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We shall now say that P is reducible to Q if
P(3,3) — QUG (18) - AYGC (8, D) ) (47). F@3)

where Gl""’Gm’Fl""’Fk are total and recursive.

19.3. PROPOSITION. If P is I'l:l and @ is reducible to P, then P is I'I:l; and

.. . 1 1. 1

similarly with En or An in place of Hn. o

The analogue of the table in §12 is the following table.

P,Q -P Pv @ P& Q YaP daP  QzP

1 1 1 1 1 1 1
l—ln z:n Hn I-In nn 2n+l Hn
1 1 1 1 1 1 1
Z:n l-In Z:n Z:n I-ln+l Zn Zn
1 1 1 1 1 1 1
An An An An nn Zn An

It is proved and used in the same way as the earlier table.

The classification of analytical relations into the H; and 2; relations is
called the analytical hierarchy.

19.4. ANALYTICAL ENUMERATION THEOREM. For every n, m, and %, there is a
H:z (m,k+1)—ary function which enumerates the class of H:l (m,k)—ary relations;
and similarly with £, for I

Proof Suppose, for example,we want to enumerate the Hé

(1,1)—ary relations. Every such relation R is of the form Ya3fgP where P is 1'1(1)
by the remarks after 19.1. Thus if Q is I'I? and enumerates the I'I(l) (3,1)—ary

relations, then Ya3fQ(a,f,7,z,e) is the desired enumerating function. o

19.5. ANALYTICAL HIERARCHY THEOREM. For each n, there is a H:l set which

1

is not Z:l, hence not II}C or Z}c for any k£ < n. The same holds with H; and En

interchanged.

Proof As in the arithmetical case. o

20. The Projective Hierarchy
The results of the last section can be relativized to a class & of total

functions of number variables. A particularly interesting case is that in which ¢
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is the class of all such functions. Replacing the functions by their contractions,
we see we are relativizing to the class R of reals. Note that by 18.1, a function is
recursive in R iff it is obtained from a recursive function by replacing some of the
unary function variables by names of particular reals. = The same then holds
with recursive replaced by H}c or S}C.

A relation is projective if it is analytical in R. The analytical hierarchy
relativized to R is called the projective hierarchy. (It is customary to write a
boldface I]:l for H:l in R and similarly for ¥ and A. We avoid this notation,
since boldface is sometimes hard to distinguish from lightface.) The theory of
the projective hierarchy antedates that of the analylytical hierearchy; it was
begun by Lusin, Suslin, and Sierpinski.

The Enumeration Theorem does not hold in its usual form for ﬂ:l in R; but
we shall prove a modified form. We say that a (m+1,k)—ary relation @
R—enumerates a class ® of (m,k)—ary relations if for every R in &, there is a 0 .
such that R(@,7) — Q(a,z,0) for all & and %.

20.1. PROJECTIVE ENUMERATION THEOREM. For every n, m, and k, there is a
(m+1,k)—ary H:l relation which R—enumerates the class of (m,k)—ary 1'1711 in R
relations; and similarly with Erlz for 1'1112.

Proof As in the proof of the analytical case, it is enough to do this
for 2(1], i.e, RE. If Ris RE inR, it is RE in a finite sequence @ of reals. If e is

a a—index of R, then by (3) of §18,

R(3,3) —{e}¥(B.2) is defined
— {€}(B,0,2) is defined
— Wf,( ,0.,T).
Choose 7 so that (7)0(0) = ¢ and (7)13 =a for 1 < i< n Then the right side

becomes W(7)0(0)(B,(7)1,...,(7) ,7). This is an RE relation P of B,7,7; and P is

m

the desired enumerating relation. o
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We leave it to the reader to derive a Projective Hierarchy Theorem from
this; the examples will now be (1,0)—ary. (Every (0,k)—ary relation is recursive
inR.)

20.2. PROPOSITION. Let P be defined by P(a,z,y) — Py(Zz','z’). Then P is
N in R iff each P, is M) in R; and similarly with £} or A} in place of 11}

Proof If P is Hil in R, each Py is clearly H}t in R. Now suppose
that each Py is H}Z in R. By the Projective Enumeration Theorem, there is a ﬂ}l
relation Q and a ﬂy for each y such that Py(?i,?c') — Q(&','z',ﬂy). Choose £ so that
(8), = B, for all y. Then P(32y) — Q@Z(8),). Thus Pis I} in § and hence
inR.o

The further study of the analytical and projective hierarchies is known as
Descriptive Set Theory, and is a hybrid of Recursion Theory and Set Theory.
We shall prove only one result. We shall prove it for the projective hierarchy;
the analogue for the analytical hierarchy is more difficult both to state and to
prove.

We recall a definition from measure theory. Let X be a space and let A
be a class of subsets of X. We say that A is a g—ring if: (a) the complement of
every set in A is in A; (b) every countable union of sets in A is in A; (¢) X € A.
From (a) and (b) it follows that: (d) every countable intersection of sets in A is
in A. If T is any collection of subsets of X, there is a smallest o—ring including
T; it is the intersection of all of the £—rings which include T'.

20.3 ProprosITION. The class of A}l in R (m,k)—ary relations is a o—ring in
Rm,k'

Proof In view of the table, it is enough to show that the union @
of a sequence {Pj} of such relations is A:z inR. Defining P(0,2,5) — P](&',}'), P
is A:l by 20.2. Since Q(a,z) — 3jP(a,7,j), Q is A11z in R by the table. o

An (m,k)—ary relation is Borel if it belongs to the smallest o—ring in IRm”c

which contains all the recursive (m,k)—ary relations. By 20.3, every Borel
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relation is A} inR. We shall prove that the converse also holds.

Let A and B be subsets of a space X. We say that a subset C of X
separates A and Bif AC Cand BC C°. This clearly implies that A and B are
disjoint.

20.4. SEPARATION THEOREM. Any two disjoint Ei in R (m,k)—ary relations
can be separated by a Borel relation.

Proof To make the notation simpler, le¢ m = 1 and £k = 0. Say
that A is inseparable from B if no Borel relation separates A and B. We shall
first prove the following lemma: If Use wAi is inseparable from U s wB > then there
are ¢ and jsuch that A ; is inseparable from Bj Suppose, on the contrary, that
for every i and j there is a Borel relation Cz-, j which separates Ai and B b If
C=n e By iEwCz‘,]’ then Cis Borel and separates U i wAz' and U jEwB ;

Now assume that P and @ are inseparable 2% in R relations; we shall show
that P and Q@ are not disjoint. Using the remarks after 19.1, we can write
P(a) — 38VnR(a(n),B(n)),
Qa) — IWnR’ (a(n),2(n)),
where R and R’ are recursive in R. For zw € Segq, let
P, (@) — z=o(lh(2)) & 35(w = B(I(w)) & YnR(o(n),B(n))),
and define Qz, w similarly but with R replaced by R’. It is clear that

Pz,w = UmeUpEsz*< m>, Wy <p>

and similarly for @ w
We shall define of ), B(n), and 4(n) by induction on = so that PE( n),A(n)
) are inseparable. Since P= P and Q@ = this

and Qg 2(n <><> Qs <>
holds for n = 0. Suppose it holds for some n. By our lemma, there are i, j, £,

and [ so that PE( 1)x<i> B(n) <> is inseparable from QE( n)x<k>F(n)a<b>"
Then i = k; for otherwise, {&: §(n+1) = o(n)*<i>} is a recursive (and hence

Borel) set which separates PE(n)* <i>B(n)s<i> from Q&(n)* <k>F(n)s<b>"
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Thus we may take a(n) = i, 8(n) = j, and y(n) = L

For each n, PE( n).B(n) is inseparable from QE )7 n); so, they are both

n
non—empty. This implies that R(a(n),B(n)) and R’(E((n),?( n)) for all n. Hence
P(a) and Q(a); so P and Q are not disjoint. o

20.5. SUSLIN'S THEOREM. A relation is Borel iff it is Ai inR.
Proof We have already seen that every Borel relation is A} in R.
Now let P be A} in R. Then P and -P are Ei in R; so by the Separation
Theorem, there is a A% in R relation which separates P and -P. But the only

relation which separates P and -Pis P. o



