
Topological Groups 
and Invariant Measures 

The language of vector spaces has been used in the previous chapters to 
describe a variety of properties of random vectors and their distributions. 
Apart from the discussion in Chapter 4, not much has been said concerning 
the structure of parametric probability models for distributions of random 
vectors. Groups of transformations acting on spaces provide a very useful 
framework in whlch to generate and describe many parametric statistical 
models. Furthermore, the derivation of induced distributions of a variety of 
functions of random vectors is often simplified and clarified using the 
existence and uniqueness of invariant measures on locally compact topologi- 
cal groups. The ideas and techniques presented in this chapter permeate the 
remainder of this book. 

Most of the groups occurring in multivariate analysis are groups of 
nonsingular linear transformations or related groups of affine transforma- 
tions. Examples of matrix groups are given in Section 6.1 to illustrate the 
definition of a group. Also, examples of quotient spaces that arise naturally 
in multivariate analysis are discussed. 

In Section 6.2, locally compact topological groups are defined. The 
existence and uniqueness theorem concerning invariant measures (integrals) 
on these groups is stated and the matrix groups introduced in Section 6.1 
are used as examples. Continuous homomorphisms and their relation to 
relatively invariant measures are described with matrix groups again serving 
as examples. Some of the material in this section and the next is modeled 
after Nachbin (1965). Rather than repeat the proofs given in Nachbin 
(1965), we have chosen to illustrate the theory with numerous examples. 

Section 6.3 is concerned with the existence and uniqueness of relatively 
invariant measures on spaces that are acted on transitively by groups of 
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transformations. In fact, this situation is probably more relevant to statisti- 
cal problems than that discussed in Section 6.2. Of course, the examples are 
selected with statistical applications in mind. 

6.1. GROUPS 

We begin with the definition of a group and then give examples of matrix 
groups. 

Definition 6.1. A group (G, 0) is a set G together with a binary operation 
0 such that the following properties hold for all elements in G: 

6) (g, O g,) O g, = g, O (g2 O g,). 
(ii) There is a unique element of G, denoted by e ,  such that g o e = 

e 0 g = g for all g E G. The element e is the identity in G. 

(iii) For each g E G, there is a unique element in G, denoted by g-I, 
such that g 0 g- ' = g- ' 0 g = e .  The element g- ' is the inverse 
of g. 

Henceforth, the binary operation is ordinarily deleted and we write g, g, for 
g, 0 g,. Also, parentheses are usually not used in expressions involving 
more than two group elements as these expressions are unambiguously 
defined in (i). A group G is called commutative if g,g, = g,g, for all 
g,, g, E G. It is clear that a vector space V is a commutative group where 
the group operation is addition, the identity element is 0 E V, and the 
inverse of x is - x .  

+ Example 6.1. If (V, (., .)) is a finite dimensional inner product 
space, it has been shown that the set of all orthogonal transforma- 
tions O(V) is a group. The group operation is the composition of 
linear transformations, the identity element is the identity linear 
transformation, and if r E O(V), the inverse of r is I". When V is 
the coordinate space Rn, O(V) is denoted by 8,, which is just the 
group of n x n orthogonal matrices. + 

+ Example 6.2. Consider the coordinate space RP and let G; be the 
set of all p X p lower triangular matrices with positive diagonal 
elements. The group operation in G; is taken to be matrix multipli- 
cation. It has been verified in Chapter 5 that G; is a group, the 
identity in G; is the p X p identity matrix, and if T E G;, T-' is 
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just the matrix inverse of T. Similarly, the set of p x p upper 
triangular matrices with positive diagonal elements GL is a group 
with the group operation of matrix multiplication. + 

+ Example 6.3. Let V be an n-dimensional vector space and let 
Gl(V) be the set of all nonsingular linear transformations of V onto 
V. The group operation in Gl(V) is defined to be composition of 
linear transformations. With this operation, it is easy to verify that 
GI(V) is a group, the identity in Gl(V) is the identity linear 
transformation, and if g E GI(V), g- '  is the inverse linear transfor- 
mation of g. The group GI(V) is often called the general linear 
group of V. When V is the coordinate space Rn, GI(V) is denoted by 
GI,. Clearly, GI, is just the set of n x n nonsingular matrices and 
the group operation is matrix multiplication. + 

It should be noted that C(V) is a subset of Gl(V) and the group 
operation in O(V) is that of GI(V). Further, Gg and GA are subsets of GI, 
with the inherited group operations. This observation leads to the definition 
of a subgroup. 

Definition 6.2. If (G, 0) is a group and H is a subset of G such that (H, 0) 
is also a group, then (H, 0) is a subgroup of (G, o). 

In all of the above examples, each element of the group is also a 
one-to-one function defined on a set. Further, the group operation is in fact 
function composition. To isolate the essential features of this situation, we 
define the following. 

Definition 6.3. Let (G, 0) be a group and let GX be a set. The group (G, 0) 
acts on the left of GX if to each pair (g, x) E G X %, there corresponds a 
unique element of GX, denoted by gx, such that 

6) g,(g,x) = (g, O g2)x. 
(ii) ex = x. 

The content of Definition 6.3 is that there is a function on G x % to % 
whose value at (g, x) is denoted by gx and under ths  mapping, (g,, g,x) 
and (g, 0 g,, x )  are sent into the same element. Furthermore, (e, x)  is 
mapped to x. Thus each g E G can be thought of as a one-to-one onto 
function from GX to GX and the group operation in G is function composition. 
To make ths  claim precise, for each g E G, define t, on GX to % by 
t,(x) = gx. 
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Proposition 6.1. Suppose G acts on the left of 5%. Then each t ,  is a 
one-to-one onto function from % to GX and: 

(i) tg1fg2 = t,, 0 g2 .  

(ii) t i 1  = t , - I .  

Proof. To show t ,  is onto, consider x  E %. Then t g ( g P ' x )  = g ( g P ' x )  = 

( g  0 g - ' ) x  = ex = x  where (i) and (ii) of Definition 6.3 have been used. 
Thus t ,  is onto. If t , ( x , )  = t g ( x 2 ) ,  then gx,  = gx,  so 

Thus t ,  is one-to-one. Assertion (i) follows immediately from (i) of Defini- 
tion 6.3. Since te  is the identity function on % and (i) implies that 

we have t , - !  = t i ' .  

Henceforth, we dispense with t ,  and simply regard each g  as a function 
on % to 5% where function composition is group composition and e  is the 
identity function on G X .  All of the examples considered thus far are groups 
of functions on a vector space to itself and the group operation is defined to 
be function composition. In particular, G l ( V )  is the set of all one-to-one 
onto linear transformations of V to V  and the group operation is function 
composition. In the next example, the motivation for the definition of the 
group operation is provided by thinlung of each group element as a 
function. 

4 Example 6.4. Let V  be an n-dimensional vector space and consider 
the set A l ( V )  that is the collection of all pairs ( A ,  x )  with A  E G l ( V )  
and x E V .  Each pair ( A ,  x )  defines a one-to-one onto function 
from V  to V  by 

The composition of ( A , ,  x , )  and ( A , ,  x , )  is 

( A , ,  x 1 ) ( A 2 ,  x 2 ) v  = ( A , ,  x l ) ( A 2 v  + x2)  = A l A 2 v  + A l x 2  + x ,  
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Also, (I, 0) E AI(V) is the identity function on V and the inverse of 
(A, x) is (A-I, -A-'x). It is now an easy matter to verify that 
AI(V) is a group where the group operation in AI(V) is 

This group Al(V) is called the affine group of V. When V is the 
coordinate space Rn, Al(V) is denoted by Al,. + 

An interesting and useful subgroup of AI(V) is given in the next 
example. 

+ Example 6.5. Suppose V is a finite dimensional vector space and 
let M be a subspace of V. Let H be the collection of all pairs (A, x)  
where x E M, A(M) G M, and (A, x)  E Al(V). The group opera- 
tion in H is that inherited from AI(V). It is a routine calculation to 
show that H is a subgroup of Al(V). As a particular case, suppose 
that V is Rn and M is the m-dimensional subspace of Rn consisting 
of those vectors x E Rn whose last n - m coordinates are zero. An 
n X n matrix A E GI, satisfies AM G M iff 

where A,, is m x m and nonsingular, A,, is m x (n - m), and A,, 
is (n - m) x (n - m) and nonsingular. Thus H consists of all pairs 
(A, x) where A E GI, has the above form and x has its last n - m 
coordinates zero. + 

+ Example 6.6. In this example, we consider two finite groups that 
arise naturally in statistical problems. Consider the space Rn and let 
P be an n x n matrix that permutes the coordinates of a vector 
x E Rn. Thus in each row and in each column of P, there is a single 
element that is one and the remaining elements are zero. Con- 
versely, any such matrix permutes the coordinates of vectors in Rn. 
The set 9, of all such matrices is called the group of permutation 
matrices. It is clear that Tn is a group under matrix multiplication 
and 9, has n! elements. Also, let 9, be the set of all n >( n diagonal 
matrices whose diagonal elements are plus or minus one:. Obviously, 
9, is a group under matrix multiplication and 9, has 2" elements. 
The group 9, is called the group of sign changes on iRn. A bit of 
reflection shows that both Tn and 9, are subgroups of 0,. Now, let 



H be the set 

The claim is that H  is a group under matrix multiplication. To see 
this, first note that for P  E 9, and D  E q n ,  PDP' is an element of 
9,. Thus if P I D ,  and P2D, are in H ,  then 

where P, = PI P2 and D, = P;D, P2 D2. Also, 

Therefore H i s  a group and clearly has 2"n! elements. + 
Suppose that G  is a group and H  is a subgroup of G. The quotient space 

G / H ,  to be defined next, is often a useful representation of spaces that arise 
in later considerations. The subgroup H  of G  defines an equivalence relation 
in G  by g, = g2 iff g; I g ,  E H. That = is an equivalence relation is easily 
verified using the assumption that H  is a subgroup of G. Also, it is not 
difficult to show that g, = g2 iff the set g l H  = {g,hlh E H )  is equal to the 
set g2H. Thus the set of points in G  equivalent to g, is the set g, H. 

Definition 6.4. If H  is a subgroup of G,  the quotient space G / H  is defined 
to be the set whose elements are gH for g  E G. 

The quotient space G / H  is obviously the set of equivalence classes 
(defined by H )  of elements of G. Under certain conditions on H,  the 
quotient space G / H  is in fact a group under a natural definition of a group 
operation. 

Definition 6.5. A subgroup H  of G  is called a normal subgroup if g- 'Hg = H  
for all g  E G. 

When H  is a normal subgroup of G,  and giH E G / H  for i = 1,2, then 

since HH = H. 
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Proposition 6.2. When H is a normal subgroup of G, the quotient space 
G/H is a group under the operation 

Proof: This is a routine calculation and is left to the reader. 

+ Example 6.7. Let Al(V)  be the affine group of the vector space V. 
Then 

H = { ( I ,  x)lx E V }  

is easily shown to be a subgroup of G, since ( I ,  x  , ) ( I ,  x,) = ( I ,  x ,  
+ x,). To show H is normal in AI(V), consider ( A ,  x )  E AI(V)  
and ( I ,  x,) E H. Then 

which is an element of H. Thus gglHg c H for all g E Al(V).  But 
if ( I ,  x,) E H and ( A ,  x )  E Al(V),  then 

( A ,  x ) - ' ( ~ ,  A x o ) ( A ,  x )  = ( I ,  x O )  

so g-'Hg = H, for g E Al(V).  Therefore, H is normal in Al(V).  To 
describe the group AI(V)/H, we characterize the equivalence rela- 
tion defined by H. For (A, ,  x,) E Al(V),  i = 1,2, 

is an element of H iff Ac1A2 = I  or A, = A,. Thus ( A , ,  x , )  is 
equivalent to (A, ,  x,) iff A,  = A,. From each equivalence class, 
select the element (A,O). Then it is clear that the quotient group 
Al(V)/H can be identified with the group 



where the group operation is 

Now, suppose the group G acts on the left of the set %. We say G acts 
transitively on X if, for each x ,  and x ,  in %, there exists a g E G such that 
gx, = x,. When G acts transitively on %, we want to show that there is a 
natural one-to-one correspondence between % and a certain quotient space. 
Fix an element x ,  E % and let 

H = {hlhx, = x,, h E G ) .  

The subgroup H of G is called the isotropy subgroup of x,. Now, define the 
function 7 on G/H to % by r ( g H )  = gx,. 

Proposition 6.3. The function T is one-to-one and onto. Further, 

Pro05 The definition of r clearly makes sense as ghx, = gx, for all h E H. 
Also, r is an onto function since G acts transitively on %. If r ( g , H )  = 

r (g ,H) ,  then g,x, = g2x0 SO g;lgl E H. Therefore, g,H = g,H so r is 
one-to-one. The rest is obvious. 

If H is any subgroup of G, then the group G acts transitively on 
5X = G/H where the group action is 

Thus we have a complete description of the spaces % that are acted on 
transitively by G. Namely, these spaces are simply relabelings of the 
quotient spaces G/H where H is a subgroup of G. Further, the action of g 
on 5X corresponds to the action of G on the quotient space described in 
Proposition 6.3. A few examples illustrate these ideas. 

+ Example 6.8. Take the set X to be 3, ,--the set of n x p real 
matrices \k that satisfy \k'\k = I,, 1 < p < n.  The group G = 0, of 
all n x n orthogonal matrices acts on %,, by matrix multiplication. 
That is, if r E 0, and \k E 3, ,, then T\k is the matrix product of T 
and \k. To show that this group action is transitive, consider \k, and 
'k, in %, ,. Then, the columns of 9, form a set of p orthonormal 
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vectors in Rn as do the columns of 'P2. By Proposition 1.30, there 
exists an n X n orthogonal matrix r that maps the columns of .k, 
into the columns of q2. Thus r'P, = 'P2 so 0, is transitive on 5, ,. 
A convenient choice of x ,  E %, to define the map r is 

where 0 is a block of ( n  - p )  X p zeroes. It is not difficult to show 
that the subgroup H = ( r l r x ,  = x,,  r E 0,) is 

The function r is 

which is the n X p matrix consisting of the first p columns of T. 
T h s  gives an obvious representation of %, ,,. + 

+ Example 6.9. Let % be the set of all p x p positive definite 
matrices and let G = GI,. The transitive group action is given by 
A ( x )  = AxA' where A is a p  X p nonsingular matrix, x E %, and A' 
is the transpose of A .  Choose x ,  E % to be I,. Obviously, H = Op 
and the map r is given by 

r ( A H )  = A ( x , )  = AA' 

The reader should compare this example with the assertion of 
Proposition 1.3 1. + 

+ Example 6.10. In t h s  example, take % to be the set of all n X p 
real matrices of rank p, p d n. Consider the group G defined by 

where G; is the group of all p x p lower triangular matrices with 
positive diagonal elements. Of course, 8 denotes the Kronecker 
product and group composition is 
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The action of G on % is 

To show G acts transitively on %, consider X I ,  X2 E % and write 
Xi = \k,q, where \k, E %, and E G: ,  i = 1,2 (see Proposition 
5.2). From Example 6.8, there is a r E 8, such that r\k, = %k2. Let 
T' = U r 1 u 2  so 

Choose Xo E % to be 

as in Example 6.8. Then the equation (r 8 T ) X o  = Xo implies that 

I, = XAXo = ( ( r  8 T ) x , ) ' ( ~  8 T ) X o  = TX;T'rX,T' = TT' 

so T = Ip by Proposition 5.4. Then the equation (r 8 I p ) X o  = X, 
is exactly the equation occurring in Example 6.8 for elements of the 
subgroup H. Thus for this example, 

Therefore, 

is the representation for elements of X. Obviously, 

and the representation of elements of % via the map r is precisely 
the representation established in Proposition 5.2. This representa- 
tion of 3i is used on a number of occasions. + 
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6.2. INVARIANT MEASURES AND INTEGRALS 

Before beginning a discussion of invariant integrals on locally compact 
topological groups, we first outline the basic results of integration theory on 
locally compact topological spaces. Consider a set X and let & be a 
Hausdorff topology for 5%. 

Definition 6.6. The topological space ( X ,  &) is a locally compact space if 
for each x E X ,  there exists a compact neighborhood of x. 

Most of the groups introduced in the examples of the previous section are 
subsets of the space Rm, for some m, and when these groups are given the 
topology of Rm, they are locally compact spaces. The verification of t h s  is 
not difficult and is left to the reader. If (%, &) is a locally compact space, 
X(%)  denotes the set of all continuous real-valued functions that have 
compact support. Thus f E X ( X )  if f is a continuous and there is a 
compact set K such that f (x)  = 0 if x P K. It is clear that X ( X )  is a real 
vector space with addition and scalar multiplication being defined in the 
obvious way. 

Definition 6.7. A real-valued function J defined on X ( X )  is called an 
integral if: 

(i) J(alfl + a2f2) = aIJ(fl) + a2J(f2) for (~1, a2 E R and f ~ ,  f 2  E 

%(XI.  
(ii) J ( f ) > O i f f > , O , f ~ X ( % ) .  

An integral J is simply a linear function on X ( X )  that has the additional 
property that J (  f j is nonnegative when f > 0. Let a(%) be the a-algebra 
generated by the compact subsets of X. If p is a measure on a ( % )  such 
that p(K) < + w for each compact set K, it is clear that 

defines an integral on X(%).  Such measures p are called Radon measures. 
Conversely, given an integral J ,  there is a measure p on a ( % )  such that 
p(K)  < + w for all compact sets K and 

for f E X(%). For a proof of this result, see Segal and Kunze (1978, 
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Chapter 5). In the special case when (%, &) is a a-compact space-that is, 
3C = u ;*K, where K,  is compact-then the correspondence between in- 
tegrals J and measures p that satisfy p(K)  < + oo for K compact is 
one-to-one (see Segal and Kunze, 1978). All of the examples considered here 
are a-compact spaces and we freely identify integrals with Radon measures 
and vice versa. 

Now, assume (%, &) is a a-compact space. If an integral J on X(%) 
corresponds to a Radon measure p on % (%), then J has a natural extension 
to the class of all %(%)-measurable and p-integrable functions. Namely, J 
is extended by the equation 

for all f for which the right-hand side is defined. Obviously, the extension of 
J is unique and is determined by the values of J on X(%).  In many of the 
examples in thls chapter, we use J to denote both an integral on X(%) and 
its extension. With this convention, J is defined for any %(%) measurable 
function that is p-integrable where p corresponds to J .  . 

Suppose G is a group and & is a topology on G. 

Definition 6.8. Given the topology & on G, (G, &) is a topological group if 
the mapping (x, y)  + xy-' is continuous from G X G to G. If (G, &) is a 
topological group and (G, &)  is a locally compact topological space, (G, &) 
is called a locally compact topological group 

In what follows, all groups under consideration are locally compact 
topological groups. Examples of such groups include the vector space Rn, 
the general linear group GI,, the affine group Al,, and G;. The verification 
that these groups are locally compact topological groups with the Euclidean 
space topology is left to the reader. 

If (G, &) is a locally compact topological group, X(G) denotes the real 
vector space of all continuous functions on G that have compact support. 
For s E G and f E X(G), the left translate of f by s, denoted by sf, is 
defined by (sf)(x) = f(sP'x), x E G. Clearly, sf E X(G) for all s E G. 
Similarly, the right translate off E X(G), denoted byfs, is (fs)(x) = f (xs- ') 
and fs E X(G). 

Definition 6.9. An integral J * 0 on X(G) is left invariant if J(sf) = J (  f )  
for all f E X(G) and s E G. An integral J * 0 on X(G) is right invariant if 
J (  fs) = J (  f )  for all f E X(G) and s E G .  
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The basic properties of left and right invariant integrals are summarized 
in the following two results. 

Theorem 6.1. If G is a locally compact topological group, then there exist 
left and right invariant integrals on X(G). If J ,  and J2 are left (right) 
invariant integrals on X(G), then J2 = cJ, for some positive constant c. 

Proof. See Nachbin (1965, Section 4, Chapter 2). 

Theorem 6.2. Suppose that 

is a left invariant integral on X(G). Then there exists a unique continuous 
function A, mapping G into (0, co) such that 

for all s E G and f E X(G). The function A,, called the right-hand modulus 
of G, also satisfies: 

Further, the integral 

is right invariant. 

Proof. See Nachbin (1965, Section 5, Chapter 2). 
The two results above establish the existence and uniqueness of right and 

left invariant integrals and show how to construct right invariant integrals 
from left invariant integrals via the right-hand modulus A,. The right-hand 
modulus is a continuous homomorphism from G into (0, co)-that is, A, is 
continuous and satisfies A,(st) = A,(s)A,(t), for s, t E G. (The definition 
of a homomorphism from one group to another group is gven shortly.) 

Before presenting examples of invariant integrals, it is convenient to 
introduce relatively left (and right) invariant integrals. Proposition 6.4, given 



below, provides a useful method for constructing invariant integrals from 
relatively invariant integrals. 

Definition 6.10. A nonzero integral J on X(G)  given by 

is called relatively left invariant if there exists a function x on G to (0, oo) 
such that 

for all s E G and f E X(G). The function x is the multiplier for J .  

It can be shown that any multiplier x is continuous (see Nachbin, 1965). 
Further, if J is relatively left invariant with multiplier X, then for s, t E G 
and f E X(G), 

Thus  st) = x(s)x(t).  Hence all multipliers are continuous and are homo- 
morphisms from G into (0, oo). For any such homomorphism X, it is clear 
that ~ ( e )  = 1 and ~ ( s - ' )  = l/x(s). Also, x(G) = {x(s)ls E G) is a sub- 
group of the group (0, oo) with multiplication as the group operation. 

Proposition 6.4. Let x be a continuous hornomorphisin on G to (0, oo). 

(i) If J (  f )  = jf(x)p(dx) is left invariant on X(G), then 

is a relatively left invariant integral on X(G) with multiplier X. 
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(ii) If J, (  f )  = j f ( x ) r n ( d x )  is relatively left invariant with multiplier X ,  
then 

is a left invariant integral. 

Proot The proof is a calculation. For (i), 

= x ( s )  J l ( f  ). 

Thus J, is relatively left invariant with multiplier X .  For (ii), 

Thus J  is a left invariant integral and the proof is complete. 

If J  is a relatively left invariant integral with multiplier X ,  say 

the measure m is also called relatively left invariant with multiplier X .  A 
nonzero integral J ,  on X(G) is relatively right invariant with multiplier x if 
J, (  fs)  = x ( s ) J , (  f  ). Using the results given above, if J ,  is relatively right 
invariant with multiplier X ,  then J ,  is relatively Ieft invariant with multiplier 



x / A ,  where A, is the right-hand modulus of G. Thus all relatively right and 
left invariant integrals can be constructed from a given relatively left (or 
right) invariant integral once all the continuous homomorphisms are known. 
Also, if a relatively left invariant measure m can be found and its multiplier 
x calculated, then a left invariant measure is given by m / x  according to 
Proposition 6.4. This observation is used in the examples below. 

+ Example 6.11. Consider the group GI, of all nonsingular n X n 
matrices. Let ds denote Lebesgue measure on GI,. Since GI, = 

{sldet(s) * 0), G1, is a nonempty open subset of n2-dimensional 
Euclidean space and hence has positive Lebesgue measure. For 
f E %(GI,), let 

To find a left invariant measure on GI,, it is now shown that 
J(sf) = Idet(s)InJ( f )  so J is relatively left invariant with multiplier 
~ ( s )  = (det(s)ln. From Proposition 5.10, the Jacobian of the trans- 
formation g(t) = st, s E GI,, is Idet(s)ln. Thus 

J (s f )  = /f ( s p i t )  dt = ldet(s)ln/f ( t )  dt = ldet(s)ln~( f ). 

From Proposition 6.4, it follows that the measure 

is a left invariant measure on Gl,. A similar Jacobian argument 
shows that p is also right invariant, so the right-hand modulus of 
G1, is A, = 1. To construct all of the relatively invariant measures 
on GI,, it is necessary that the continuous homomorphisms x be 
characterized. For each a E R, let 

Obviously, each X, is a continuous homomorphism. However, it can 
be shown (see the problems at the end of this chapter) that if x is a 
continuous homomorphism of GI, into (0, a), then x = X, for some 
a E R. Hence every relatively invariant measure on GI, is given by 

where c is a positive constant and a E R. 
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A group G for whch A,  = 1 is called unimodular. Clearly, all commuta- 
tive groups are unimodular as a left invariant integral is also right invariant. 
In the following example, we consider the group G: , which is not unimodu- 
lar, but G; is a subgroup of the unimodular group GI,. 

+ Example 6.12. Let G; be the group of all n x n lower triangular 
matrices with positive diagonal elements. Thus G; is a nonempty 
open subset of [n(n + 1)/2]-dimensional Euclidean space so G: 
has positive Lebesgue measure. Let dt denote [n(n + 1)/2]- 
dimensional Lebesgue measure restricted to G:. Consider the in- 
tegral 

defined on 'X(G:). The Jacobian of the transformation g(t) = st, 
s E G;, is equal to 

where s has diagonal elements s ,,,. . . , s,, (see Proposition 5.13). 
Thus 

Hence J is relatively left invariant with multiplier x0 so the measure 

is left invariant. To compute the right-hand modulus A,  for G;, let 

so J, is left invariant. Then 
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By Proposition 5.14, the Jacobian of the transform g(t) = ts is 

Therefore, 

By Theorem 6.2, 

is the right-hand modulus for G;. Therefore, the measure 

is right invariant. As in the previous example, a description of the 
relatively left invariant measures is simply a matter of describing all 
the continuous homomorphisms on G:. For each vector c E Rn 
with coordinates c,, . . . , c,, let 

where t E G; has diagonal elements t,,, . . . , tan. It is easy to verify 
that X, is a continuous homomorphism on G:. It is known that if x 
is a continuous homomorphism on G;, then x is given by X, for 
some c E Rn (see Problems 6.4 and 6.9). Thus every relatively left 
invariant measure on G: has the form 

for some positive constant k and some vector c E Rn. + 
The following two examples deal with the affine group and a subgroup of 

G1, related to the group introduced in Example 6.5. 
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+ Example 6.13. Consider the group Al, of all affine transformations 
on Rn. An element of Al, is a pair (s, x) where s E G1, and x € Rn. 
Recall that the group operation in Al, is 

( ~ 1 ,  x I ) ( ~ 2 ,  x2) = ( ~ 1 ~ 2 ,  S l X 2  + XI) 
SO 

(s ,  x)-I = (s- '  , - s - 'x). 

Let ds dx denote Lebesgue measure restricted to Al,. In order to 
construct a left invariant measure on Al,, it is shown that the 
integral 

is relatively left invariant with multiplier 

xO(s ,  X )  = ~det(s)1"+' 

For (s, X)  E Al,, 

= ~det(s)l/f(s- 't , u) dt du. 

The last equality follows from the change of variable u = sPiy  - sx, 
which has a Jacobian Idet(s)l. As in Example 6.1 1, 

f (s- ' t ,  U )  dt = ldet(s)in/ f ( t ,  u) dt 
'GI" GI, 

for each fixed u E Rn. Thus 
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so J is relatively left invariant with multiplier x,. Hence the 
measure 

ds du - - ds du 
p(ds, du) = 

xo(s ,  U )  1det(s)ln+' 

is left invariant. To find the right-hand modulus of Al,, let 

be a left invariant integral. Then using an argument similar to that 
above, we have 

= ~det(s- ')Int '~det(s) l" l  f ( t ,  u) 
dt du 

1det(t)ln+' 

= ~det(s)l-'J,( f ). 

Thus A,(s, x )  = Idet(s)l-' so a right invariant measure on Al, is 

1 ds du 
v(ds, du) = p ( d ~ ,  du) = 

Ar('? Idet(s)In ' 

Now, suppose that x is a continuous homomorphism on Al,. Since 

(s ,  x )  = (s,O)(e, s- 'x) = ( e ,  x)(s,O) 
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where e is the n x n identity matrix, x must satisfy the equation 

x ( ~ ,  x )  = x ( ~ , O ) x ( e ,  s- 'x) = x(s ,O)x(e,  x )  

Thus for all s E GI,, 

Letting s- '  converge to the zero matrix, the continuity of x implies 
that 

since (e, 0) is the identity in Al,. Therefore, 

However. 

so x is a continuous homomorphism on GI,. But every continuous 
homomorphism on GI, is given by s + Idet(s)la for some real a. In 
summary, x is a continuous homomorphism on Al, iff 

for some real number a. Thus we have a complete description of all 
the relatively invariant integrals on Al,.  + 

+ Example 6.14. In this example, the group G consists of all the 
n x n nonsingular matrices s that have the form 

where p + q = n. Let M be the subspace of Rn consisting of those 
vectors whose last q coordinates are zero. Then G is the subgroup of 
G1, consisting of those elements s that satisfy s (M)  G M. Let 
ds,, ds,, ds,, denote Lebesgue measure restricted to G when G is 
regarded as a subset of ( p 2  + q 2  + pq)-dimensional Euclidean 
space. Since G is a nonempty open subset of this space, G has 
positive Lebesgue measure. As in previous examples, it is shown 
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that the integral 

is relatively left invariant. For s E G, 

A bit of calculation shows that 

and 

Let 

U l 1  = s i l t , , ,  u22 = sii1t22 

U I 2  = SfiltI2 - ~ i l ~ ~ ~ ~ ; ~ ~ t ~ ~ .  

The Jacobian of this transformation is 

XO(S)  ldet(sll)lPldet(s22)lqldet(sH)lq = 1det(s~~)l"ldet(s~~)14. 

Therefore, 

J b f )  = xo(s)J(f  

so the measure 

is left invariant. Setting 
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a calculation similar to that above yields 

where 

Thus A, is the right-hand modulus of G and the measure 

is right invariant. For a, /3 E R, let 

Clearly, xaB is a continuous homomorphism of G into (0, a ) .  
Conversely, it is not too difficult to show that every continuous 
homomorphsm of G into (0, co) is equal to xap for some a, /3 E R. 
Again, this gives a complete description of all the relatively in- 
variant integrals on G. + 

In the four examples above, the same argument was used to derive the 
left and right invariant measures, the modular function, and all of the 
relatively invariant measures. Namely, the group G had positive Lebesgue 
measure when regarded as a subset of an obvious Euclidean space. The 
integral on X(G) defined by Lebesgue measure was relatively left invariant 
with a multiplier that we calculated. Thus a left invariant measure on G was 
simply Lebesgue measure divided by the multiplier. From this, the right-hand 
modulus and a right invariant measure were easily derived. The characteri- 
zation of the relatively invariant integrals amounted to finding all the 
solutions to the functional equation  st) = x(s)x(t)  where x is a continu- 
ous function on G to (0, a ) .  Of course, the above technique can be applied 
to many other matrix groups-for example, the matrix group considered in 
Example 6.5. However, there are important matrix groups for which t h s  
argument is not available because the group has Lebesgue measure zero in 
the "natural" Euclidean space of which the group is a subset. For example, 
consider the group of n x n orthogonal matrices 8,. When regarded as a 
subset of n2-dimensional Euclidean space, 8, has Lebesgue measure zero. 
But, without a fairly complicated parameterization of On, it is not possible to 
regard 8, as a set of positive Lebesgue measure of some Euclidean space. 



For this reason, we do not demonstrate directly the existence of an invariant 
measure on 0, in this chapter. In the following chapter, a probabilistic proof 
of the existence of an invariant measure on 8, is given. 

The group On, as well as other groups to be considered later, are in fact 
compact topological groups. A basic property of such groups is given next. 

Proposition 6.5. Suppose G is a locally compact topological group. Then G 
is compact iff there exists a left invariant probability measure on G. 

Proof: See Nachbin (1965, Section 5, Chapter 2). C] 

The following result shows that when G is compact, left invariant 
measures are right invariant measures and all relatively invariant measures 
are in fact invariant. 

Proposition 6.6. If G is compact and x is a continuous homomorphism on 
G to (0, a ) ,  then ~ ( s )  = 1 for all s E G. 

Proof: Since x is continuous and G is compact, x(G) = {x(s)ls E G) is a 
compact subset of (0, a ) .  Since x is a homomorphism, x(G) is a subgroup 
of (0,c.a). However, the only compact subgroup of (0, a )  is (1). Thus 
~ ( s )  = 1 for all s E G. 

The nonexistence of nontrivial continuous homomorphisms on compact 
groups shows that all compact groups are unimodular. Further, all relatively 
invariant measures are invariant. Whenever G is compact, the invariant 
measure on G is always taken to be a probability measure. 

6.3. INVARIANT MEASURES ON QUOTIENT SPACES 

In this section, we consider the existence and uniqueness of invariant 
integrals on spaces that are acted on transitively by a group. Throughout 
this section, GX is a locally compact Hausdorff space and X(%) denotes the 
set of continuous functions on % that have compact support. Also, G is a 
locally compact topological group that acts on the left of %. 

Definition 6.11. The group G acts topologicaIly on % if the function from 
G x % to % given by (g, x)  - gx is continuous. When G acts topologically 
on GX, %is a left homogeneous space if for each x E %, the function rx on G 
to % defined by .rr,(g) = gx is continuous, open, and onto GX. 
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The assumption that each rx is an onto function is just another way to 
say that G acts transitively on 5%. Also, it is not difficult to show that if, for 
one x E X ,  .rr, is continuous, open, and onto %, then for all x ,  nx is 
continuous, open, and onto X. To describe the structure of left homoge- 
neous spaces X ,  fix an element x, E X and let 

That H, is a closed subgroup of G is easily verified. Further, the function T 

considered in Proposition 6.3 is now one-to-one, onto, and T and 7 - I  are 
both continuous. Thus we have a one-to-one, onto, bicontinuous mapping 
between X and the quotient space G/Ho endowed with the quotient 
topology. Conversely, let H be a closed subgroup of G and take X = G/H 
with the quotient topology. The group G acts on G/H in the obvious way 
(g(g,H) = gg,H) and it is easily verified that G/H is a left homogeneous 
space (see Nachbin 1965, Section 3, Chapter 3). Thus we have a complete 
description of the left homogeneous spaces (up to relabelings by T) as 
quotient spaces G/H where H is a closed subgroup of G. 

In the notation above, let X be a left homogeneous space. 

Definition 6.12. A nonzero integral J on X ( X )  

is relatively invariant with multiplier x if, for each s E G, 

for all f E X(%), 

For f E X(X) ,  the function sf given by (sf )(x) = f(s- 'x) is the left 
translate off  by s E G. Thus an integral J on %(%) is relatively invariant 
with multiplier x if J(sf) = ~ ( s )  J (  f ). For such an integral, 

so  st) = x(s)x(t).  Also, any multiplier x is continuous, whch implies 
that a multiplier is a continuous homomorphism of G into the multiplicative 
group (0, m). 
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+ Example 6.15. Let EX be the set of all p x p positive definite 
matrices. The group G = GI, acts transitively on % as shown in 
Example 6.9. That % is a left homogeneous space is easily verified. 
For a E R, define the measure m, by 

where dx is Lebesgue measure on %. Let Ja( f )  = jf(x)m,(dx). 
For s E GI,, s(x) = sxs' is the group action on %. Therefore, 

The last equality follows from the change of variable x = sys', 
which has a Jacobian equal to ~det(s)lP+' (see Proposition 5.1 1). 
Hence 

J&f) = Idet(s)laJ(f) 

for all s E GI,, f € X(%), and J, is relatively invariant with 
multiplier x,(s) = Jdet(s)la. For this example, it has been shown 
that for every continuous homomorphism x on G, there is a 
relatively invariant integral with multiplier X. That this is not the 
case in general is demonstrated in future examples. + 

The problem of the existence and uniqueness of relatively invariant 
integrals on left homogeneous spaces % is completely solved in the follow- 
ing result due to Weil (see Nachbin, 1965, Section 4, Chapter 3). Recall that 
xo is a fixed element of % and 

is a closed subgror~p of G. Let A, denote the right-hand modulus of G and 
let A: denote the right-hand modulus of Ho. 
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Theorem 6.3. In the notation above: 

(i) If J (  f )  = jf(x)m(dx) is relatively invariant with multiplier X, then 

A:(h) = x(h)A,(h)  for all h E Ho. 

(ii) If x is a continuous homomorphism of G to (0, m) that satisfies 
A:(h) = x(h)A,(h), h E Ho, then a relatively invariant integral 
with multiplier x exists. 

(iii) If J ,  and J, are relatively invariant with the same multiplier, then 
there exists a constant c > 0 such that J, = cJ,. 

Before turning to applications of Theorem 6.3, a few general comments 
are in order. If the subgroup Ho is compact, then A:(h) = 1 for all h E Ho. 
Since the restrictions of x and of A, to Ho are both continuous homomor- 
phisms on Ho, A,(h) = ~ ( h )  = 1 for all h E Ho as Ho is compact. Thus 
when Ho is compact, any continuous homomorphsm x is a multiplier for a 
relatively invariant integral and the description of all the relatively invariant 
integrals reduces to finding all the continuous homomorphisms of G. 
Further, when G is compact, then only an invariant integral on X ( X )  can 
exist as x = 1 is the only continuous homomorphism. When G and H are 
not compact, the situation is a bit more complicated. Both A, and A: must 
be calculated and then, the continuous homomorphisms x on G to (0, m) 
that satisfy (ii) of Theorem 6.3 must be found. Only then do we have a 
description of the relatively invariant integrals on X(X) .  Of course, the 
condition for the existence of an invariant integral (X = 1) is that A:(h) = 

A,(h) for all h E Ho. 
If J  is a relatively invariant integral (with multiplier X)  given by 

then the measure m is called relatively invariant with multiplier X. In 
Example 6.15, it was shown that for each a E R, the measure ma was 
relatively invariant under GI, with multiplier x,. Theorem 6.3 implies that 
any relatively invariant measure on the space of p x p positive definite 
matrices is equal to a positive constant times an ma for some a E R. We 
now proceed with further examples. 

+ Example 6.16. Let % = %,, and let G = 8,. It was shown in 
Example 6.8 that 8, acts transitively on %,,. The verification that 
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%, , is a left homogeneous space is left to the reader. Since 8, is 
compact, Theorem 6.3 implies that there is a unique probability 
measure p on %,, that is invariant under the action of 8, on %, ,. 
Also, any relatively invariant measure on %, , will be equal to a 
positive constant times p. The distribution p 1s sometimes called the 
uniform distribution on 3, ,. When p = 1, then 

which is the rim of the unit sphere in Rn. The uniform distribution 
on F,, , is just surface Lebesgue measure normalized so that it is a 
probability measure. When p = n, then %,,, = 8, and p is the 
uniform distribution on the orthogonal group. A different argu- 
ment, probabilistic in nature, is given in the next chapter, which 
also establishes the existence of the uniform distribution on %, ,. + 

+ Example 6.17. Take % = RP - (0) and let G = GI,. The action of 
GIp on % is that of a matrix acting on a vector and this action is 
obviously transitive. The verification that % is a left homogeneous 
space is routine. Consider the integral 

where dx is Lebesgue measure on %. For s E GI,, it is clear that 
J(sf ) = Idet(s)I J (  f )  so J is relatively invariant with multiplier 
x,(s)  = Idet(s)l. We now show that J is the only relatively invariant 
integral on %(EX). This is done by proving that X, is the only 
possible multiplier for relatively invariant integrals on X(X). A 
convenient choice of x ,  E % is x ,  = el where e; = (1,0,. . . , 0). 
Then 

A bit of reflection shows that h E Ho iff 

where h2,  E GI(,- ,, and h , ,  is 1 X ( p  - 1). A calculation similar to 
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that in Example 6.14 yields 

as a left invariant measure on H,. Then the integral 

is left invariant on X(H,) and a standard Jacobian argument yields 

where 

Every continuous homomorphism on GI, has the form x,(s) = 

Idet(s)Ia for some a E R. Since A, = 1 for GI,, X, can be a 
multiplier for an invariant integral iff 

But A?(h) = Idet(h,,)l and for h E H,, x,(h) = Idet(h2,)la so the 
only value for a for which X, can be a multiplier is a = 1. Further, 
the integral J is relatively invariant with multiplier x,. Thus Lebesgue 
measure on 5% is the only (up to a positive constant) relatively 
invariant measure on 3, under the action of GI,. 

Before turning to the next example, it is convenient to introduce the 
direct product of two groups. If GI and G, are groups, the direct product of 
GI and G,, denoted by G = GI X G,, is the group consisting of all pairs 
(g,,  g,) with g, E G,, i = 1,2, and group operation 

If e, is the identity in G,, i = 1,2, then (el ,  e,) is the identity in G and 
(g,,  g,)-' = (g; ', g; I). When GI and G, are locally compact topological 
groups, then GI X G, is a locally compact topological group when endowed 
with the product topology. The next two results describe all the continuous 
homomorphisms and relatively left invariant measures on GI X G, in terms 



of continuous homomorphisms and relatively left invariant measures on GI  
and G,. 

Proposition 6.7. Suppose GI and G, are locally compact topological groups. 
Then x is a continuous homomorphism on G I  X G, iff ~ ( ( g , ,  g,)) = 

~ , ( g , ) ~ , ( g , ) ,  (g , ,  g,) E GI x G,,  where X, is a continuous homomor- 
phism on G,, i = 1,2. 

Proof: If ~ ( ( g , ,  g,)) = x,(g,)x,(g,), clearly x is a continuous homomor- 
phsm on GI  x G,. Conversely, since (g, ,  g,) = (g, ,  e,)(e,, g,), if x is a 
continuous homomorphism on GI  x G,, then 

Setting x , (g , )  = ~ ( g , ,  e,) and x 2 ( g 2 )  = ~ ( e , ,  g2), the desired result fol- 
lows. 

Proposition 6.8. Suppose x is a continuous homomorphism on GI  X G, 
with ~ ( g , ,  g,) = x l (g , )x2(g , )  where xi is a continuous homomorphism on 
G,, i = 1,2. If m is a relatively left invariant measure with multiplier X, then 
there exist relatively left invariant measures mi  on G, with multipliers x i ,  
i = 1,2, and m is product measure m,  X m,. Conversely, if m, is a relatively 
left invariant measure on G, with multiplier x,, i = 1,2, then m, X m, is a 
relatively left invariant measure on GI  X G, with multiplier X, whch 
satisfies x (g , ,  g2) = x,(g,)x2(g2). 

Proof: This result is a direct consequence of Fubini's Theorem and the 
existence and uniqueness of relatively left invariant integrals. 

The following example illustrates many of the results presented in this 
chapter and has a number of applications in multivariate analysis. For 
example, one of the derivations of the Wishart distribution is quite easy 
given the results of this example. 

+ Example 6.18. As in Example 6.10, % is the set of all n X p 
matrices with rank p and G is the direct product group 0, x G;. 
The action of (I', T) E 6, x G: on % is 

(I', T ) X  (r  @ T ) X  = I'XT', X E %. 

Since % = {XIX E C,, ,, det(XfX) > 0), % is a nonempty open 
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subset of ep ,. Let dX be Lebesgue measure on % and define a 
measure on % by 

m(dX) = 
dX 

(det( X'X)) "I2 ' 

Using Proposition 5.10, it is an easy calculation to show that the 
integral 

is invariant-that is, J ( ( r ,  T )  f )  = J( f )  for ( r ,  T )  E 0, X G; and 
f  E X ( % ) .  However, it takes a bit more work to characterize all the 
relatively invariant measures on 5%. First, it was shown in Example 
6.10 that, if Xo is 

then Ho = {(I?, T)I(T, T ) X ,  = Xo) is a closed subgroup of 0, and 
hence is compact. By Theorem 6.3, every continuous homomor- 
phsm on 0, x G,f is the multiplier for a relatively invariant in- 
tegral. But every continuous homomorphism x on 0, X G: has the 
form ~ ( r ,  T )  = x 1 ( r ) x 2 ( T )  where X ,  and x 2  are continuous ho- 
momorphisms on 0, and G;. Since 0, is compact, X ,  = 1. From 
Example 6.12, 

where c  E RP has coordinates c,,  . . . , c,. Now that all the possible 
multipliers have been described, we want to exhibit the relatively 
invariant integrals on X ( % ) .  To this end, consider the space 
9 = 5, , x G: so points in ?I are ('k, U )  where 'k is an n x p 
linear isometry and U is a p x p upper triangular matrix in G:. The 
group 0, x G; acts transitively on 9 under the group action 

Let po be the unique probability measure on 5, , that is 0,-invariant 
and let v, be the particular right invariant measure on the group G: 
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given by 

Obviously, the integral 

is invariant under the action of 8, x Gg on $$, , X G:, f E X($$, , 
x G t ) .  Consider the integral 

defined on X(%, , X G:) where X ,  is a continuous homomorphism 
on G:. The claim is that J,((r, T ) f )  = x C ( T ) J 2 (  f )  so J2 is rela- 
tively invariant with multiplier x,. To see this, compute as follows: 

The last equality follows from the invariance of po and v,. Thus all 
the relatively invariant integrals on %(%,, x G:) have been ex- 
plicitly described. To do the same for %(%), the basic idea is to 
move the integral J, over to %(%). It was mentioned earlier that 
the map +, on %, , X G: to EX given by 

is one-to-one, onto, and satisfies 
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for group elements (I?, T). For f E X(%), consider the integral 

Then for ( r ,  T) E 8, x G ; ,  

since po and vr are invariant. Therefore, J3 is an invariant integral on 
X(!X). Since J is also an invariant integral on X(%),  Theorem 6.3 
shows that there is a positive constant k such that 

More explicitly, we have the equation 

for all f E X(%). This equation is a formal way to state the very 
nontrivial fact that the measure m on % gets transformed into the 
measure k(po x vr) on %, , x G: under the mapping +, I. To 
evaluate the constant k, it is sufficient to find one particular 
function so that both sides of the above equality can be evaluated. 
Consider 

Clearly, 



The last equality follows from the result in Example 5.1, where 
c ( n ,  p) is defined. Therefore, 

It is now an easy matter to derive all the relatively invariant 
integrals on X(%).  Let X, be a given continuous homomorphism 
on G g .  For each X E %, let U(X) be the unique element in G: 
such that'X = *U(X) for some 'k E $, (see Proposition 5.2). It  is 
clear that U(rXTt) = U(X)Tf for r E 8, and T E G$ . We have 
shown that 

is relatively invariant with multiplier X, on X(%,,  x G:). For 
h E X(X),  define an integral J4 by 

Clearly, J4 is relatively invariant with multiplier xC since J4(h) = 

~ , ( h )  where A(*, U) = h('kU). Now, we move J4 over to 5% by 
(6.1). In (6.1), take f ( X )  = h(X)xC(Uf(X)) so f( 'kU) = 

h(*U)x,(U'). Thus the integral 
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is relatively invariant with multiplier x,. Of course, any relatively 
invariant integral with multiplier X, on X(%) is equal to a positive 
constant times J,. + 

6.4. TRANSFORMATIONS AND FACTORIZATIONS OF 
MEASURES 

The results of Example 6.18 describe how an invariant measure on the set of 
n x p matrices is transformed into an invariant measure on q,, x G t  
under a particular mapping. The first problem to be discussed in t h s  section 
is an abstraction of this situation. The notion of a group homomorphism 
plays a role in what follows. 

Definition 6.13. Let G and H be groups. A function 17 from G onto H is a 
homomorphism if: 

When there is a homomorphism from G to H, H is called a homomorphic 
image of G. 

For notational convenience, a homomorphic image of G is often denoted 
by Gand - the value of the homomorphism at g is g. In t h s  case, g,g, = g,g, 
and g- ' = g- '. Also, if e is the identity in G, then e is the identity in G. 

Suppose % and 9 are locally compact spaces, and G and G are locally 
compact topological groups that act topologically on X and 9, respectively. 
It is assumed that G is a homomorphic image of G. 

Definition 6.14. A measurable function @ from % onto % is called equi- 
variant if @(gx)  = @ ( x )  for all g E G and x E %. 

Now, consider an integral 

which is invariant under the action of G on X, that is 



for g E G and f E X(%). Given an equivariant function + from GX to 9 ,  
there is a natural measure v induced on 9. Namely, if B is a measurable 
subset of %, v(B) = p(+-'(B)). The result below shows that under a 
regularity condition on +, the measure v defines an invariant (under c )  
integral on X(9) .  

Proposition 6.9. If @ is an equivariant function from GX onto 9 that 
satisfies p(+-'(K)) < + co for all compact sets K c 9 ,  then the integral 

is invariant under c. 

ProoJ: First note that J, is well defined and finite since p(+-'(K)) < + co 
for all compact sets K c 9. From the definition of the measure v, it follows 
immediately that 

Using the equivariance of + and the invariance of p, we have 

so J,  is invariant under c. 
Before presenting some applications of Proposition 6.9, a few remarks are 
order. The groups G and G are not assumed to act transitively on GX and 

, respectively. However, if G does act transitively on 9 and if 9 is a left 
homogeneous space, then the measure v is uniquely determined up to a 
positive constant. Thus if we happen to know an invariant measure on 9 ,  
the identity 

relates the G-invariant measure p to the c-invariant measure v. It was ths  
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line of reasoning that led to (6.1) in Example 6.18. We now consider some 
further examples. 

+ Example 6.19. As in Example 6.18, let X be the set of all n x p 
matrices of rank p,  and let 9 be the space S; of p x p positive 
definite matrices. Consider the map + on %, to S; defined by 

The group 0, X GI, acts on X by 

and the measure 

is invariant under 0, X GI,. Further, 

and this defines an action of GI, on S;. It is routine to check that 
the mapping 

( r , ~ )  + A  = ( r , ~ )  

is a homomorphism. Obviously, 

since the action of GIp on 51; is 

A(S)  = ASA'; S E S;, A E GI,. 

Since GI, acts transitively on S;, the invariant measure 

is unique up to a positive constant. The remaining assumption to 
verify in order to apply Proposition 6.9 is that + - ' ( K )  has finite p 
measure for compact sets K G Sp+. To do this, we show that 
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+ - ' ( K )  is compact in %. Recall that the mapping h on rp,, X Sp+ 
onto % given by 

is one-to-one and is obviously continuous. Given the compact set 
K  c S;, let 

Then K ,  is compact so 5, , x K ,  is a compact subset of $, , x 5;. 
It is now routine to show that 

which is compact since h is continuous and the continuous image of 
a compact set is compact. By Proposition 6.9, we conclude that the 
measure v = p 0 is invariant under GI, and satisfies 

for all f E %(S;). Since v is invariant under GI,, v = cv, where c is 
a positive constant. Thus we have the identity 

To find the constant c, it is sufficient to evaluate both sides of (6.2) 
for a particular function f,. For f,, take the function 

Clearly, the left-hand side of (6.2) integrates to one and this yields 
the equation 
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The result of Example 5.1 gives 

In conclusion, the identity 

has been established for all f E X(Sl) ,  and thus for all measurable 
f for which either side exists. + 

+ Example 6.20. Again let Si be the set of n X p matrices of rank p 
so the group 6, x G; acts on % b y  

Each element X  E Si has a unique representation X = 9 U  where 
9 E Tp, , and U  E G&. Define @ on X onto G& by defining $( X )  
to be the unique element U  E G: such that X  = 9 U  for some 
9 E %,,. If @ ( X )  = U ,  then @ ( ( r ,  T ) X )  = UT', since when X  = 

9 U ,  ( r ,  T ) X  = T 9 U T 1 .  This implies that UT' is the unique ele- 
ment in Gh such that X  = ( T 9 ) U T '  as r9  E GP,,. The mapping 
(r, T )  + T  = ( r ,  T )  is clearly a homomorphism of ( I? ,  T )  onto 
G; and the action of G; on G: is 

Therefore, @ ( ( T ,  T )  X )  = ( T ,  T ) $ (  X )  so @ is equivariant. The mea- 
sure 

is t?, x G,+ invariant. To show that $ - ' ( K )  has finite p measure 
when K G: is compact, note that h ( 9 ,  U )  = \kU is a continuous 
function on %,, X G: onto 5%. It is easily verified that 
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But %,. x K is compact, which shows that +- ' (K)  is compact 
since h is continuous. Thus p ( + - ' ( K ) )  < + oo. Proposition 6.9 
shows that v = p 0 I#-' is a G;-invariant measure on G: and we 
have the identity 

for all f E %(G:). However, the measure 

is a right invariant measure on G:, and therefore, v ,  is invariant 
under the transitive action of G; on G;. The uniqueness of 
invariant measures implies that v = cv, for some positive constant c 
and 

The constant c is evaluated by choosing f to be 

Since (+(X))'+(X) = X'X, 

f ( + ( x ) )  = ( & ) n P ~ ~ ~ ~ n / 2 e x p [ -  3 tr X'X] 

and 

Therefore, 
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where c ( n ,  p )  is defined in Example 5.1. T h s  yields the identity 

for all f E %(G;). In particular, when f (U)  = f,(U'U), we have 

whenever either integral exists. Combining this with (6.3) yields the 
identity 

for all measurable f for which either integral exists. Setting T = U' 
in (6.5) yields the assertion of Proposition 5.18. + 

The final topic in this chapter has to do with the factorization of a Radlon 
measure on a product space. Suppose 'X and 9 are locally compact and 
a-compact Hausdorff spaces and assume that G is a locally compact 
topological group that acts on !X in such a way that 9C is a homogeneous 
space. It is also assumed that p ,  is a G-invariant Radon measure on X so 
the integral 

is G-invariant, and is unique up to a positive constant. 

Proposition 6.10. Assume the conditions above on %, 05, G, and J,. Define 
G acting on the locally compact and a-compact space X X 9 by g(x, y)  = 

(gx, y). If m is a G-invariant Radon measure on % X 9, then m = p ,  X v 

for some Radon measure v on 9. 

ProoJ: By assumption, the integral 
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satisfies 

For f2 E X ( 9 )  and f ,  E X ( % ) ,  the product f 1 f 2 ,  defined by ( f 1 f 2 ) ( x ,  Y ) 
= f l ( x ) f 2 ( y ) ,  is in X(% x X )  and 

Fix f2  E X ( 9 )  such that f2  2 0  and let 

Since J ( g f )  = J( f  ), it follows that 

H ( g f , )  = H( f , )  for g  E G and f ,  E X ( % ) .  

Therefore H  is a G-invariant integral on X ( % ) .  Hence there exists a 
non-negative constant c( f2)  depending on f2 such that 

and c ( f , )  = 0  iff H( f , )  = 0  for all f ,  E X ( % ) .  For an arbitrary f2 E X ( 9 ) ,  
write f2 = f: - f; where f: = max(f2,  0 )  and f; = max(-f,, 0 )  are in 
X(9) .  For such an f 2 ,  it is easy to show 

Thus defining c  on X ( X )  by c( f 2 )  = c( f:) - c( f;), it is easy to show that 
c  is an integral on X ( X ) .  Hence 

for some Radon measure v. Therefore, 

A standard approximation argument now implies that m is the product 
measure p , X v. 
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Proposition 6.10 provides one technique for establishing the stochastic 
independence of two random vectors. Thls technique is used in the next 
chapter. The one application of Proposition 6.10 given here concerns the 
space of positive definite matrices. 

+ Example 6.21. Let 2 be the set of all p X p positive definite 
matrices that have distinct eigenvalues. That 2 is an open subset of 
5; follows from the fact that the eigenvalues of S E 5; are 
continuous functions of the elements of the matrix S. Thus 2 has 
nonzero Lebesgue measure in S l .  Also, let be the set of p x p 
diagonal matrices Y with diagonal elements y,, . . . , yp that satisfy 
y ,  > y, > . . . > y,. Further, let % be the quotient space Cp/Qp 
where Qp is the group of sign changes introduced in Example 6.6. 
We now construct a natural one-to-one onto map from % X 9 to 2. 
For X E X, X = rQp for some r E eP. Define + by 

To verify that + is well defined, suppose that X = r,QP = r,Qp. 
Then 

since r;r, E Qp and every element D E qp satisfies DYD = Y for 
all Y E 05. It is clear that + ( X ,  Y )  has ordered eigenvalues y, > y, 
> . . .  > yp > 0, the diagonal elements of Y. Clearly, the function + 
is onto and continuous. To show $I is one-to-one, first note that, if Y 
is any element of 3, then the equation 

implies that E qp ( r Y r f  = Y implies that TY = Y f  and equat- 
ing the elements of these two matrices shows that r must be 
diagonal so r E qP). If 

then Y,  = Y, by the uniqueness of eigenvalues and the ordering of 
the diagonal elements of Y E %. Thus 
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when 

Therefore, 

r;r, yI r;r2 = Y, , 

which implies that r;rI E 9,. Since = riqP for i = 1,2, this 
shows that XI = X2 and that + is one-to-one. Therefore, + has an 
inverse and the spectral theorem for matrices specifies just what + - I  

is. Namely, for Z E $5, let y, > - . > yp > 0 be the ordered eigen- 
values of Z and write Z as 

where Y E 9 has diagonal elements y, > - . > yp > 0. The prob- 
lem is that r E Op is not unique since 

rYrf = rDYDrf for D E Gi),. 

To obtain uniqueness, we simply have "quotiented out" the sub- 
group QP in order that +-' be well defined. Now, let 

be Lebesgue measure on 3 and consider v = p 0 +-the induced 
measure on % x 3. The problem is to obtain some information 
about the measure v. Since + is continuous, v is a Radon measure 
on % X 9, and v satisfies 

for f E X(% X 3). The claim is that the measure v is invariant 
under the action of ap on % X X defined by 

To see this, we have 
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But a bit of reflection shows that rf+-'(z)  = +-'(I"zI'). Since the 
Jacobian of the transformation T'ZT is equal to one, it follows that 
v  is 8p-invariant. By Proposition 6.10, the measure v is a product 
measure v ,  x v, where v ,  is an aP-invariant measure on 5%. Since fIp 
is compact and 5% is compact, the measure v ,  is finite and we take 
v , (%)  = 1 as a normalization. Therefore, 

for all f  E X ( %  X 9) .  Setting h  = f+-' yields 

for h  E X ( % ) .  In particular, if h  E X(%) satisfies h ( Z )  = h(rZI ' ' )  
for all I' E fIp and Z  E %, then h  (+( X, Y )) = h  ( Y )  and we have 
the identity 

It is quite difficult to give a rigorous derivation of the measure v, 
without the theory of differential forms. In fact, it is not obvious 
that v, is absolutely continuous with respect to Lebesgue measure 
on 9.  The subject of this example is considered again in later 
chapters. + 

PROBLEMS 

1. Let M  be a proper subspace for V and set 

where g ( M )  = {xlx = gv for some v  E M ) .  

(i) Show that g ( M )  = M  iff g ( M )  C M  for g  E GI(V) and show 
that G ( M )  is a group. 

Now, assume V = RP and, for x E RP, write x = ( z )  with y E R4 and 
z E Rr, q + r = p.  Let M  = {xlx = (0, y E Rq). 
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(ii) For g E GIp, partition g as 

Show that g E G ( M )  iff g l l  E GI,, g22 E GI,, and g21 = 0. For 
such g show that 

(iii) Verify that G I  = { g  E G(M)lgll  = I q , g 1 2  = 0) and G, = {g  E 

G(M)Jg,, = I,) are subgroups of G ( M )  and G, is a normal 
subgroup of G(M) .  

(iv) Show that GI  n G, = { I )  and show that each g can be written 
uniquely as g = hk with h E GI  and k E G,. Conclude that, if 
gi = hik, ,  i = 1,2, theng,g, = h,k,, where h, = h l h 2  and k, = 

h;'k,h,k,, is the unique representation of g lg2  with h, E GI  
and k, E G2. 

2. Let G ( M )  be as in Problem 1. Does G ( M )  act transitively on V - {O)? 
Does G ( M )  act transitively on V n M c  where M c  is the complement 
of the set M in V? 

3. Show that 8, is a compact subset of Rm with m = n2. Show that 8, is a 
topological group when 8, has the topology inherited from Rm. If x is a 
continuous homomorphism from 8, to the multiplicative group (0, m), 
show that ~ ( r )  = 1 for all r E 8,. 

4. Suppose x is a continuous homomorphism on (0, m )  to (0, m). Show 
that ~ ( x )  = x u  for some real number a. 

5. Show that 8, is a compact subgroup of GI, and show that G: (of 
dimension n x n )  is a closed subgroup of GI,. Show that the unique- 
ness of the representation A = r U  ( A  E GI,, r E 8,, U E GL) is 
equivalent to 8, n G: = {I,). Show that neither nor G: is a normal 
subgroup of GI,. 

6. Let (V, (., .)) be an inner product space. 

(i) For fixed v E V, show that x defined by ~ ( x )  = exp[(v, x)] is a 
continuous homomorphism on V to (0, a). Here V is a group 
under addition. 
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(ii) If x is a continuous homomorphism on V, show that ~ ( x )  = 

logx(x) is a linear function on V. Conclude that ~ ( x )  = 
exp[(v, x)] for some v E V. 

7. Suppose x is a continuous homomorphism defined on GI, to (0, co). 
Using the steps outlined below, show that x(A) = ldet Al" for some 
real a. 

(i) First show that ~ ( r )  = 1 for r E 0,. 
(ii) Write A = rDA with I?, A E 0, and D diagonal with positive 

diagonals A,, . . . , A,. Show that x(A) = x(D). 

(iii) Next, write D = nD,(Ai) where D,(c) is diagonal with all diago- 
nal elements equal to one except the ith diagonal element, whch 
is c. Conclude that x(D) = nx(D,(A,)). 

(iv) Show that D,(c) = PDl(c)Pf for some permutation matrix P E 

0,. Using this, show that x(D) = x(D,(X)) where X = nX,. 

(v) For A E (0, a ) ,  set ((A) = x(DI(A)) and show that ( is a 
continuous homomorphism on (0, co) to (0, co) so ((A) = ha for 
some real p. Now, complete the proof of x(A) = Idet Ala. 

8. Let % be the set of all rank r orthogonal projections on Rn to Rn 
(1 G r < n - 1). 

(i) Show that 8, acts transitively on % via the action x -+ Txr', 
r E 0,. For 

what is the isotropy subgroup? Show that the representation of x 
in this case is x = $4' where # : n x r consists of the first r 
columns of r E On. 

(ii) The group Or acts on 5, , by # -+ #Af, A E 0,. This induces an 
equivalence relation on F,, (#, z I), iff rl/, = #,Af for some 
A E a,), and hence defines a quotient space. Show that the map 
[#] -+ $4' defines a one-to-one onto map from this quotient 
space to %. Here [#I is the equivalence class of 4. 

9. Following the steps outlined below, show that every continuous homo- 
morphism on G: to (0, oo) has the form x(T)  = np(tii) '~ where 
T :  p x p has diagonal elements t ,,,. . . , tpp and c,,. . . , cp are real 
numbers. 



PROBLEMS 231 

(i) Let 

and 

Show that GI and G, are subgroups of Gg and G, is normal. 
Show that every T has a unique representation as T = hk with 
h E GI, k E G2. 

(ii) An induction assumption yields ~ ( h )  = nf- '(tii)'~. Also for 
T = hk, x(T) = x(h)x(k). 

(iii) Show that ~ ( k )  = (tPp)'p for some real c,. 

10. Evaluate the integral I, = j I XIXIYexp[ - f tr X'X] dX where X ranges 
over all n x p matrices of rank p. In particular, for what values of y is 
this integral finite? 

11. In the notation of Problems 1 and 2, find all of the relatively invariant 
integrals on RP n MC under the action of G(M). 

In Rn, let % = {xlx E Rn, x 4 span{e)). Also, let Sn-,(e) = {xlllxll = 

1 ,x  E Rn,x'e = 0) and let % = R' X ( 0 , ~ )  x Sn-,(e). For x E X ,  
set F = n-'e'x and set s2(x) = Z(xi - T ) ~ .  Define a mapping T on 5% 
to 9 by ~ ( x )  = {a, s, (x - Fe)/s). 

(i) Show that T is one-to-one, onto and find T-I. Let Bn(e) = {TIT 
E B,, r e  = e) and consider a group G defined by G = 

{(a, b, T)la E (0, w), b E R1, r E On(e)) with group composi- 
tion given by (al ,  bl, r1)(a2, b2, r2 )  = (a,a,, a1b2 + bl, r1r2).  
Define G acting on Xand  9 by (a, b, r ) x  = a r x  + be, x E X ,  
(a, b, r)(u, u, w) = (au + b, au, rw)  for (u ,  u, w) E 9. 

(ii) Show that ~ ( g x )  = g ~ ( x ) ,  g E G. 
(iii) Show that the measure p(dx) = dx/sn is an invariant measure 

on X .  

(iv) Let y(dw) be the unique Bn(e) invariant probability measure on 
Sn - ,  (e). Show that the measure 

is an invariant measure on 9. 
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(v) Prove that 1% f (x)p(dx) = kj3 f (7-'( y))v(dy) for all integrable 
f where k is a fixed constant. Find k. 

(vi) Suppose a random vector X E X has a density (with respect to 
dx) given by 

where 6 E R' and a > 0 are parameters. Find the joint density 
of X and s. 

13. Let % = Rn -.,{0) and consider X E 5% with an On-invariant distri- 
bution. Define + on 5% to (0, GO) X TI,, by +(x) = (Ilxll, x/llxll). The 
group On acts on (0, oo) x TI,, by I'(u, u )  = (u, I'v). Show that +(I'x) 
= l?+(x) and use ths  to prove that: 

(i) 1 1  Xll and X/(I XI( are independent. 
(ii) X/ll X 1 1  has a uniform distribution on T,, , . 

14. Let X = {x E Rn(x, * xj for all i * j )  and let 9 = {y E Rnlyl < y, 
< . . .  < y,). Also, let qn be the group of n X n permutation matrices 
so On G an and Tn acts on 5% by x -+ gx. 
(i) Show that the map +(g, y) = gy is one-to-one and onto from 

qn x 9 to 5%. Describe +-I. 
(ii) Let X E X be a random vector such that C(X) = C(gX) for 

g E qn. Write +-'(x) = (P(X), Y(X)) where P(X) E Tn and 
Y(X) E 9. Show that P(X) and Y(X) are independent and that 
P(X) has a uniform distribution on qn. 

NOTES AND REFERENCES 

1. For an alternative to Nachbin's treatment of invariant integrals, see 
Segal and Kunze (1 978). 

2. Proposition 6.10 is the Radon measure version of a result due to Farrell 
(see Farrell, 1976). The extension of Proposition 6.10 to relatively 
invariant integrals that are unique up to constant is immediate-the 
proof of Proposition 6.10 is valid. 

3. For the form of the measure v, in Example 6.21, see Deemer and Olkin 
(1951), Farrell (1976), or Muirhead (1982). 
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