotheses have been rejected in steps 1, . . . , � − 1. Consider the
case of all pairwise comparisons of seven groups. Having rejected the first hypoth-
esis (e.g., µ3 = µ7), the largest family of hypotheses which can now be true is
{µ3}{µ1, µ2, µ4, µ5, µ6, µ7} or {µ7}{µ1, µ2, µ3, µ4, µ5, µ6}. In either case, the largest
family size is: (

6
2

)
= 15

and this number is used for testing the H2. If, in testing H2, the comparison µ3 = µ5

is rejected, then the partition {µ3}{µ1, µ2, µ4, µ5, µ6, µ7} is still logically plausible,
t3 = 15, and the third comparison is again performed at α3 = α/15. On the other
hand, if the second test rejects the hypothesis µ1 = µ4, then the largest logically con-
sistent partitions are {µ1, µ3}{µ2, µ4, µ5, µ6, µ7}, {µ1, µ7}{µ2, µ3, µ4, µ5, µ6},
{µ3, µ4}{µ1, µ2, µ5, µ6, µ7} and {µ3, µ7}{µ1, µ2, µ4, µ5, µ6}. In each case, the max-
imum number of null hypotheses that logically can be simultaneously true is:(

2
2

)
+

(
5
2

)
= 11.

The first method, S1, ignores which hypotheses have been rejected, and so α3 =
α/15 for both cases. On the other hand, S2 yields α3 = α/15 in the first case, but
α3 = α/11 for the second case. This paper focuses on implementing Shaffer’s S2
method.

Both of Shaffer’s modifications to the Bonferroni procedure can yield consider-
able increases in power, but the gain for S2 can be much larger. In the case above
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the third test is performed at α3 = α/11 versus α3 = α/21 for the unmodified
Bonferroni procedure. This increase in power comes at the price of a great increase
in complexity, however. At each step �, the method requires the largest number
of null hypotheses which logically may be simultaneously true, given the results of
the previous tests 1, 2, . . . , � − 1. For even moderate number of groups (i.e., 5–10),
determining the partition of the groups which corresponds to the largest family size
is complex, and for G > 10 the prospect is daunting. This complexity has severely
limited the use of Shaffer’s S2 method, both in applications and in simulation stud-
ies.

To get some idea of the complexity involved in using the S2 procedure, consider
the data for the pairwise comparisons of 11 cluster analysis methods, presented
in Table 1 (this example will be discussed in more detail in Section 5.1). At each
stage �, Shaffer’s procedure requires the user to determine the partition of the 11
groups into J classes. The partition must be consistent with the previous tests
1, . . . , � − 1 (i.e., no groups that significantly differ may be placed together) and

maximizes the sum t� =
∑J

j=1

( nj

2
)

where nj is the number of groups in class j.

By the Bonferroni critical value, H1−H43 have been rejected. Even in this relatively
simple case, it is difficult to determine which partitions should be considered. Bear
in mind that the application of Shaffer’s method requires the solution to this type
of problem at each sequential step of testing; several such problems may have to be
solved. Clearly, tools are needed to manage the complexity of:

(a) summarizing the results of earlier tests of H1 − H�−1; and

(b) determining the partition of the groups yielding the maximum value of t�.

Such tools will be described in Sections 3 and 4.

1.2.2. Step-up procedures

The earliest step-up procedure (Dunnett & Tamhane, 1992) was proposed for a
specific testing situation (comparing treatments with a control) and assumed a
multivariate normal distribution. The earliest step-up procedures proposed for more
general application are by Hommel (1988) and Hochberg, (1988); an improvement
on the latter procedure was derived by Rom (1990). Hochberg and Rom (1995)
extended these procedures to allow for logical interrelationships as in Shaffer (1980)
described above. FWER control of all of these step-up procedures is based on the
validity of Simes inequality (Simes, 1986), which is known to be satisfied for some
types of positively dependent test statistics (Sarkar, 1998; Sarkar & Chang, 1997).
These methods are known not to control the FWER at the nominal level under
all joint distributions, as do the step-down methods. To date, there is no proof
that they control the FWER for all pairwise comparisons, although simulation
results suggest that they do in many situations of interest (Hochberg & Rom,
1995).

It is relatively easy to show that Holm’s (1979) procedure must have more power
than the unmodified Bonferroni. Similarly, the Hommel, Hochberg and Shaffer pro-
cedures are more powerful than the Holm procedure. Computationally, direct com-
parison of the procedures has been difficult, although in the specific cases discussed
below, Shaffer’s procedure is more powerful.
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Table 1: Probabilities for the Pairwise Comparisons of 11 Clustering Methods
Sign Significant

Comparison Group 1 Group 2 (G1-G2) p-value (Bonferroni)
1 1 3 − .00000000 Y
2 1 9 − .00000000 Y
3 1 11 − .00000000 Y
4 1 8 − .00000000 Y
5 1 10 − .00000000 Y
6 1 7 − .00000000 Y
7 1 6 − .00000000 Y
8 1 2 − .00000000 Y
9 1 4 − .00000000 Y

10 1 5 − .00000000 Y
11 3 5 + .00000000 Y
12 5 9 − .00000000 Y
13 5 8 − .00000000 Y
14 5 7 − .00000000 Y
15 5 11 − .00000000 Y
16 5 10 − .00000000 Y
17 5 6 − .00000000 Y
18 2 3 − .00000000 Y
19 4 5 + .00000000 Y
20 2 9 − .00000000 Y
21 2 8 − .00000000 Y
22 2 11 − .00000000 Y
23 2 10 − .00000000 Y
24 2 7 − .00000000 Y
25 2 5 + .00000000 Y
26 3 4 + .00000000 Y
27 2 6 − .00000000 Y
28 4 9 − .00000000 Y
29 4 8 − .00000000 Y
30 3 6 + .00000000 Y
31 4 11 − .00000000 Y
32 2 4 − .00000000 Y
33 3 10 + .00000000 Y
34 4 7 − .00000000 Y
35 6 9 − .00000000 Y
36 4 10 − .00000000 Y
37 6 8 − .00000002 Y
38 3 7 + .00000007 Y
39 6 11 − .00000103 Y
40 6 7 − .00000634 Y
41 3 8 + .00005842 Y
42 3 11 + .00012791 Y
43 9 10 + .00020843 Y
44 8 10 + .00154556 N
45 4 6 − .00215201 N
46 6 10 − .00509035 N
47 10 11 − .00737432 N
48 3 9 + .00738049 N
49 7 8 − .05349418 N
50 7 11 − .06482832 N
51 7 9 − .08081442 N
52 9 11 + .16194800 N
53 7 10 + .17179780 N
54 8 11 + .20201920 N
55 8 9 + .88777510 N
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2. Implementations of Shaffer’s procedure

2.1. Previous implementations

Before proceeding, it is useful to contrast the work presented here to that of Ras-
mussen (1991, 1993). Rasmussen (1991) presented a computer program for the
automatic application of Shaffer’s procedure. However, the algorithm (Rasmussen,
1993) makes heavy use of two assumptions: (a) the ordering of the groups has to
be consistent with the ordering of the sample means, e.g., µ3 ≥ µ2 ≥ µ1, where the
true means are ordered according to the ranks of the sample means; and (b) that
the statistical test of the pairwise comparisons exhibit strict transitivity: e.g., µ2 is
significantly greater than µ1 implies that µ3 is significantly greater than µ1 (e.g.,
Rasmussen, 1993, p. 332). This will be true, for example, if all groups have equal
variances. The procedure developed here does not make these assumptions; the or-
der of groups emerges from the analysis. Also, the probability of the tests need not
be monotonically related to the group ordering. This might happen if the means of
some groups had substantially larger standard errors than did others. Two means
that were close together but had small standard errors could yield a smaller p-value
than two groups that were further apart but one group had a large standard error.

Shaffer’s method has also been implemented by the software package MultComp
(Prosoft, 1994). MultComp is an add-on to the SAS statistical package. The current
version of the program allows for pairwise comparison of up to 10 groups. From
examination of the SAS MACRO code, possible values of t� are enumerated, as in
Shaffer’s (1986) article, and therefore MultComp appears to implement Shaffer’s
S1 method.

A paper by Westfall (1997) considered the problem of using Shaffer’s S2 pro-
cedure to control for multiple comparisons in the presence of linear contrasts and
correlations. Westfall took a geometric approach to evaluating which comparisons
are logically possible given the results of previous tests. At step �, the procedure
requires the evaluation of 2R−� − 1 subsets, where R is the number of contrasts

under consideration. In the present case, R =
( G

2
)
. Clearly, this is only feasi-

ble for relatively small problems (G = 6 requires over 16,000 evaluations for the
first step in testing). However, Westfall’s approach is more general in that general
linear contrasts may be considered, whereas the present paper considers only the
problem of pairwise comparisons. More recently, Westfall, Tobias, Rom Wolfinger,
& Hochberg (1999) discuss implementing various multiple comparison procedures
using the SAS r© system. The book presents software to implement the S2 proce-
dure in SAS. Bretz, Hothorn, & Westfall also present an implementation of the S2
procedure (in the R language).3

2.2. The present paper

The present paper first presents a method of representing the results of the compar-
isons made. Next, several properties of an optimal partition of the groups (which
maximizes t�) are derived; note that the optimal partition need not be unique (see
Section 3.3 below). The use of these results in determining potential candidates for
the partition of groups that corresponds to the largest family size is described. Next,
two heuristics are described which vastly limit the search space, greatly enhancing
the efficiency of the determination of t�. Finally, an efficient algorithmic method

3One of the reviewers pointed out that “. . . these software not only provide Shaffer S2, but uni-
form improvements upon it under the usual linear model assumptions by utilizing the multivariate
t-distribution, rather than Bonferroni’s method.”



Shaffer’s multiple comparison procedure 7

of determining t� is outlined. These methods are illustrated by application to two
data sets: comparisons of the order of 11 clustering methods (Donoghue, 1995); and
comparison of the means of 44 states from the 1994 National Assessment of Edu-
cational Progress Trial State Assessment of Reading at Grade 4 (Williams, Reese,
Campbell, Mazzeo, & Phillips, 1995).

3. Theoretical results

3.1. Terminology

Let X be a collection of G groups (i.e., distributions) X1, . . . , Xg, . . . , XG. We wish
to test all pairwise comparisons of some function f(·) of the G distributions. Let
P be the vector of p-values for the pairwise comparisons of the groups, and let H be
the associated hypotheses permuted in the same order as P. The dimension of both
P and H is R = G∗(G − 1)/2.

Assume that the test statistic Tgg′ = T (f(Xg), f(Xg′)) yields both a test of
the significance of the difference between groups g and g′ and an indication of the
direction, i.e., Tgg′ > 0 ⇒ f(Xg) > f(Xg′). The most common example is the
t-test, although other descriptive statistics (e.g., Cliff’s (1993) d-statistic) may also
suffice. The requirement of order is not necessary for the present method, but does
facilitate the discussion.

3.1.1. Adjacency matrices

To represent the results of comparisons, we make use of ideas from Cliff:4 (a) adja-
cency matrices (Cliff, 1975); and (b) dominance matrices (Cliff, 1993). An adjacency
matrix

“. . . is simply a matrix for which the existence or nonexistence of the
connection or relation is recorded. For a set X of n elements and a
relation R, the n x n adjacency matrix A has aij = 1 if i R j and aij

= 0 otherwise.” (Cliff, 1975, p. 290).

Here, the relation will be “significantly greater than,” and agg′ = 1 if P (T >
|Tgg′ |) ≥ α′/2 and f(Xg) > f(Xg′) (although the relation is stated in terms of
a directional hypothesis, significance will typically be determined using two-tailed
tests). Adjacency matrices have several other properties; in this context we will
only use them as a notational device. Cliff notes that a simple order of the elements
has a unique representation. If x > y > z, then:

A =

x y z
x
y
z


 0 1 1

0 0 1
0 0 0


 .

To illustrate the usefulness of the adjacency matrix, Table 2 presents an adja-
cency matrix summarizing the results of the tests in Table 1.

Although it is not necessary in order to compute Shaffer’s procedure, the rela-
tions in A are simpler to comprehend if the rows and columns of A are sorted to
approximate upper triangular form. If available, this can be accomplished by sorting
based on some appropriate statistic, such as the group means. Alternatively,

4Both of these ideas have appeared in other contexts. However, their use in this paper will be
consistent with the treatment of the ideas in Cliff.
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Table 2: Adjacency Matrices for Tests in Table 1

A B C D E F G H I J K

A − 0 0 0 0 0 0 0 0 0 0

B 1 − 0 0 1 0 0 0 0 0 0

C 1 1 − 1 1 1 1 1 0 1 1

D 1 1 0 − 1 0 0 0 0 0 0

E 1 0 0 0 − 0 0 0 0 0 0

F 1 1 0 0 1 − 0 0 0 0 0

G 1 1 0 1 1 1 − 0 0 0 0

H 1 1 0 1 1 1 0 − 0 0 0

I 1 1 0 1 1 1 0 0 − 1 0

J 1 1 0 1 1 0 0 0 0 − 0

K 1 1 0 1 1 1 0 0 0 0 −

Original

C I G H K J F D B E A

C − 0 1 1 1 1 1 1 1 1 1

I 0 − 0 0 0 1 1 1 1 1 1

G 0 0 − 0 0 0 1 1 1 1 1

H 0 0 0 − 0 0 1 1 1 1 1

K 0 0 0 0 − 0 1 1 1 1 1

J 0 0 0 0 0 − 0 1 1 1 1

F 0 0 0 0 0 0 − 0 1 1 1

D 0 0 0 0 0 0 0 − 1 1 1

B 0 0 0 0 0 0 0 0 − 1 1

E 0 0 0 0 0 0 0 0 0 − 1

A 0 0 0 0 0 0 0 0 0 0 −

Sorted by Potency Vector p

Undifferentiated Classes (Bonferroni)

E1 = {C, I}
E2 = {I, G, H, K}
E3 = {G, H, K, J}
E4 = {J, F}
E5 = {F, D}
E6 = {B}
E7 = {E}
E8 = {A}

Π = s(E3, E1, E5, E6, E7, E8): t� = 8

the matrix may be ordered based on dominance relations. Dominance relations are
defined as:

dgg′ =




1, f(xg) > f(xg′ )
0, f(xg) = f(xg′ )
−1, f(xg) < f(xg′)

The matrix of dominance relations is D = A − A’.5 Define the potency vector
p = D1. Experience indicates that sorting based on p will tend to maximize the
agreement with an upper triangular form of A, while minimizing any discrepancies
in ordering, although I am not aware of any rigorous proof. The adjacency matrix
on the right hand side of Table 2 is sorted based on p. In this form, the patterns of
groups that do and do not differ from one another are much simpler to comprehend.

3.1.2. Undifferentiated classes

A fundamental idea for much of the following is a set of groups such that none of the
groups differs significantly from any other (e.g., for means, we cannot reject µ1 =
· · · = µb = · · · = µk). At an arbitrary step �, the term “undifferentiated class” will
be used to denote the largest set of groups that do not (thus far in the testing) differ

5We note in passing that a more visual form of the information in the dominance matrix
was used to report results for individual states in the 1990, 1992, and 1994 NAEP Trial State
Assessments.
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significantly from each other. The term largest implies that for any group g′ which
is not in undifferentiated class, Tgg′ is significant for at least one element g in the
undifferentiated class. The adjacency matrix represents an undifferentiated class as
a square submatrix (symmetric about the main diagonal) of A whose elements are
all zero, and is obtained by extracting the proper rows and corresponding columns
of A. The bottom section of Table 2 presents the undifferentiated classes for the
tests presented in Table 1.

3.2. Notation

At step � in the sequential testing, consider the collection of Q (nonempty) un-
differentiated classes Eq = {Xg, g = 1, . . . , nq}.Eq �= ∅∀q, Eq ∩ Eq′ need not
be empty, and

⋃Q
q=1 Eq = X . Let Π = {π1, . . . , πJ} be a partition of X , e.g.,

πj ⊆ X∀j, πj ∩ πj′ = ∅∀j, j′ and
⋃J

j=1 πj = X . The notation ZC will indicate the
complement of set Z on X .

Let Nq = N(Zq), the number of elements in set Zq. Similarly, define nj = N(πj)
for a given element j in a partition Π (use of the lower case n will emphasize that
the argument is part of a partition). The family size τ for a given partition is:

τ =
J∑

j=1

(
nj

2

)

with the notational convenience: (
1
2

)
= 0.

An “optimal partition” at step �, is a partition Π(X) that yields t� the maximum
value of τ . Note that:

τ =
J∑

j=1

n2
j − nj

2
=

J∑
j=1

n2
j

2
−

J∑
j=1

nj

2
=

1
2

J∑
j=1

n2
j −

G

2
.

Thus, maximizing

s =
J∑

j=1

n2
j = 2τ + G

is equivalent to maximizing τ . The remainder of the paper will focus on obtaining
a partition Π which yields σ = s(Π) the maximal value of s(.) at step � in the
sequential testing.

3.3. Properties of the optimal partition

This section presents four theorems about the structure of an optimal partition.
These theorems will be used in Section 3.4 to develop a procedure to compute t�.
First, some obvious properties of the optimal partition are enumerated. These prop-
erties will prove useful below.

Property 1. Each element of the optimal partition Π is a subset of (at least) one
of the undifferentiated classes: for each j, πj ⊆ Eq for some q. This property simply
corresponds to the formulation of Shaffer’s procedure. If πj is not a subset of any
undifferentiated class, then the partition is not consistent with the results of the
tests at stages 1, . . . , � − 1.
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Property 2. No subpartition of a partition element πj into two subpartitions can
yield a higher value of s(.) than is obtained by using the intact element. The proof of
this property is by contradiction. Let πj be the element in question, and nj = N(πj).
Let the subpartitions be πjA and πjB , with πjA ⊂ πj , πjB ⊂ πj , πjA ∪ πjB = πj ,
and πjA ∩ πjB = ∅. Let n(πjA) = knj and n(πjB) = (1− k)nj , 0 < k < 1. Assume:

s(πj) < s(πjA) + s(πjB).

Then
n2

j < k2n2
j + (1 − k)2n2

j

0 < (2k2 − 2k)n2
j

0 < (k − 1)kn2
j .

The right hand side must be negative, yielding a contradiction and so proving
Property 2.

Property 3. No subpartition of an element of a partition yields a larger value of
s(·) than is obtained by using the intact element. This property follows immediately
from repeated application of Property 2.

Property 4. There is a one-to-one relationship between the elements of the optimal
partition and the undifferentiated classes: πq ⊆ Eq∀q (note that πq may be empty for
some undifferentiated classes Eq). This property follows directly from Properties 1
and 3.

Theorem 1. Let the set X consist of two classes, Ei and Ej. Choose i and j such
that N(Ei) ≥ N(Ej). Then the partition {π1, π2}, where π1 = Ei, π2 = Ej ∩EC

i , is
optimal.

Proof. The proof is by contradiction. If Theorem 1 is false, then there exists some
partition of (Ei ∪ Ej) for which assigning some (or all) of the intersection to Ej

yields a higher value of s(.) than s (Ei, Ej ∩ EC
i ). Let:

mij = N(Ei ∩ Ej)
mi = N

(
Ei ∩ EC

j

)
= Ni − mij

mj = N
(
Ej ∩ EC

i

)
= Nj − mij

Assume Theorem 1 is false. Then for some value k, such that 0 ≤ k < 1:

s
(
Ei, Ej ∩ EC

i

)
< s(π1, π2)

(mi + mij)2 + m2
j < (mi + kmij)2 +

(
mj + (1 − k)mij

)2

m2
i + 2mimij + m2

ij + m2
j

< m2
i + 2kmimij + k2m2

ij + m2
j + 2(1 − k)mjmij + (1 − k)2m2

ij

0 < 2(1 − k)mij(mj − mi) + (1 − k)2 −
(
k2 − 1

)
m2

ij

0 < 2(1 − k)mij(mj − mi) + 2k(k − 1)m2
ij

The first term on the right hand side is nonpositive by hypothesis: N(Ei) ≥
N(Ej) ⇒ mi ≥ mj . The second term is nonpositive because 0 ≤ k < 1. This yields
the contradiction that the right side is greater than zero, and hence Theorem 1 is
true.
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Theorem 2 (Converse). Again, let X consist of two classes, Ei and Ej , N(Ei) >
N(Ej). Let {π1, π2} be an optimal partition on X. Then, either: (Case 1) π1 ⊆
Ei, π2 ⊆ Ej , and π1 = Ei, π2 = Ej ∩ EC

i ; or (Case 2) π1 ⊆ Ej , π2 ⊆ Ei, and
π1 = Ej ∩ EC

j , π2 = Ei.

Proof. (Case 1) Let π1 ⊆ Ei and define mi, mj , and mij as in the Proof of The-
orem 1 above. If π1 ⊆ Ei then there exists k(0 ≤ k ≤ 1) such that n(π1) = n1 =
m1 + kmij and n(π2) = n2 = m2 + (1 − k)mij .

s(π1, π2) = n2
1 + n2

2

= m2
i + 2kmimij + k2m2

ij + m2
j + 2(1 − k)kmjmij + (1 − k)2m2

ij

and
s
(
Ei, Ej ∩ EC

i

)
= m2

i + 2mimij + m2
ij + m2

j

By definition: s(Ei, Ej ∩ EC
i ) ≤ s(π1, π2)

m2
i + 2mimij + m2

ij + m2
j ≤ m2

i + 2kmimij + k2m2
ij + m2

j + 2(1 − k)mjmij

+ (1 − k)2m2
ij

0 ≤ 2mij(k − 1)(mi − mj) + 2m2
ijk(k − 1)

The value 0 ≤ k < 1 leads to a contradiction, and equality holds only if k = 1.
Thus, π1 ⊆ Ei implies π1 = Ei

(Case 2) Let π1 ⊆ Ej . Then, as above, n(π1) = n1 = m1 + kmij and n(π2) =
n2 = m2 + (1 − k)mij , and s(π1, π2) ≥ s(Ei, Ej ∩ EC

i ). As before:

m2
i + 2mimij + m2

ij + m2
j ≤ m2

j + 2kmjmij + k2m2
ij + m2

i + 2(1 − k)mimij

+ (1 − k)2m2
ij

0 ≤ 2mijk(mj − mi) + 2m2
ijk(k − 1)

and 0 < k ≤ 1 leads to a contradiction. For k = 0, equality holds and implies
π2 = Ei and π1 = Ej ∩ EC

i which is the hypothesized partition.

Property 5 (Local optimality). For an optimal partition with elements {π1, π2,
. . . , πj , . . . , πQ}, σ = n(π1)2+n(π2)2+ · · ·+n(πj)2+ · · ·+n(πQ)2. Define the partial
sum σij = s(Π)− n(πi)2 − n(πj)2. Thus, σ(X) = σij + s(π(i), π(j)). The optimality
of σ = s(Π) implies that s(π(i), π(j)) = σ(πi, πj) for all pairs i, j. Indeed, for any
disjoint subset of X consisting of the union of elements of an optimal partition,
the value of s(.) obtained from the partition must be optimal for that subset. This
property will be termed local optimality, and in the specific case of two elements,
pairwise local optimality.

Property 6 (Nonuniqueness of the optimal partition). Theorem 2 points out
that the optimal partition is not uniquely determined. If Π is an optimal partition
of X, then any permutation of the elements {π1, π2, . . . πQ} yields an identical
value of s(.), and is also an optimal partition. The order of the elements is not
the only source of ambiguity. For X consisting of two classes Ei and Ej , N(Ei) =
N(Ej), s(Ei, Ej ∩ EC

i ) = s(Ej , Ei ∩ EC
j ) and both are optimal partitions of X.

Because of Property 6, many results about maximizing s(X) must be stated in
terms of the existence of an optimal partition with specific properties. All optimal
partitions need not possess those properties. Thus, Theorems 3 and 4 below are
stated in terms of the existence of an optimal partition with specific properties,
rather than describing the properties of optimal partitions.
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Theorem 3. Consider the set X. At step � in the sequential testing, undifferentiated
classes E = {Eq, q = 1, Q} are obtained, and yield a maximum value of s = σ. There
exists an optimal partition Π(X) = {π1, π2, . . . , πq, . . . , πQ} which, for appropriate
indexing of the undifferentiated classes, has the form: πq = Eq

⋂
(
⋃q−1

v=1 Ev)C , and
the optimal partition is:

E1, E2

⋂
EC

1 , E3

⋂(
E1

⋃
E2

)C

, . . . , EQ

⋂(
Q−1⋃
q=1

Eq

)C

 .

Proof. Let the vector n(i) be the order statistic of n(Π), with π(i) representing
the corresponding permutations of the elements of Π; that is n(1) = N(π(1)) ≥
N(π(2)) ≥ · · · ≥ N(π(Q)) = n(Q). By Property 4, there is a one-to-one correspon-
dence between each element πq and Eq. Therefore, let E(i) represent the permu-
tation of the undifferentiated classes which corresponds to π(i): i.e., π(i) ⊆ E(i).
Finally, let ηij = E(i) ∩ (π(i) ∪ π(j)), and define ηji analogously. The remainder of
the proof consists of establishing four connected results, denoted Result 3A–3D.

Result 3A. For i < j, N(ηij) ≥ N(ηji). If this were not true, Theorem 1 states
that s(ηji, ηij ∩ ηC

ji) would be larger than s(ηij , ηji ∩ ηC
ij), which is contrary to the

local pairwise optimality of π(i) and π(j).

Result 3B. For i < j, σ(ηij , ηji) = s(ηij , ηji ∩ ηC
ij) by Result 3A and Theorem 1,

and so π(i) = ηij . This gives:

π(i) = ηij

= E(i) ∩
(
π(i) ∪ π(j)

)
=

(
E(i) ∩ π(i)

)
∪

(
E(i) ∩ π(j)

)
= π(i) ∪

(
E(i) ∩ π(j)

)
which implies E(i) ∩ π(j) = ∅ for all j > i.

Result 3C. Result 3B implies that η1j = π(1) and that E(1) ∩ π(j) = ∅∀j > 1.
Because Π is a complete partition of X (i.e.,

⋃Q
q=1 πq = X), π(1) = E(1).

Result 3D. Result 3C shows that π(2) cannot overlap E(1), and Result 3B indicates
that E(2) ∩ π(j) = ∅ for all j > 2. Therefore, π(2) = E(2) ∩ EC

(1). Similarly, recursive
application of Result 3C and Result 3B thus yields the full form of

Π =


E1, E2

⋂
EC

1 , E3

⋂(
E1

⋃
E2

)C

, . . . , EQ

⋂(
Q−1⋃
q=1

Eq

)C

 ,

establishing Theorem 3.

Note that, although n(π(i)) ≥ n(π(j)) for i ¡ j, N(E(i)) need not be less than
N(E(j)). For example, consider the adjacency matrix shown in Table 3. Note
that, although N2 > N1, N3, the partition {1, 2, 3, 4} {5, 6, 7, 8} yields a larger
value, s = 32, than does the partition {1, 2, } {3, 4, 5, 6, 7} {8}, which has
s = 30.
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Table 3: Adjacency Matrix for Hypothetical Example of 8 Groups

1 2 3 4 5 6 7 8

1 − 0 0 0 1 1 1 1

2 0 − 0 0 1 1 1 1

3 0 0 − 0 0 0 0 1

4 0 0 0 − 0 0 0 1

5 0 0 0 0 − 0 0 0

6 0 0 0 0 0 − 0 0

7 0 0 0 0 0 0 − 0

8 0 0 0 0 0 0 0 −

Undifferentiated Classes

E1 = {1, 2, 3, 4}
E2 = {3, 4, 5, 6, 7}
E3 = {5, 6, 7, 8}

s
(
E1, E3, E2 ∩ (E1 ∪ E3)C

)
= 42 + 42 + 02 = 16 + 16 + 0 = 32

s
(
E2, E1 ∩ EC

2 , E3 ∩ EC
2

)
= 52 + 22 + 12 = 25 + 4 + 1 = 30

Theorem 4. There exists an optimal partition Π with the structure given in The-
orem 3 for which the n(j) = n(π(j)) are sorted from largest to smallest, i.e.,
n(i) ≥ n(j)∀i < j.

Proof. The proof follows directly from repeated application of Theorem 1 to the
structure of Theorem 3: n(1) ≥ n(2), n(2) ≥ n(3), etc. Combining these relations
gives n(1) ≥ n(2) ≥ · · · ≥ n(J).

Theorems 1–4 are sufficient to yield a workable procedure to implement Shaffer’s
S2 procedure for a large (∼ 50) number of groups. Stronger results concerning the
optimal partition have been obtained, and doubtless, still other results could be
derived. However, they are not necessary for the present purpose, and so will not
be discussed here.

4. Implementation of Shaffer’s procedure

4.1. Brute force enumeration

Theorem 3 gives us an algorithmic (albeit inefficient) method of deriving an optimal
partition of X. We simply compute s for the Q! partitions of the form given by
Theorem 3, and select the maximum value. However, this is needlessly intensive,
for often the first J(J � Q) elements will from a full partition of the groups, and
thus there is no need to compute the (Q − J)! arrangements of classes with nj = 0
(nor indeed need elements with nj = 1 be considered, for their contribution to s
must always be 1.) For example, consider the comparison of 44 state means taken
from the 1994 National Assessment of Educational Progress Trial State Assessment
(NAEP TSA) in reading. At one step in the sequential testing, omitting consider-
ation of elements with nj = 0 reduced the number of comparisons from 1.3 trillion
to approximately 17.7 million, a change from 185 years of CPU time on a SUN
SPARCstation to approximately 24 hours.
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4.2. Heuristic 1: Forward pruning of the search

When used in conjunction with the pairwise local optimality property, Theorem
1 is very powerful in allowing us to perform forward pruning of the tree as we
search for an optimal partition. Consider a partial partition which begins with
groups 1, 2, . . . , j−1 and for which nj−1 < nj . We can delete (without enumeration
or calculating the value of s) the (Q − j)! permutations of the remaining groups.
These permutations can be eliminated because the permutation 1, . . . , j, j−1, . . . , Q
will have a value of s(.) which is at least as large as the permutation 1, . . . , j −
1, j, . . . , Q. Consider the first two elements of the permutation. There are G∗(G −
1) permutations, but one-half of them can be rejected immediately, because they
involve n1 ≤ n2. By Theorem 1, these partitions cannot yield a larger value of
s(.), and so need not be examined. Application of Theorem 1 to each adjacent
pair of groups in the search yields a similar halving of the search space. Note that
Theorem 1 implies that the order of two groups of equal size is irrelevant. They
are therefore ordered by their indices, and only those partitions in which the lower
indexed member of a tied pair occurs first need be considered.

4.3. Heuristic 2: A killer heuristic

Theorem 4 is useful in the form of a killer heuristic. Using only Theorems 1 and 3,
it is possible to generate large searches that are obviously suboptimal. In the case
of the comparison of 44 state means in the NAEP TSA reading assessment, for
example, searches that begin with n1 = 3 or 4 clearly yield smaller total values
of s(.) than those beginning with n1 = 18. However, using only Theorem 1, such
permutations would have to be pursued to great depth before they could be shown
to be inferior. By Theorem 4 however, nj can be used to place an upper bound on
the values of nj+1, . . . , nQ.

Theorem 4 can be used compute an upper bound on the value of the full partition
computed from the current partial partition:

smax−1 =
j∑

v=1

n2
v + n2

j +

(
G −

j∑
v=1

n2
v + K · n2

j

)2

where K is the greatest integer not greater than
G−

∑
j

v=1
nv

nj
. If smax is less than or

equal to the lower bound on σ, the partial permutation may be discarded without
further searching. Actually, smax−1 is too large. A better (smaller) upper bound
for the partial partition is:

smax−2 =
j−1∑
k=1

n2
k + n2

j +
V∑

v=j+1

min
(
n2

j , n
2
v

)
,

where V is the integer such that
∑V

v=1 nv < G ≤
∑V +1

v=1 nv. In this equation, nv

is based on removing the overlap with groups 1 − j; it is not a true n(πv) and so
smax−2 is an upper bound.

All that remains to make Theorem 4 useful is σ̂min, a lower bound on σ. The
value of s(.) computed for any partition is a lower bound on σ. However, the larger
the value of σ̂min the more useful it will be in limiting the search. A good compromise
between simplicity and yielding the largest possible value is:

σ̂min =
J∑

j=1

n max
L �=1...j


EL

⋂(
j⋃

i=1

Ei

)C

 .
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It is possible (due to ties) that some permutations will have to be evaluated in
determining σ̂min. It is not necessary to explicitly maximize σ̂min; its only purpose is
to serve as a lower bound on σ with which to compare smax−2. In practice, however,
it has seemed wise to evaluate it fully, because Theorem 4 is tested frequently and
responsible for much of the reduction in computation.

The combined used of Theorem 1 and Theorem 4 results in huge reductions in
the search to find σ. Typical analyses on the 40-45 jurisdictions in the samples from
different years of NAEP TSA data require examination of 10-30 permutations to
determine σ̂min. The full search has then required 0-4 evaluations of s(.) for full
permutations. Run time on a 133 MHz Pentium machine is typically 5-15 seconds
for a complete analysis of the pairwise comparisons of 45 jurisdictions in the NAEP
TSA samples.

4.4. A simplified algorithm

Using Theorems 1–4, it is relatively straightforward to construct an algorithm to
compute the value of σ for the pairwise comparisons of a dataset consisting of G
groups. This section outlines the general approach. A companion paper will de-
scribe the details of the complete algorithm programmed to implement Shaffer’s
procedure.

1) Compute initial t� = G∗ (G−1)/2 (the Bonferroni or Holm critical value may
be used)

2) Perform tests using t�

3) Record results in adjacency matrix A

4) If no new differences then STOP

5) Else: Extract undifferentiated classes from A (represented by square subma-
trices of zeroes which are symmetric about the main diagonal)

6) Form σ̂min

A. Initialize σ̂min to zero

B. Compute group sizes

C. Find largest size group, k.

D. If nk = 0 then Record permutation and Exit.

E. Else: σ̂min = σ̂min + n2
k

F. Remove overlapping elements of group k from all other groups

G. Go to B

7) Compute σ

A. Initialize: smax = σ̂min; q = 1;

B. Compute permutation

i) Set j = 1
ii) Select element j of the partition to be class Eq :πj =Eq∩(

⋃j−1
k=1 Ek)C ,

s = s + n2
q, nj = nq, nq = 0

iii) Remove overlapping groups from other classes k and recompute class
sizes nk for all k �= j
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iv) If max(nk) = 0 for all k �= j then this is a complete partition. Go
to C.

v) Else look for next element k : k = 0

a) k = k + 1

b) Test 1: Is k valid
If k > G then no optimal permutation beginning π1, . . . , πj .

Go to D
If Ek is already in use then Go to B(v)(a)

c) Test 2–Theorem 2 (Killer Heuristic 1)
If nk > nj then Go to B(v)(a)

d) If nk = nj and k > j then Go to B(v)(a)6

e) Test 3–Theorem 3 (Killer Heuristic 2)
Test 3A:

Compute K
If s + K ∗ n2

k < σ̂min then no optimal permutation
begins π1, . . . , πj . Go to D

Test 3B:
If s +

∑Q
v �=k min(nk, nv)2 < σ̂min then no optimal

permutation begins π1, . . . , πj . Go to D

vi) Accept k as next element of partition: q = k, j = j +1; Go to B(iii).

C) If s > smax then smax = s; Record permutation

D) Done with π1, . . . , πj . Find next j.

i) Remove element πj : q = πj , j = j − 1

ii) q = q + 1

iii) Test 1: Is q valid
a) If Eq is already in use then Go to D(ii)
b) If q > G then no new valid permutation beginning π1, . . . , πj .

Test 2: Is j valid?
If j > 0 then Go to D(i)
If j = 0 and q > G then all permutations have been

examined.
Go to 8.

iv) The partial partition is valid. Go to B(iii)

8) Done. Set σ = smax. Print permutation.

9) Compute t� = σ
2 − G

2 . Go to 2

5. Examples

A computer program has been written based on the logic above. This section
presents the results of applying the program to selected datasets.

6This test prohibits the unnecessary evaluation of permutations of pairs of undifferentiated
classes of equal size.
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5.1. Example 1

Example 1 is taken from a simulation study of the ability of several cluster analy-
sis procedures to recover known subgroups (Donoghue, 1995). The “groups” are
the cluster analysis methods, and the outcome variable cluster recovery as mea-
sured by the Hubert and Arabie (1985) modification of the Rand (1971) index.
Pairwise ordinal comparisons of the methods were made using Cliff’s (1993) ordi-
nal method for paired comparisons, computed using the PAIRDEL program (Cliff,
1992). Each comparison yields a t-test for the pair. Unlike the situation consid-
ered by Rasmussen (1993), there is no statistic upon which the methods may
be ordered (indeed, determining such an order while maintaining FWER was the
chief goal of the analysis). Table 1 presents the probabilities for each comparison
under the null hypothesis that the methods are not ordered. Table 2 shows the
initial adjacency matrix (based on the Bonferroni critical value) associated with
these t-tests; Table 4 shows the final adjacency matrix. The rows and columns
have been permuted according to the potency vector p (see Section 3.1.1), and
minus signs have been substituted into the diagonal to aid in the visual presen-
tation. The “1” symbol indicates those comparisons that were found to be signif-
icant using the Bonferroni correction; the “X” entries are comparisons which were
found to be significant by Shaffer’s procedure but not by the Bonferroni proce-
dure.

Table 4: Adjacency Matrix for Example 1: Comparison of 11 Cluster Analysis Meth-
ods

C H I K G J F D B E E

C − X 1 1 1 1 1 1 1 1 1

H 0 − 0 0 0 1 1 1 1 1 1

I 0 0 − 0 0 X 1 1 1 1 1

K 0 0 0 − 0 X 1 1 1 1 1

G 0 0 0 0 − 0 1 1 1 1 1

J 0 0 0 0 0 − X 1 1 1 1

F 0 0 0 0 0 0 − X 1 1 1

D 0 0 0 0 0 0 0 − 1 1 1

B 0 0 0 0 0 0 0 0 − 1 1

E 0 0 0 0 0 0 0 0 0 − 1

A 0 0 0 0 0 0 0 0 0 0 −

Undifferentiated Classes (Final)

E1 = {H, I, K, G} E3 = {A} E5 = {C} E7 = {E}
E2 = {G, J} E4 = {B} E6 = {D} E8 = {F}

Π = s
(
E1, E2 ∩ EC

1 , E3, E4, E5, E6, E7, E8

)
: t� = 6

Number of hypotheses
Procedure Pcritical not rejected
Bonferroni .0009 12
Holm .0045 10
Hochberg .0045 10
Hommel .0063 9
Shaffer .0083 7
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The bottom section of Table 2 presents the undifferentiated classes for the Bon-
ferroni comparisons. In classes E4 and E5, groups J and F , and F and D form
undifferentiated classes of size 2 each. Note that, because a68 = 1, the three elements
J, F and D do not form an undifferentiated class of size 3, but only two separate
classes of size 2. Further, it is not possible for both of these relations to be true
simultaneously; either fJ = fF or fF = fD. If both were true, this would imply
fJ = fD, which has been rejected. Because both cannot be true, only one needs to
be counted in determining the family size for the next comparison. It is through
noting such relations that Shaffer’s procedure may obtain substantial increases in
power over Holm’s procedure.

Table 4 presents the final undifferentiated classes from Shaffer’s procedure.
These may be useful in reporting; for example, each class could be used to de-
fine a symbol indicating which groups do not differ from one another. The bottom
section of Table 4 presents the final results for the Bonferroni, Holm, Hochberg,
Hommel, and Shaffer procedures. In this example, Shaffer’s procedure has greater
power than both the Hochberg and Hommel procedures. This result is not unusual.
In the cases examined thus far, Shaffer’s procedure has uniformly been found to
have the largest power. In many cases, the procedures only differ in the critical
p-value for testing, and yield the same set of significant differences. In the cases
in which the procedures have yielded different results, Shaffer’s procedure has uni-
formly rejected a larger number of hypotheses than both the Hochberg and Hommel
procedures.

5.2. Example 2

Example 2 represents a much more difficult problem, all pairwise compa-
risons of the jurisdictions participating in the 1994 NAEP TSA of reading. A rep-
resentative sample of fourth-grade students attending pubic schools was selected
in each jurisdiction. Students were then administered sections of the NAEP read-
ing assessment, and the results were combined to estimate the average reading
proficiency of students within the state, and for various demographic subgroups
within the state. See Williams, Reese, Campbell, Mazzeo, and Phillips (1995)
for more detailed presentation of the results, and Mazzeo, Allen, and Kline
(1995) describes the sampling and psychometric procedures used in deriving the
results.

Forty-four jurisdictions participated and authorized the release of their results
for public use. Table 5 presents the adjacency matrix for t-tests comparing the
mean reading proficiency for each state. Rows and columns have been ordered
by the state’s mean reading proficiency. As in Table 4, “1” indicates compar-
isons which are significant using the unmodified Bonferroni critical value, and
“X” indicates the additional comparisons deemed significant using Shaffer’s pro-
cedure.

Table 6 lists the undifferentiated classes based on the Bonferroni critical value.
This example gives some sense of the complexity of implementing the S2 procedure.
There are 20 classes, and they overlap one another substantially. The bottom section
of Table 6 compares several procedures. As in Example 1, Shaffer’s procedure yields
more power, rejecting 17 more hypotheses than Hochberg’s procedure and 9 more
than Hommel’s.
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Table 5: Adjacency matrix for Example 2: Comparison of reading proficiency of
44 jurisdictions

M N W N M I C M W N R I N M D U M P N C V W I W T T M N K M A A G D A F N S M H C L G D

E D I H A A T T Y E I N J N D T O A C O A V D A N X I Y Y D R L A E Z L M C S I A A U C

ME (228) − 0 0 0 0 0 0 0 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ND (225) 0 − 0 0 0 0 0 0 0 0 0 0 0 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WI (224) 0 0 − 0 0 0 0 0 0 0 0 0 0 0 1 X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NH (223) 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 0 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MA (223) 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

IA (223) 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CT (222) 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MT (222) 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WY (221) 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 1 X 1 1 1 1 X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NE (220) 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RI (220) 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 X X 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

IN (220) 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NJ (219) 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 X 0 0 0 0 0 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MN (218) 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DD (218) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

UT (217) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 0 X 1 1 X 1 1 1 1 1 1 1 1 1 1 1

MO (217) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1

PA (215) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 X 1 1 1 1 1 1 1 1 1

NC (214) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

CO (213) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 X 1 1 1 1 1 1 1 1

VA (213) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 X 0 X X 1 1 1 1 1 1 1

WV (213) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 1 0 X 1 1 1 1 1 1 1 1

ID (213) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 0 X 1 1 1 1 1 1 1

WA (213) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

TN (213) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

TX (212) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 X 1 1 1 1 1 1

MI (212) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

NY (212) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

KY (212) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 X 1 1 1 1 1 1

MD (210) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 X 1 1 1 1

AR (209) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 1 1 1 1

AL (208) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 1 1 1 1

GA (207) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 0 0 1 1

DE (206) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 1 1 1 1

AZ (206) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 0 1 1 1

FL (205) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 X 1 1

NM (205) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 0 1 1

SC (203) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 0 1 1

MS (202) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0 1 1

HI (201) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 0 1 1

CA (197) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0 1 1

LA (197) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 1

GU (181) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 0

DC (179) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −
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Table 6: Undifferentiated Classes and Family Sizes Example 2: Comparison of Read-
ing Proficiency of 44 Jurisdictions

Undifferentiated Classes (Bonferroni)

N1 = 9, E1 = {ME, ND, WI, IA, MA, NH, MT, CT, WY}
N2 = 13, E2 = {ND, WI, IA, MA, NH, MT, CT, WY, RI, IN, NE, NJ, MN}
N3 = 14, E3 = {WI, IA, MA, NH, MT, CT, WY, RI, IN, NE, NJ, MN, UT, MO}
N4 = 15, E4 = {IA, MA, NH, MT, CT, WY, RI, IN, NE, NJ, MN, DD, UT, MO, PA}
N5 = 13, E5 = {MT, CT, WY, RI, IN, NE, NJ, MN, DD, UT, MO, PA, NC}
N6 = 14, E6 = {CT, WY, RI, IN, NE, NJ, MN, DD, UT, MO, PA, NC, MI, TX}
N7 = 14, E7 = {WY, RI, IN, NE, NJ, MN, DD, UT, MO, PA, NC, VA, MI, TX}
N8 = 18, E8 = {RI, IN, NE, NJ, MN, DD, UT, MO, PA, NC, CO, WV, VA, MI, TX, ID, WA, TN}
N9 = 18, E9 = {IN, NE, NJ, MN, DD, UT, MO, PA, NC, CO, WV, VA, MI, TX, ID, WA, TN, KY}
N10 = 16, E10 = {MN, DD, UT, MO, PA, NC, CO, WV, VA, MI, TX, ID, WA, TN, KY, NY}
N11 = 16, E11 = {UT, MO, PA, NC, CO, WV, VA, MI, TX, ID, WA, TN, KY, NY, MD, GA}
N12 = 16, E12 = {MO, PA, NC, CO, WV, VA, MI, TX, ID, WA, TN, KY, NY, MD, AR, GA}
N13 = 17, E13 = {PA, NC, CO, WV, VA, MI, TX, ID, WA, TN, KY, NY, MD, AR, AL, GA, AZ}
N14 = 16, E14 = {CO, WV, VA, MI, TX, ID, WA, TN, KY, NY, MD, AR, AL, GA, AZ, FL}
N15 = 16, E15 = {VA, MI, TX, ID, WA, TN, KY, NY, MD, AR, AL, GA, AZ, DE, FL, NM}
N16 = 12, E16 = {MI, TX, KY, MD, AR, AL, GA, AZ, DE, FL, NM, SC}
N17 = 11, E17 = {MD, AR, AL, GA, AZ, DE, FL, NM, SC, MS, HI}
N18 = 8, E18 = {GA, AZ, FL, NM, SC, MS, HI, CA}
N19 = 8, E19 = {GA, FL, NM, SC, MS, HI, CA, LA}
N20 = 2, E20 = {GU, DC}

Bonferroni: t� = 252

Final: t� = 237

Number of hypotheses
Procedure Pcritical not rejected
Bonferroni .000053 457
Holm .000113 442
Hochberg .000113 442
Hommel .000141 434
Shaffer .000211 425

6. Conclusion

This paper has presented some theoretical results, and an algorithm, which allow
Shaffer’s S2 procedure for multiple comparisons to be applied to a larger num-
ber of groups than has been possible in the past. Westfall’s (1997) method for
implementing the S2 procedure, although more general than the one presented
here, is feasible for relatively a small number of groups; G = 6 or 7 is proba-
bly the maximum. A commercially available software implementation of Shaffer’s
procedure, MultComp (Prosoft, 1994), restricts the number of groups to 10, and
appears to implement only Shaffer’s S1 procedure. The present approach imple-
ments the more powerful S2 procedure. Earlier work by Rasmussen (1993) assumed
strict transitivity of statistical tests (as would be the case in comparing several
means with equality of variances). The present method requires no such assump-
tion.

This paper demonstrates an application of the procedure with 44 groups. In
addition to the 1994 NAEP Reading Trial State Assessment, the results of four
other NAEP TSA data sets have been successfully analyzed, the largest consisting
of 45 jurisdictions. The computational burden was minimal; the longest run required
approximately 15 seconds to run on a 133 MHz Pentium-based machine. The current
version of the program is dimensioned to handle 100 groups, although the NAEP
TSA comparisons are the largest problems that have been run to date.
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Shaffer’s procedure was developed in terms of pairwise comparisons, but, with
some modification, it may be fruitfully adapted to some other situations. Unlike
other recent approaches (e.g., the FDR approach of Benjamini and Hochberg, 1995),
FWER control is maintained. Shaffer’s procedure has the advantage of making no
assumptions beyond those in the Bonferroni procedure, and is, therefore completely
general. In the case of pairwise comparisons, it can be substantially more powerful
than both the original Bonferroni procedure and other sequential procedures such
as that of Holm. Results presented in Examples 1 and 2 indicate that, at least
in some circumstances, Shaffer’s procedure is also more powerful than both the
Hochberg and Hommel procedures.

The only cost of applying Shaffer’s S2 procedure is that of (previously over-
whelming) complexity of the analysis. The present paper has provided methods
whereby the complexity may be easily handled, making the procedure usable for
problems that were previously out-of-reach. The success in applying the method
to the NAEP Trial State Assessment data bears witness to the usefulness of the
results presented here.
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