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Proof. By 17.5. α

A maximal set is a coinfmite RE set A such that for every coinfmite RE

set B including A, B— A is finite. Thus a maximal set is a coinfmite RE set

with as few RE sets as possible including it.

It is fairly easy to show that a maximal set is hypersimple. However, it is

not a simple matter to show that maximal sets exist; this was done by Friedberg.

The final result of a series of investigations of this question is the following

theorem of Martin: an RE degree a contains a maximal set iff a1 = 0". Thus this

notion of largeness does tell us more about the degree than our previous notions,

but does not tell us that the degree cannot be O1.

18. Function of Reals

We now extend our notion of a function to allow reals as arguments. (We

could allow all total functions as arguments; but this would complicate matters

without really adding anything, since a function can be replaced by its

contraction.) We use lower case Greek letters, usually α, /?, and 7, for reals.

When the value of m is not important, we write α for a,,...,a . We use R for

the class of reals and Rm' for the class of all (ro+ fc)-tuples (αj,...,α ,j|,...,jj).

An fm,fcWarv function is a mapping of a subset of Rm' into ω. (Thus a

(0,fc)-ary function is just a fc-ary function.) From now on, a function is always

an (ra,*)-ary function for some m and k. Such a function is total if its domain is

all of Rm'*. An (m.fc)-ary relation is a subset of RmΛ We define the repre-

senting function of such a relation as before.

Note that the real arguments to a function or relation must precede the

number arguments. It may sometimes be convenient to write them in a different

order. It is then understood that we are to move all real arguments to the left of

all number arguments without otherwise changing the order of the arguments.

Now we consider how to extend the idea of computability. The new
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question is: how are we to be given the real inputs? The obvious answer is that

we are given an oracle for each real input.

We now modify the basic machine accordingly. For each rn, we have a

machine called the m— real machine. (The 0— real machine will be identical with

the basic machine.) In addition to the parts of the basic machine, the m-real

machine has m real registers 71,... 7m. At any moment, each of these registers

contains a real α.

We have one new type of instruction. It has the format

7*(ϊz) -* Tij

where 1 < k < m and i ί j. If the machine executes this instruction when α is in

7Jt and x is in Hi, it changes the number in Tίj to a(x) and increases the number in

the counter by 1. Note that no instruction changes the contents of a real

register.

With each program P and each m and fc, we associate an algorithm A p'

with m real inputs and k number inputs. To perform this algorithm with the

inputs α, ,...,<* ,JΊ ,...,%, we put P in the program holder; α17...α in 71,.. .,7m
1 771 L K 1 771

respectively; x^,...,x^ in ΐl,...,Xfc respectively; and 0 in all other registers. We

then start the machine. If the machine ever halts, the number in IK) after it

halts is the output; otherwise, there is no output. The function computed by

Ap' is called the (m.k)— arv function computed by. P. An (m,fc)-ary function F

is recursive if there is a program P such that F is the (m,fc)— ary function

computed by P.

We now propose to extend our previous results to these new functions.

We shall have something to say only when the extensions present some problems.

We extend §4 without difficulty. The last macro now reads

(As before, ip...,^ should be distinct; but Pp—iPm need not be. The reader

should check that this is all right.)
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In §5, we need some changes to allow for the real arguments. The initial

functions are now the /?' , 0, Sc, and Ap, where /?' (#,,...,£*.:£,,...,£,.) = x
I Z 1 771 1 K Ίι

and Ap(a,x) = a(x). The program for Ap consists of the one instruction 71(11)

-» 10. In the definition of closed under composition, F is now defined by

F(αr...,αm,z) ~ G(α- ,...,<*. ,H}(av...,am,'x)Γ..,Hk(aΓ...,am,'x)).

In the case of inductively closed and //-closed, all the functions have the same

sequence α of real arguments.

In §6, there are a couple of new details in the proof of 6.1. First, there is

a new context α( _ ). We take care of this by replacing it by Ap(a, _ ).

We leave it to the reader to check that our modification in the definition of

closed under composition is just what is needed here.

We can extend the result in §7 that F is recursive iff F is recursive. In

particular, Ap is recursive. But Ap(a,x) = a(x). Thus show that α (where a is

a variable) is a recursive symbol.

In extending §8, we assign the code <3,iJ,fc> to 7k(Ίli) -» Hj. Other codes

are as before. (In particular, these codes do not depend in any way on what is in

the real registers.) We now take 7\ (<?,<*,,. ..,α ,x,,...,x,,y) to mean that e is

the code of a program for the real m-machine and y is the code of the

P-computation from a,,...,a ,£,,.. .,£,., and leave ί/as before. The extension of

§8 is then straightforward.

Note that if Φ is αrΊ ,...,<*, the code of the instruction 7k(TLi) -» 1j is the
1 771

same as the code assigned to the instruction a ΛΊLί) -» Ik for the Φ-machine; and

if αp...,α^.are in Jl,...,7fc, performing these two instructions has the same effect

on the two machines. It follows that

If we use (1) of §12, we can rewrite this as
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(The two TV ?s are different, but no confusion will result.) It follows by the
Λ, 771

Normal Form Theorem that

(2) {«}(3,ϊ) ~ {β}°(S).

The definitions and results of §12 can be extended without difficulty; but

this does not give us what we really want if the functions in Φ have real

arguments. The problem is that the F-instructions are not general enough.

They evaluate F only at real arguments which are in a real register. Since the

contents of a real register do not change during a computation, we cannot

evaluate Fat real arguments computed during the computation.

We shall therefore restrict the Φ in relative recursion to consists of total

function of number arguments only. The results of §12 then extend without

difficulty. We call the machine obtained from the real m—machine by adding

the F—instructions for F in Φ the Φ—m-machine. If Φ is a finite sequence

//j,...,// of reals, we assign to the //.-instruction HΛHΪ) -* Tij the code

, -4 ,

<3,t*J,w+fc>. In place of (2) we now have {e} (α,2) - Mα' (?). From this

and (2),

(3) {f}^*,*)M«}(β,***)

This gives the following alternative definition of relative recursion.

18.1. PROPOSITION. A function F is recursive in Φ iff it has a definition

FCa^x) ~ G($,α,~x) where G is recursive and β is a sequence of contractions of

functions in Φ. o

REMARK. Even if the F in 18.1 is total, we cannot always take the G to be

total.

We now consider substitution for real variables. Of course, we cannot

substitute something like F( ) for α, since F( ) is a number. We

therefore need some notation. We let Xx(..x..) be the unary function F defined

by F(x) ~ ..x.. . Then λx(..x..) is a real iff ..x.. is defined for all x.
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18.2. SUBSTITUTION THEOREM. If G and H are recursive, there is a recursive

Fsuch that

(4) Ffax) 2 G(XzH(w), α, x)

for all α,z such that λz//(z,α,z) is a real. In particular, if H is total, then the F

defined by (4) is recursive.

Proof. Let g be an index of G. If Az//(*,a,5) is a real, then the

right side of (4) is, by (1),

We can use this as our definition of F(α,j). o

In particular, it follows that \y is a recursive expression when it is used in

front of an expression defined for all values of y.

REMARK. If H is not total, there may be α,z such that F(α,j) is defined,

but such that λz//(y,α, j) is not a real and hence such that the right side of (4) is

not defined.

The results of §13 and §14 extend without difficulty. However, in §13 it

is natural to consider a further extension in which we allow quantifiers on real

variables. We investigate this in the next section.

19. The Analytical Hierarchy

A relation is analytical if it has an explicit definition with a prefix

consisting of quantifiers, which may be either universal or existential and may be

on either number variables or real variables, and a recursive matrix. The basic

theory of analytical relations is due to Kleene.

We begin with some rules for simplifying prefixes. As before, these may

change the matrix, but they leave it recursive.

Two quantifiers are of the same kind if they are both universal or both

existential; they are of the same type if they are both on real variables or both on


