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3. Stein’s method for birth and

death chains

Susan Holmes1

Stanford University and INRA-Montpellier

Abstract: This article presents a review of Stein’s method applied to the
case of discrete random variables. We attempt to complete one of Stein’s open
problems, that of providing a discrete version for chapter 6 of his book. This is
illustrated by first studying the mechanics of comparison between two distri-
butions whose characterizing operators are known, for example the binomial
and the Poisson. Then the case where one of the distributions has an unknown
characterizing operator is tackled. This is done for the hypergeometric which
is then compared to a binomial. Finally the general case of the comparison of
two probability distributions that can be seen as the stationary distributions
of two birth and death chains is treated and conditions of the validity of the
method are conjectured.

3.1. Overview

Stein’s method provides ways of proving weak-convergence results using test func-
tions and approximations to expectations. It is a method that many have found
quite difficult to infiltrate because it does not use any of the more classical tools
such characteristic functions.

My thanks go to Charles Stein who painstakingly led me through the intricacies
of his approach while I was visiting Stanford in 1993, and to Persi Diaconis who
first tried to explain his picture of the method to me. I made my own picture of
the procedure by trying to make a discrete version of chapter 6 of Charles’ book
(Stein, 1986) upon his suggestion.

A little history: Stein’s method of exchangeable pairs and characterizing oper-
ators, not to be confused with shrinkage, was first used by Charles in the early
70’s, at the 6th Berkeley Symposium to prove central limit theorems for dependent
random variables (Stein, 1992).

His approach was a complete innovation, because he does not use characteristic
functions. Instead Charles based his argument on what he called a characterizing
operator for the normal distribution.

Here is how this characterization is stated in his book (Stein, page 21, 1986).

Proposition 3.1.1. A random variable has a standard normal distribution iff for
all h : R −→ R, piecewise continuously differentiable whose absolute value of first
derivative has a finite expectation with regards to the normal N |h′| < ∞ we have:

E{h′(W ) − Wh(W )} = 0

which we will also write

∀h ∈ FN , E(TNh)(W ) = 0, where TNh(x) = h′(x) − xh(x). (3.1)
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Stein’s method for birth and death chains 43

TN is a function from the space of piecewise continuously differentiable functions
FN to the space of continuously differentiable functions, we will call it the charac-
terizing operator for the normal. Nh denotes the expectation of h with regards to
the normal.

After following Stein’s proof of the central limit theorem, I realized that he
not only associated an operator to the normal, but also built one for the other
distribution then compared the two operators, bounding the expectation of their
difference on special test functions.

Following Charles’ work, many authors have built characterizing operators,
Chen (1974) for the Poisson, Loh (1992) for the multinomial, Diaconis (1998) for
the uniform, Mann (1995) and Reinert (1997) for the χ2. Barbour, Holst and Jan-
son (1992) have written a book on the use of the method in the context of Poisson
approximation.

The question arises of how to construct the characterizing operator for any given
distribution. Once this has been done and certain properties have been proved for
both operator and inverse, limit theorems become reasonably straightforward to
prove. Let us start exploring with this latter part of the method. How can we
compare two distributions for which the characterizing operators are well studied?

We begin with the binomial distribution as the target, playing the same role
as the normal in Charles’ first work. The Poisson will be the random variable we
want to approximate.

3.2. Examples

3.2.1. Bounds on the distance between Poisson and binomial

As a first motivation we will show the procedure for proving a bound for the total
variation distance between a Poisson P(λ) and a binomial B(n, p) distribution. Of
course, to make the distributions close we will suppose that λ = np.

We will not worry about how to build the characterizing operators for the time
being, and we will just use the fact that Charles Stein (1986) proved the following:

Proposition 3.2.1. A random variable is binomial B(n, p) if and only if for every
bounded function f , the expectation computed with respect to that random variable
E(T0f) is zero, where

T0f(w) = p(n − w)f(w + 1) − w(1 − p)f(w).

This T0 is called the characterizing operator of the binomial B(n, p) distribution.

Remark on notation. In this example, our target distribution is the binomial
we will denote anything related to the target with the index 0, for instance the
expectation under the binomial will be E0, this is a convention that extends to the
sequel as well, where the target distributions will not necessarily be the binomial,
but will always be identified by the index 0.

The other distribution is Poisson with matching mean µ = np which also has a
characterizing operator denoted Tα, which we will prove later to be:

(Tα)f(w) = npf(w + 1) − wf(w) = µf(w + 1) − wf(w). (3.2)

We expect the fit to depend on p, in particular, the fit should be good for p small,
of an order 1

n . All we have to remember about these operators for the moment is
that
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1. ETαf = 0, for all f , iff the expectation is computed with respect to the
Poisson, and

2. ET0f = 0, for all f , iff the expectation is taken with respect to a binomial
distribution.

For any function f defined on [0, 1, . . . , n] the difference between these operators is

(Tα−T0)f(w) = pw(f(w+1)−f(w)) = pw∆f(w), defined for w ∈ [0, 1, . . . , n−1]
(3.3)

Where ∆f(w) = f(w + 1) − f(w) denotes the first order difference for f at w.
If we take as our function f a function whose image by T0 is precisely Im −

P0(m) = T0f , where Im denotes the indicator function for the set {m}, by com-
puting the expected value of the difference between operators we will obtain the
difference in expectations at that function f :

P (m) − P0(m) = (E − E0)(Im − P0(m)) = ET0f = E(T0 − Tα)f

Using (3.3), the right hand side will be easy to bound if for this particular f ,
we can bound its increase |∆f |.

It has been proved by Stein (1986), in the case p = 1/2 and by Barbour, Holst
and Janson, (1992) for general p, that for f such that: Im −P0(m) = T0f , we have:

|∆f(w)| <
1

npq
, ∀w. (3.4)

This provides the following uniform pointwise bound:

For every m, |P (m) − P0(m)| < Epw

(
1

npq

)
=

p

q
, where q = 1 − p

Remarks:

1. This bound would usually be used when p is small (for instance p = 1
n , so q

close to 1).

2. This translates to the following inequality:
∣∣∣∣ (np)ke−(np)

k!
−

(
n

m

)
pmqn−m

∣∣∣∣ <
p

q

which might not be so easy to prove by simple calculus. We will see in sec-
tion 4, that there is a better bound available, reversing the roles of the two
distributions, making the Poisson the target and using the bound on the first
order difference of its pseudo-inverse.

3. Actually one is usually more interested in the total variation distance between
the two distributions then in the pointwise distance. The bound on |∆f | is
available even for f a solution to T0f = IA − P0(A), for any A ⊂ [0, n].
Barbour, Holst and Janson (1992) proved that (3.4) still holds for these more
general f . This provides the bound:

dTV (P, P0) <
p

q
.

4. Bounds such as (3.4) are crucial properties of characterizing operators that
must be proved anew for each new target distribution.
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3.2.2. Hypergeometric and binomial

Now, we will do a more original example. Suppose that the target is binomial B(n, p)
again, but that the other distribution’s characterizing operator is unknown.

We will bound the distance between a binomial B(n, p) distribution and the hy-
pergeometric H(N, R, n). That is, suppose we are picking n balls without replace-
ment from an urn of N balls of which R are red and we look at the distribution
of the number of red balls denoted k. We are going to compare it to a binomial
B(n, R

N ).
We start by finding an exchangeable pair denoted (k, k′). This is used to define

a characterizing operator for the hypergeometric distribution with parameters R,
N ,n: H(N, R, n).

Suppose we lay out the balls uniformly at random in a line, the left n ones are
the ones in the sample, among which k are red and n − k are black. Now suppose
that we exchange two different balls picked uniformly at random and then count
again how many red ones among the left n, this will be our random variable k′.

(k, k′) is an exchangeable pair because the procedure is obviously reversible.
Repeating these switches defines a birth and death chain: k will at most change
by one. Call βk the probability, given that the variable was at k, that it will go to
k + 1 after one move, and δk the probability that it will go down one given that it
was at k. Thus βk = P (hit a black ball among left n and switch it with a red ball
among the right N − n). This gives

βk = P (k′ = k + 1|k) =
n − k

N

R − k

N − 1
× 2,

δk = P (hit a red ball among the left n ones and switch it with a black ball in the
right ones),

δk = P (k′ = k − 1|k) =
k

N

N − R − (n − k)
N − 1

× 2.

From these definitions we may compute

Ek(k′ − k) = βk − δk = −λ(k − µ), with λ =
2

N − 1
(3.5)

because

Ek(k′ − k) = (+1)βk + (−1)δk = βk − δk

=
2

N(N − 1)
[
nR − nk − kR + k2 − kN − k2 + kn + Rk

]

=
2

N(N − 1)
[nR − kN ] = − 1

N − 1

(
k − n

R

N

)

= −λ(k − µ) with µ = n
R

N
and λ =

2
N − 1

In order to construct the characterizing operator we define a map α from func-
tions f on {0, 1, . . . , n} to the space of antisymmetric functions as

(αf)(w, w′) =
1
λ

(f(w′)Iw′=w+1 − f(w)Iw=w′+1)

Note: Given any exchangeable pair (w, w′) of random variables, any antisymmetric
real function A defined for all pairs (w, w′) with finite expectation, has to satisfy
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EA(w, w′) = 0. This is going to provide a good way of finding functions in the
kernel of E. To construct T , as is usual in Stein’s method of use of exchangeable
pairs, we take an exchangeable pair (w, w′) and an antisymmetric F and define:
(TF )(w) = EwF (w, w′). In this case:

(Tα)f(k) =
βk

λ
∆f(k) +

βk − δk

λ
f(k) (3.6)

Note that by construction, because (w, w′) is exchangeable and (αf) antisym-
metric, we have ETα = 0.

This operator Tα is a characterizing operator for the hypergeometric. We will
see that for any function f the difference between Tα and T0 will again be of
particular utility. In fact, originally the characterizing operator of the binomial was
constructed in a similar fashion and can be written as:

T0f(k) = p(n − k)∆f − (k − np)f(k)

Here we will have p = R
N . We compare the two operators:

(Tα − T0)f(k) =
[
βk

λ
− (n − k)

R

N

]
(3.7)

=
(n − k)

N
(−k)∆f(k). (3.8)

First consider the simple case bounding pointwise probabilities, say at the point
m. We would like to bound |P (m) − P0(m)| = |EIm − E0Im|, this is done taking f
in the equations above to be the solution to:

T0f(k) = Im(k) − P0(m) (3.9)

Theorem 3.1 (Distance between binomial and hypergeometric). Let PH
denote the hypergeometric probability distribution and P0 the binomial B(n, p) then:

|PH(m) − P0(m)| ≤ n − 1
N − 1

Proof. Through (3.4) we have, for f the solution to (3.9), a bound on ∆f .
Note that if k has a H(N, R, n) distribution and p = R

N :

E(k2) = var(k) + n2p2 = npq

{
1 − n − 1

N − 1

}
+ n2p2

E(Tα − T0)f(k) ≤ 1
N

1
npq

(
Ekn − Ek2

)

≤ 1
N

1
npq

(
n2p − n2p2 − npq

{
1 − n − 1

N − 1

})

≤ 1
N

(
n − 1 +

n − 1
N − 1

)

≤ n − 1
N − 1
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Remark 3.2.1. Actually if we are more ambitious and want to bound the TV
distance between the two distributions, as in the first example, exactly the same
argument follows through, replacing (3.9) by:

T0fA = IA − P0(A)

where A is a set of [0, n]. As above [2] show that we still have the bound

∆fA <
1

npq

and all the other computations are the same. This proves:

Theorem 3.2. The total variation distance between the hypergeometric H(N, R, n)
and the relevant binomial B(n, R

N ) is bounded by (n − 1)/(N − 1), uniformly in R,
for R > n.

This can be compared to Diaconis and Freedman (1981):

dTV (PH,P0) ≤
4n

N
,

which they proved to be sharp, up to constants.
Let us now generalize each step of this procedure. The next section sets the scene

for extensions of the method from situations where we know the characterizing
operators to cases where we need to build them and the ‘pseudo-inverse’ for a new
target and bound the increase in this ‘pseudo-inverse’.

3.3. Notation and context

Suppose we have a probability space (Ω,B, P ) we will call E : X → R the expecta-
tion associated to P on X , the space of real-valued random variables defined on Ω
that have finite expectation.

We will be trying to compute EZ the expectation of some random variable
or an approximation thereof. To this end we will consider the null-space of E:
ker E = {y : Ey = 0}, we will look for a random variable close to Z − c (c a
constant). Thus we will be able to say EZ ≈ c. We will call X0 the space of real
valued functions that have finite expectation with the target distribution. Here,
X0 will be considered a subset of X and β will denote a natural embedding of X0

into X .

3.3.1. Exchangeable variables

Strange as it may seem, the study of ker E is done through a pair of exchangeable
variables, the definition of which I recall to be:

(X, X ′) is a pair of exchangeable variables iff the joint distribution of the pair
(X, X ′) is identical to the distribution of (X ′, X), written sometimes (X, X ′) d=
(X ′, X).

In what follows (X, X ′) is used to denote an exchangeable pair.

3.3.2. Operators of antisymmetric functions

Call F the set of antisymmetric functions defined on Ω2.
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In what follows we will denote by T the operator T : F −→ X which associates
to every antisymmetric F in F the function:

TF such that TF (x) = EX=xF (X, X ′)

where EX is the conditional expectation given X .
A simple computation shows ImF ⊂ kerE, the reverse is also true as long

as any two elements of the state space can be connected through a sequence of
exchangeable pairs. (Diaconis, personal communication)

Then ImT = kerE and the following diagram is exact:

F T−→ X E−→ R−→0

Thus the image of T completely defines the null space kerE. Now if we’re trying
to find the distribution of W = ψ(X) we may try and give an approximation of
Eh(ψ(X)) for functions h such as indicators.

3.3.3. A characterizing operator for the target distribution

It has to be the case that we have an idea about the relevant target. That is, we
know which approximation to choose. In most cases the expectations with respect
to this distribution are denoted E0.

We will define an operator T0 that characterizes the target distribution. Later
we will explain more in detail how such a characterization is built. For the time
being, we will look at cases where this operator is known.

3.3.4. A useful diagram

The point of view we are going to stress here starts through the comparison of the
two exact sequences:

F Tα−→ X E−→ R−→0

F0
T0−→ X0

E0−→ R−→0

we will show that we can write

Eh(x) = E0h + E(Qh)(x, x′)

where the last term on the right provides an indication of how good the approxi-
mation is. It is especially important to notice that this residual is an expectation
with regards to the ‘unknown’ distribution. Bounds on |Qh| will provide bounds
for the approximation.

We will now detail this decomposition through what will be called the basic
diagram:

� �

�
�

�
�

� � �

R

R

α β γ

T E

T0

ι0U0

E0

F X

X0F0
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The top part of the diagram contains the sets F and X and the operators T
and E defined above.

X0 is a subspace of X . F0 is a subspace of F and α will denote a natural
embedding of F0 into F .

The function ι0 transforms a real number into the random variable always equal
to that real value.

U0 is the ‘pseudo-inverse’ for the function Im. In the examples above, we looked
for a function f such that T0f = Im − P0(m) = Im − E0Im, this can be expressed
as the condition that for any g in X0 we can define U0(g) such that

T0 ◦ U0g = g − ι0 ◦ E0(g)

We will call U0 the ‘pseudo-inverse’ of T0 in all that follows.
An algebraic lemma of [17] is the basis for the approximations used here.

Lemma 3.1 (Commutation of the diagram). When the sets of the diagram
are vector spaces and the functions linear and when the following conditions are
fulfilled:

• E ◦ T = 0

• ι0 ◦ E0 + T0 ◦ U0 = IX0

• E ◦ β ◦ ι0 ◦ E0 = γ ◦ E0

Then we can write:

E ◦ β − γ ◦ E0 = E ◦ (T ◦ α − β ◦ T0) ◦ U0

It is often possible to bound the right hand side of this equation.

3.4. Birth and death chains

3.4.1. Exchangeable pairs

We will start with the case of a random variable taking its values in {0, . . . , n}. We
suppose that this random variable W has a distribution:

P (W = k) = pk, for 0 ≤ k ≤ n

and a mean denoted

µ = EW =
n∑

k=0

pkk

We would like to find a W ′ such that:

• (W, W ′) is exchangeable

• a general contraction property is satisfied, i. e.

EW W ′ − W = −λ(W − µ), with 0 < λ < 1. (3.10)

This is the generalization of (3.5).

• W and W ′ differ by at most 1 (thus forming a birth and death chain).
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These conditions specify enough equations so that we can define as follows:

P (W ′ = W + 1|W = k) = βk

P (W ′ = W − 1|W = k) = δk

βn = 0 and δ0 = 0
δk + βk ≤ 1

(W, W ′) exchangeable implies:

β0p0 = δ1p1

β1p1 = δ2p2

βkpk = δk+1pk+1

...
...

We rewrite the contraction property:

βk − δk = −λ(k − µ)

δk and βk have to be of the form:

β0 = λµ

δk = − λ

pk

k−1∑
j=0

pj(j − µ), 1 ≤ k ≤ n (3.11)

βk = − λ

pk

k∑
j=0

pj(j − µ), 1 ≤ k ≤ n − 1

In order for this to be possible λ must satisfy 0 ≤ δk +βk ≤ 1. This is equivalent to

0 ≤ λ ≤ −pk

2
∑k−1

j=0 pj(j − µ) + pk(k − µ)

3.4.2. A generalization of Todhunter’s formula

Mills ratio type bounds for binomial tail probabilities can be derived from the
following formula due to Todhunter (see Diaconis and Zabell (1991)). We can gen-
eralize this idea to give bounds for the stationary distribution of the birth and death
chains constructed above.

m∑
�

(i − np)pi = (1 − p)	p� − (n − m)pm, ∀m, ∀	

The definition of the birth rate in the above birth and death chains enables us to
write:

m∑
�

(i − µ)pi =
1
λ

(β�+1p�+1 − βmpm)

We will now look at how this can be used in examples.

Uniform distribution on {0, . . . , n}

In this case we have:
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pk =
1

n + 1

µ =
n

2

βk =
λ

2
(k + 1)(n − k)

δk =
λ

2
k(n − k + 1)

If n is even we must have:λ ≤ 4
n2 + 2n

If n is odd we must have:λ ≤ 4
n2 + 2n − 1

In the appendix some of the numerical simulations show how the value of λ
influences the speed of convergence to stationarity.

Note the “standard birth and death chain with a uniform stationary distribution
is the random walk on a path with holding 1

2 at each end. This does not give
E(W ) = (1 − λ)W for any λ.

Binomial distribution

The algebraic construction obtained through the above formula gives exactly the
exchangeable pair we find for the binomial by using the construction:

Define the exchangeable pair (W, W ′) as follows:

– Write W =
∑n

i=1 Xi, sum of independent Bernoulli variables with p =
P (Xi = 1)

– Choose a random I uniformly in {1 . . . n}

– XI is changed into X ′
I with P (X ′

I = 1) = p

– W ′ = W − XI + X ′
I

The computations then give in this case:βk = p × (n − k) and δk = q × k

Poisson distribution

In our development we have not used the fact that the random variable is bounded.
By induction we can generalize the definition of β and δ to N . For example if the
stationary distribution is Poisson:

pk =
µke−µ

k!
and

pj

pj+1
=

j + 1
µ

By induction as before:

β0 = λµ

δ1 =
p0

p1
β0 = λ

β1 = δ1 − λ(1 − µ) = λµ

δ2 =
p1

p2
β1 = 2λ
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β2 = δ2 − λ(2 − µ) = λµ

...
...
...

δk = kλ

βk = λµ

Hypergeometric distribution

This construction provides the same birth and death chain the exchangeable pair
did, with λ = 1

N−1 . The general form gives in this case:

δk = λk
(N − R − (n − k))

N

βk = λ(
(n − k)(R − k)

N
)

3.4.3. Characterizing operators

From any function f we build an antisymmetric function (αf) defined ‘locally’ as:

(αf)(w, w′) =
1
λ

(
f(w′)Iw′=w+1 − f(w)Iw=w′+1

)

For T , we take an exchangeable pair (w, w′) and an antisymmetric F and define:
(TF )(w) = EwF (w, w′) so that in this case:

T (αf)(w) = Ew(αf)(w, w′) =
1
λ

(
βwf(w + 1) − δwf(w)

)
. (3.12)

Because of the exchangeability and the antisymmetry we will have ETf = 0, for
all f so that:

ImT ⊂ KerE.

Further, if the birth and death chain is connected ImT = KerE and Tα is a
characterizing operator. In the four examples considered above this gives:

Uniform

Tαf(w) = (w + 1)(n − w)f(w + 1) − w(n − w + 1)f(w)

Binomial(n, p)

Tαf(w) = p × (n − w)f(w + 1) − q × wf(w)

Poisson(µ)

Tαf(w) = µf(k + 1) − kf(k)

Hypergeometric((n, N, R))

Tαf(w) =
(n − k)(R − k)

N
f(k + 1) − k((N − R) − (n − k))

N
f(k)
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It is sometimes a good idea, given the contraction property to rewrite (3.12) as
follows:

T (αf)(w) =
βw

λ
∆f(w) +

βw − δw

λ
f(w) =

βw

λ
∆f(w) − (w − µ)f(w). (3.13)

Because then, in comparisons between two birth and death chains whose means are
equal, the second part of the right hand side cancels. The following section presents
a few specific examples. We will return to the general birth and death chains and
the definition of the inverse to Tα, and its bounds in the section 5.3.

3.4.4. Examples

Comparison of the binomial and Poisson

Just to illustrate how the machinery we installed works formally, we can turn over
the first example, taking the target to be Poisson. We will show how the algebraic
lemma and the properties of the pseudo-inverse g of an indicator function IA provide
bounds for the distances between these two distributions.

Let’s define the elements of the diagram. In this case the target is Poisson with
mean np (largely developed in the book by Barbour, Holst and Janson (1992)) the
characterizing operator is:

T0f(w) = npf(w + 1) − wf(w). (3.14)

We will take the binomial characterization obtained above

T (αf)(w) = p(n − w)f(w + 1) − w(1 − p)f(w). (3.15)

XO is the space of functions N −→ R having at most exponential increase,
F0 = X0 ∩ {f : f(0) = 0}. X the same as X0 but restricted to functions defined on
{0...n}. β is the relevant restriction function:

βf(w) =
{

f(w) if w ≤ n
0 if w > n

By taking f = Ik and U0f = g defined such that:

T0 ◦ U0(Ik) = Ik − pµ(k)
npg(w + 1) − wg(w) = f(w) − E0f = f(w) − E0f, ∀w.

Lemma 3.2 (Bound on the pseudo-inverse and its increase). For gA the
solution to the equation:

µgA(w + 1) − wgA(w) = IA(w) − Po(A),

we have the bounds:

‖g‖ = sup
j

g(j) ≤ min
(

1,
1
√

µ

)
(3.16)

∆g = sup
j

|g(j + 1) − g(j)| ≤ min
(

1,
1
µ

)
. (3.17)
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For a proof one can look at Barbour, Holst and Jansen (page 7 and page 223).
Then, the algebraic lemma implies that for any set A and function gA defined

as above:

|P (A) − Po(A)| = E[TαgA − T0gA]
= E

[
npg(w + 1) − wg(w) − npg(w + 1)

+ wpg(w + 1) + wg(w) − wpg(w)
]

= E
[
wp(g(w + 1) − g(w))

]
≤ E(wp)∆

≤ np2∆ ≤ np2 min
(

1,
1
µ

)
.

This is sharper than the result in remark 3 of Section 3.2.1.

The number of ones in the binary expansion of an integer

This is an example treated in different ways by Diaconis (1997), Stein (1986) and
Barbour and Chen (1992). This presentations follows the first two authors closely.

Let n be fixed. Choose uniformly an integer X between 0 and n. We want to
study:
W = Number of 1’s in the binary expansion of X .
Let’s write this expansion: XmXm−1 . . . X1 with m the maximal number of possible
digits that X could take:

m = [log2 n] + 1

following Diaconis (1977) we will call Q(x) the number of 0’s in x’s binary expansion
which can’t be changed without making the new number bigger than n. For instance
Q(17) = 2 if n = 23.

Exchangeable pair
Choose I uniformly in {0 . . .m}. Change XI into its contrary as long as this doesn’t
make the new integer larger than n.{

W ′ = W − XI + (1 − XI) if X + (1 − 2XI)2I−1 ≤ n
W ′ = W otherwise

(W, W ′) is exchangeable, and this example is the first we define that is a birth
and death chain.

EEW (W ′ − W ) = 0.
(3.18)

EW (W ′ − W ) =
m − W − Q

m
− W

m

(3.18) =⇒ E

(
m − 2W − Q

m

)
= 0

=⇒ E(W ) =
1
2
(
m − E(Q)

)
The function (w, w′) −→ (w′ − w)(w + w′) being antisymmetric, we have

EEW
(
W ′2 − W 2

)
= 0 (3.19)

Thus var (W ) =
1
2
EEW (W ′ − W )2 (3.20)

as EW (W ′ − W )2 =
m − Q

m
. (3.21)
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We will take for our operator Tα:

T (αf)(w) =
βwf(w + 1) − δwf(w)

2
m

=
m

2

(
m − w − Q

m
f(w + 1) − w

m
f(w)

)

=
m − w

2
f(w + 1) − w

2
f(w) − Q

2
f(w + 1)

= T0f(w) − Q

2
f(w + 1)

Where T0f(w) =
m − w

2
f(w + 1) − w

2
f(w)

is the characterizing operator of the binomial B(m, 1
2 ).

For g the solution to

Ik − P0(k) =
m − w

2
g(w + 1) − w

2
g(w)

Stein (1980) shows |g(w)| ≤ 4
m .

And P (Q > k) ≤ 1
2k

= P
(
X ≥ n − 2m−k

)

implies EQ =
∞∑

k=0

P (Q > k) ≤ 1
1 − 1

2

= 2

Therefore |p(k) − P0(k)| ≤ 4
m

Contingency tables

Diaconis and Saloff-Coste(1996) take the following example to show how Nash in-
equalities can be used to bound rates of convergence of Markov Chains.

Call M2
n the set of all n × n contingency tables whose margins are all equal

to 2. We are going to consider W= Number of 2’s in M , a table chosen uniformly
among tables of M2

n. For n large these are sparse tables with 2 a rare event.
In this case we will start by creating an approximate birth and death chain

through construction of an exchangeable pair, this will make clear what the mean
and variance are. Seeing that they are equal points to a Poisson target. We then
explore the distance to the Poisson using the bound we have on the inverse to the
Poisson characterizing operator.

Exchangeable pair
We will use the pair (M ′, M) constructed as a reversible Markov chain for generating
uniformly such tables as our basis for the exchangeable pair (W ′, W ).

Note: When we have a procedure for generating a reversible Markov chain, we
will always have an exchangeable pair. See Chapter 1 of this book.

• Choose a pair of different rows at random

• Choose a pair of different columns at random
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• As long as it doesn’t make any table value negative make the following change

to the 2 by 2 square thus defined:
(

+ −
− +

)
or

(
− +
+ −

)
choosing

one of the above with probability 1
2 . Otherwise the chain stays at the original

table.

An exchangeable pair (W ′, W ) is thus defined naturally from the pair (M, M ′).
Let’s compute βw = P (W ′ = W + 1|W ), the probability that the number of

2’s increases by 1. For that to happen a configuration of the
∣∣∣∣ 1 0

1 1

∣∣∣∣ must be

chosen as the 2 by 2 square, this can be decomposed into the product:
-Probability of choosing two columns without any 2’s.

(n − w)(n − w − 1)
(n − 1)n

-and the probability of choosing the two 1’s among n, when there are only two of
them:

2
n(n − 1)

,

-and the probability that the second column is (0, 1):

(n − 2)
(n − 1)

1
(n − 1)

.

There are four configurations of this type (four positions of 0’s), only half of
which will be compatible with the choice of + and − patterns to enable a step,
thus:

βw =
4(n − w)(n − w − 1)(n − 2)

n2(n − 1)4
=

4
n(n − 1)2

[(
1−w

n

)(
1− w

n − 1

)(
1− 1

n − 1

)]

For the probability that the number of 2’s to decreases by 1, we look for the

probability of a configuration of a:
∣∣∣∣ 2 0

0 1

∣∣∣∣ configuration.

By a similar decomposition as above, this configuration has probability

w

n
× (n − w)

(n − 1)
× 1

n
× 2

n − 1

Of which only two out of four will produce a move, thus:

δw = P (W ′ = w − 1|W = w) =
4w(n − w)
n2(n − 1)2

Note that

P (W ′ = w − 2|W = w) =
w(w − 1)

2n2(n − 1)2

is of an order n−1 smaller, we are going to ignore it, as well as

P (W ′ = w + 2|W = w) =
4(n − w)(n − w − 1)

n3(n − 1)3
.
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In fact, if the original chain is modified to hold when W jumps by two, the fol-
lowing calculations are all valid. We can start by computing the mean simply by
exchangeability:

EEwW ′ − W = E(βw − δw) = 0

βw − δw =
4(n − w)

n2(n − 1)2

[
(n − w − 1)(n − 2)

(n − 1)2
− w

]

=
4(n − w)

n3(n − 1)3
[
(2 − w)n2 − n(w + 6) + 4(w + 1)

]

=
4

n(n − 1)2

[
−(w − 1) − w(1 − w)

n
− (1 + w)

n − 1
· · ·
n2

]

thus E(βw − δw) .= 0 implies E(W ) .= 1.
We remark that:

βw − δw
.=

4
n(n − 1)2

[
−(w − 1)

]
providing an approximate contraction property

EwW ′ − W
.= − 1

λ

(
W − E(W )

)

with λ =
4

n(n − 1)2

For the variance we can use the fact that:

E(W ′2 − W 2) = E(W ′ − W )(W ′ + W ) = 0 by antisymmetry
Ew(W ′ − W )2 = Ew(W ′2 − W 2) + 2WEw(W − W ′)

= Ew(W ′2 − W 2) − 2WEw(W ′ − W )

thus var(W ) .=
(W − E(W ))
2(βw − δw)

EEw(W ′ − W )2

Then EEw(W ′ − W )2 .= 2λEW (W − E(W ))

But Ew(W ′ − W )2 .=
4

n(n − 1)2

×
[
(w + 1) − w

n
(w + 2) +

· · ·
n2

]

var(W ) .=
1
2
E(w + 1) .= 1

As usual we define:

(αf)(w, w′) =
1
λ

[
Iw′=w+1f(w′) − Iw=w′+1f(w)

]

T (αf)(w) = Ew(αf)(w, w′) =
βw

λ
f(w + 1) − δw

λ
f(w)

As suggested by the first two moments, a Poisson(1) approximation seems ap-
propriate, so we are going to compare the operator constructed above with the
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Poisson(1) operator: T0f(w) = 1 × f(w + 1) − wf(w) :

Tα(f)(w) − T0f(w) =
(

βw

λ
− 1

)
∆f(w) +

(
βw − δw

λ

)
f(w) + (w − 1)f(w)

βw

λ
− 1 = −w

n
− w

n − 1
− 1

n − 1
+

· · ·
n2

βw − δw

λ

.=
[
− (w − 1) +

w(w − 2)
n

]

Tα(f)(w) − T0f(w) = −2w + 1
n

∆f(w) − w(w − 2)
n

f(w)

The pseudo-inverse f and its increase are both bounded by 1. To bound the
total variation distance between these two measures, for any set A its measure
is the expectation of the indicator IA, call the Poisson one Po(A) and denote be
gA = U0IA the solution to the equation:

T0g = 1 × gA(w + 1) − wgA(w) = IA − Po(A).

Lemma 5 of Barbour, Holst and Janson (1992) provides, as shown above:

∆gA ≤ 1 and ‖g‖ ≤ 1.

Thus bounding the expectation of Tα(gA)(w) − T0gA(w) gives:

dTV (P, Po) ≤
∣∣∣∣E

(
2w + 1

n

)
+ E

(
(w − 2)w

n

)∣∣∣∣ ≤ 3
n

+ O

(
1
n2

)
.

3.5. General discrete target distribution

This section is the discrete version of chapter 6 of Stein (1986) which he suggests
for development in the section on open problems.

For a given target distribution (3.14) provides a general form of characterizing
operator. In order for the method to be useful we need to define and bound the
inverse of some very specific test functions such as IA − pA.

First we will define the inverse, then we will give conditions on the stationary
distribution that will ensure that the increase in the solution is bounded. This
section concludes with a large class of new examples, related to distance regular
graphs, where our conditions are satisfied.

Pseudo-inverse for T0

Suppose that the target distribution is also defined from a birth and death chain
(δk, βk defined in (3.11)) that is we have T0 of the form :

T0f(w) =
1
λ

(
βwf(w + 1) − δwf(w)

)
(3.22)

Given a function g defined on {0 . . . n}, how and when can we define its inverse
by T0? This can be reduced to a set of recurrence equations, setting fk = f(k) and
gk = g(k), we want:




βkfk+1 − δkfk = λgk 0 < k < n

β0f1 = λg0

−δnfn = λgn

(3.23)
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The last condition of the recurrence implies:

fn−k = − 1
δn−k

(
βn−k

δn−k+1

βn−k+1

δn−k+2
· · · βn−2

δn−1

βn−1

δn
gn + · · · gn−k

)
.

Exchangeability of the chain imposes:

βkpk = δk+1pk+1.

From this we can do the simplifications:

β1

δ2

β2

δ3
· · · βn−1

δn
=

pn

p1

In particular

f1 = − λ

δ1

(
pn

p1
gn +

pn−1

p1
gn−1 + · · · + g1

)
.

Coherent with the initial condition β0f1 = g0 if
n∑

k=0

pkgk = 0.

When this is fulfilled the general form of the inverse is:

fk = − λ

δkpk
(pkgk + · · · + pngn) =

(pkgk + · · · + pngn)∑n
j=k pj(j − µ)

(3.24)

Because of the definition (3.11) of δk. For such a definition, (Barbour, Holst and
Janson (1992), page 189, Lemma 9.2.1) give a general bound for ∆f , under the
condition that the βk are non-increasing and the δk non-decreasing. This bound is
valid for the inverse of the indicator of any set A : If f satisfies T0f(k) = IA − p(A)
then

∆f = max
j

∣∣f(j + 1) − f(j)
∣∣ ≤ max

j
min

(
λ

βj
,

λ

δj

)
. (3.25)

Again taking into account the definitions of βk and δk, we have

λ

δj
=

−pk∑k−1
j=0 pj(j − µ)

=
pk∑n

j=k pj(j − µ)

λ

βk
=

−pk∑k
j=0 pj(j − µ)

=
pk∑n

j=k+1 pj(j − µ)

We define the pseudo inverse of any function f by

g(k) = Uf(k) =
λ

βk−1pk−1

∑
i=0

pj

(
f(j) − Ef

)

It is easy to check that such a g satisfies: Tg(k) = f(k) − Ef as before. Suppose
the test function f of interest is the indicator function f = I{k0}. In this case the
expectation of f will be Ef = p(k0) = pk0 and

UI{k0}(k) =




− λpk0

βk−1pk−1

k−1∑
0

pj , k ≤ k0

λpk0

βk−1pk−1

n∑
j=k

pj , k ≤ k0

.
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We know that if we match up the means of the distributions, we only need
to bound the first order difference of UIk0 , which we will denote by ∆UIk0 =
UIk0(k + 1) − UIk0(k).

There are three possible cases for the form that this can take on, depending on
where k is situated with regards to k0:

1. If k < k0, then ∆UIk0(k) = −λpk0

(
Sk

βkpk
− Sk−1

βk−1pk−1

)

2. ∆UIk0(k0) = −λpk0

(
(1 − Sk0

βk0pk0

+
Sk0−1

βk0−1pk0−1

)

3. If k > k0, then ∆UIk0(k) = λpk0

(
(1 − Sk)

βkpk
− (1 − Sk−1)

βk−1pk−1

)

Proposition 3.5.1. For βk decreasing and δk increasing, then the only case where
∆UIk0(k) > 0 is for k = k0.

Proof. We are going to look at:
(

Sk

βkpk
− Sk−1

βk−1pk−1

)

and prove that it is always positive.

(
Sk

βkpk
− Sk−1

βk−1pk−1

)
=

k∑
j=0

pj

pkβk
−

k−1∑
j=0

pj

βk−1pk−1

=

exch.
p0

pkβk
+

k∑
1

(
pj

pkβk
− pj−1

pkδk

)

=
p0

pkβk
+

1
pkβk

k∑
1

pj

(
1 − pj−1

pj

βk

δk

)

=
p0

pkβk
+

1
pkβk

k∑
1

pj

(
1 − δj

βj−1

βk

δk

)

Under the monotonicity conditions above for βk and δk, this last parenthesis on
the right will always be positive, thus proving that ∆Ik0 (k) < 0 for all k < k0.

A very similar argument gives the same result in case k > k0.

Corollary 1. For βk decreasing and δk increasing and for any subset A ⊂ {0, 1, 2,
. . . , n}: ∣∣∆UIk0(A)

∣∣ ≤ ∆UIk0(k0).

Proof.

n−1∑
j=0

∆UIk0(j) = UIk0(n) − UIk0(0) = λ
pk0pn

βn−1pn−1
= λ

pk0

δn
> 0

So the overall sum of the sequence is positive, thus the one positive element is larger
than any combination of the others.
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A large class of examples of distributions on {0, 1, 2, . . . d} where the appropriate
monotonicity conditions for a natural birth and death chain are satisfied is the class
of distance regular graphs. These are connected graphs γ with vertex set Ω. Let
d(x, y) be the graph distance between vertices x and y. Let [(i, x)] be the vertices
at distance i from Xi, 0 ≤ i ≤ d, with d the diameter of the graph. Then γ is
distance regular if there are numbers ci, ai, bi, 0 ≤ i ≤ d such that if d(x, y) = i,
then the number of neightbors of y which lie at distance i − 1, i, i + 1 from x are
ci, ai, bi the nearest neighbor random walk on a distance regular graph generates a
birth and death chain by looking at the distance from the starting state. This chain
has stationary distribution π(i), proportional to b0b1...bi−1

c1c2...ci
. A theorem of Smith [15]

says that the birth and death rates satisfy c1 ≤ c2 . . . ≤ cd and b0 ≥ b1 ≥ . . . ≥ bd−1

(note that c0 and bd are undefined for distance regular graphs). This result shows
that our bounds on the inverse are in force for all of these birth and death chains.

The classification of distance regular graphs is one of the most active topics
in algebraic combinatorics. Well-known examples include the hypercube (with bi-
nomial stationary distribution) and the k-sets of an n-set (with hypergeometric
stationary distribution). For a splendid introduction to the subject see Cameron
(1999) chapter three. The definite work on the subject is by Brouwer, Cohen and
Neumaier (1984). This contains hundreds of families of examples. Andries Brouwer
(www.win.tue.nl/~aeb) maintains a website dedicated to this subject.

3.6. Appendix: Some numbers

Here is the matrix of the birth and death chain that converges to uniform, with
λ = 0.08, n = 6.

bd2(n = 7, lambda = 0.08)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.76 0.24 0 0 0 0 0

[2,] 0.24 0.36 0.40 0 0 0 0

[3,] 0 0.40 0.12 0.48 0 0 0

[4,] 0 0 0.48 0.04 0.48 0 0

[5,] 0 0 0 0.48 0.12 0.40 0

[6,] 0 0 0 0 0.40 0.36 0.24

[7,] 0 0 0 0 0 0.24 0.76

Here are a few powers showing how long it takes to converge:

puissance(bd2(n = 7, lambda = 0.08),2^5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.1652 0.1577 0.1503 0.1428 0.1354 0.1280 0.1206

[2,] 0.1577 0.1528 0.1478 0.1429 0.1379 0.1329 0.1280

[3,] 0.1503 0.1478 0.1454 0.1429 0.1404 0.1379 0.1354

[4,] 0.1428 0.1429 0.1429 0.1429 0.1429 0.1429 0.1428

[5,] 0.1354 0.1379 0.1404 0.1429 0.1454 0.1478 0.1503

[6,] 0.1280 0.1329 0.1379 0.1429 0.1478 0.1528 0.1577

[7,] 0.1206 0.1280 0.1354 0.1428 0.1503 0.1577 0.1652

puissance(bd2(n = 7, lambda = 0.08),2^6)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.1444 0.1439 0.1434 0.1429 0.1423 0.1418 0.1413

[2,] 0.1439 0.1435 0.1432 0.1429 0.1425 0.1422 0.1418

[3,] 0.1434 0.1432 0.1430 0.1429 0.1427 0.1425 0.1423

[4,] 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

[5,] 0.1423 0.1425 0.1427 0.1429 0.1430 0.1432 0.1434

[6,] 0.1418 0.1422 0.1425 0.1429 0.1432 0.1435 0.1439

[7,] 0.1413 0.1418 0.1423 0.1429 0.1434 0.1439 0.1444
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For a smaller λ, it’s slower :

bd2(n = 7, lambda = 0.04)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.88 0.12 0 0 0 0 0

[2,] 0.12 0.68 0.20 0 0 0 0

[3,] 0 0.20 0.56 0.24 0 0 0

[4,] 0 0 0.24 0.52 0.24 0 0

[5,] 0 0 0 0.24 0.56 0.20 0

[6,] 0 0 0 0 0.20 0.68 0.12

[7,] 0 0 0 0 0 0.12 0.88

puissance(bd2(n = 7, lambda = 0.04),2^6)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.1665 0.1586 0.1507 0.1428 0.1349 0.1271 0.1194

[2,] 0.1586 0.1533 0.1481 0.1429 0.1376 0.1324 0.1271

[3,] 0.1507 0.1481 0.1455 0.1429 0.1403 0.1376 0.1349

[4,] 0.1428 0.1429 0.1429 0.1429 0.1429 0.1429 0.1428

[5,] 0.1349 0.1376 0.1403 0.1429 0.1455 0.1481 0.1507

[6,] 0.1271 0.1324 0.1376 0.1429 0.1481 0.1533 0.1586

[7,] 0.1194 0.1271 0.1349 0.1428 0.1507 0.1586 0.1665

puissance(bd2(n = 7, lambda = 0.04),2^7)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.1446 0.1440 0.1434 0.1429 0.1423 0.1417 0.1411

[2,] 0.1440 0.1436 0.1432 0.1429 0.1425 0.1421 0.1417

[3,] 0.1434 0.1432 0.1430 0.1429 0.1427 0.1425 0.1423

[4,] 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

[5,] 0.1423 0.1425 0.1427 0.1429 0.1430 0.1432 0.1434

[6,] 0.1417 0.1421 0.1425 0.1429 0.1432 0.1436 0.1440

[7,] 0.1411 0.1417 0.1423 0.1429 0.1434 0.1440 0.1446

For n=10, 11 possible values and λ = 0.03 < 1/30

round(bd2(n=11,lambda=0.03),3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 0.85 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[2,] 0.15 0.58 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[3,] 0.00 0.27 0.37 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00

[4,] 0.00 0.00 0.36 0.22 0.42 0.00 0.00 0.00 0.00 0.00 0.00

[5,] 0.00 0.00 0.00 0.42 0.13 0.45 0.00 0.00 0.00 0.00 0.00

[6,] 0.00 0.00 0.00 0.00 0.45 0.10 0.45 0.00 0.00 0.00 0.00

[7,] 0.00 0.00 0.00 0.00 0.00 0.45 0.13 0.42 0.00 0.00 0.00

[8,] 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.22 0.36 0.00 0.00

[9,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.37 0.27 0.00

[10,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.58 0.15

[11,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.85

round(puissance(bd2(n=11,lambda=0.03),8),3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[2,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[3,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[4,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[5,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[6,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[7,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[8,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
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[9,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[10,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[11,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

> round(puissance(bd2(n=11,lambda=0.03),7),3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 0.096 0.095 0.094 0.093 0.092 0.091 0.090 0.089 0.088 0.087 0.086

[2,] 0.095 0.094 0.093 0.092 0.092 0.091 0.090 0.089 0.089 0.088 0.087

[3,] 0.094 0.093 0.093 0.092 0.091 0.091 0.090 0.090 0.089 0.089 0.088

[4,] 0.093 0.092 0.092 0.092 0.091 0.091 0.091 0.090 0.090 0.089 0.089

[5,] 0.092 0.092 0.091 0.091 0.091 0.091 0.091 0.091 0.090 0.090 0.090

[6,] 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091

[7,] 0.090 0.090 0.090 0.091 0.091 0.091 0.091 0.091 0.091 0.092 0.092

[8,] 0.089 0.089 0.090 0.090 0.091 0.091 0.091 0.092 0.092 0.092 0.093

[9,] 0.088 0.089 0.089 0.090 0.090 0.091 0.091 0.092 0.093 0.093 0.094

[10,] 0.087 0.088 0.089 0.089 0.090 0.091 0.092 0.092 0.093 0.094 0.095

[11,] 0.086 0.087 0.088 0.089 0.090 0.091 0.092 0.093 0.094 0.095 0.096

Here is the bd chain for the hypergeometric:

pi.hyper <- dhyper(0:5, 5, 7, 5)

pi.hyper

0.0265 0.221 0.442 0.265 0.0442 0.00126

puissance(bd2(n=6,p=pi.hyper,lambda=1/3),3)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0325 0.246 0.445 0.240 0.0355 0.000892

[2,] 0.0296 0.234 0.444 0.252 0.0396 0.001063

[3,] 0.0267 0.222 0.442 0.264 0.0438 0.001244

[4,] 0.0240 0.210 0.440 0.276 0.0481 0.001433

[5,] 0.0213 0.198 0.438 0.289 0.0526 0.001632

[6,] 0.0187 0.186 0.435 0.301 0.0571 0.001840

puissance(bd2(n=6,p=pi.hyper,lambda=1/3),4)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.0267 0.222 0.442 0.264 0.0438 0.00125

[2,] 0.0266 0.221 0.442 0.265 0.0440 0.00125

[3,] 0.0265 0.221 0.442 0.265 0.0442 0.00126

[4,] 0.0264 0.221 0.442 0.266 0.0443 0.00127

[5,] 0.0263 0.220 0.442 0.266 0.0445 0.00128

[6,] 0.0262 0.220 0.442 0.267 0.0447 0.00128

puissance(bd2(n=6,p=pi.hyper,lambda=1/10),4)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.071 0.346 0.416 0.152 0.016 0.000

[2,] 0.041 0.287 0.446 0.201 0.025 0.001

[3,] 0.025 0.223 0.453 0.259 0.039 0.001

[4,] 0.015 0.168 0.432 0.321 0.062 0.002

[5,] 0.009 0.124 0.392 0.373 0.098 0.004

[6,] 0.006 0.090 0.343 0.407 0.144 0.010

puissance(bd2(n=6,p=pi.hyper,lambda=1/10),5

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.032 0.244 0.444 0.243 0.037 0.001

[2,] 0.029 0.233 0.443 0.253 0.040 0.001

[3,] 0.027 0.222 0.442 0.264 0.044 0.001

[4,] 0.024 0.211 0.440 0.275 0.048 0.001
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[5,] 0.022 0.201 0.437 0.286 0.052 0.002

[6,] 0.020 0.191 0.434 0.296 0.057 0.002
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