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The Arithmetical Hierarchy Theorem shows that there are no inclusions

among the classes Γr and Σ^ other than those given by 13.2.
71 71

The Arithmetical Enumeration Theorem is false for Δ relations; for if it

were true, we could use the proof of the Arithmetical Hierarchy Theorem to show

that there is a Δ relation which is not Δ^.

Let Φ be a set of total functions. If Q is any concept defined in terms of

recursive functions, we can obtain a definition of Q in Φ or relative to Φ by

replacing recursive everywhere in the definition of Q by recursive in Φ. For

example, R is arithmetical in Φ if it has a definition (1) where P is recursive in Φ;

and R is Π in Φ if it has such a definition in which the prefix is Π . We shall

assume that this is done for all past and future definitions.

Now let us consider how the results of this section extend to the

relativized case. Up to the Enumeration Theorem, everything extends without

problems. The rest extends to finite Φ but not to arbitrary Φ. For example, if

Φ is the set of all reals, then every unary relation is recursive in Φ and hence Π

and Σ in Φ for all n. Thus the Hierarchy Theorem fails. Since the Hierarchy

Theorem is a consequence of the Enumeration Theorem, the Enumeration

Theorem also fails.

14. Recursively Enumerable Relations

A relation R is semi computable if there is an algorithm which, when

applied to the inputs x, gives an output iff Λ(5). If F is the function computed

by the algorithm, then the algorithm applied to 3 gives an output iff 1 is in the

domain of F. Hence R is semicomputable iff it is the domain of a computable

function.

As an example, let A be the set of n such that xn + yn = zn holds for

some positive integers j, y, and z. Then A is semicomputable; the algorithm

with input n tests each triple (x,y,z) in turn to see if xn + yn = zn. On the other
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hand, it is not known if A is computable.

A relation is recursively enumerable (abbreviated RE) if it is the domain

of a recursive function. By the above and Church's Thesis, a relation is RE iff it

is semicomputable.

We let W. be the domain of the function {e}. We say that e is an index
V

of the relation R if R is W . (Note that this is not the same as being an index of
C

the function χ „.) Clearly a relation has an index iff it is RE. By the Normal

Form Theorem, we have

(1) WeCx)~3yTk(eάy).

14.1. PROPOSITION. A relation is RE iff it is Σ^.

Proof. If R is RE, it is We for some e and hence Σ^ by (1).

Suppose that R is Σ?; say R(~x) *-» 3yP(~x,y) with P recursive. Then R is the

domain of the recursive function F defined by F(x) ~ μyP(~x,y) and hence is RE. α

We often use 14.1 tacitly. In particular, we use it to apply the results of

the last section to RE relations. By the Enumeration Theorem, there is a

(A;+ l)-ary RE relation R which enumerates the class of fr-ary RE relations. In

fact, we can define such an R by R(x,e)«-» W (j); this is RE by (1).β

By the Arithmetical Hierarchy Theorem, there is an RE set which is not

recursive. In fact, the proof of that theorem shows that such a set D is defined

by D(e) *-* We(e).

We let Wf c be the domain of {e} , Then WCx) iff We f r) for some 5;
c,o S C c,o

in this case, We $(x) for all s > y, where y is the computation number of {e}(~r).

By 8.4, W. Cx) is a recursive relation of e,s, and j. Note also that if WΛ Cx),
C,5 €,S

then each a?, is less than the computation number of {e}(j) and hence less than s.

Thus W., is finite.
C,5

14.2. RE PARAMETER THEOREM. If R is a (AH-ra)-ary RE relation, there is a

recursive total function S such that
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for all ~x,yr...,ym.

Proof. This is easily proved from the Parameter Theorem, o

We can use implicit definitions to define RE relations. Thus suppose that

we want to find an RE relation R with an index e such that Λ(x) <-» P(~x,e),

where P is RE. Let P be the domain of the recursive function G. By the

Recursion Theorem, we can find a recursive F with an index e such that F(x) z

G(5,e). We then take R to be the domain of F.

A selector for a (AH-l)-ary relation R is a fc-ary function F such that for

each 5, F(x) is defined iff 3yR(x,y); and, in this case, F(x) is a y such that R(x,y).

14.3. SELECTOR THEOREM. Every (fc-hl)-ary RE relation has a recursive

selector.

Proof. Let R(x,y) *-* 3zP(z,t/,z) with P recursive. Then a

recursive selector Ffor R is defined by

F(x) ~ (μ^P(x,(^)0,(w;)1))(). α

If F is fc-ary, the graph of F, designated by Qp is the (AH-l)-ary relation

defined by

Of&y) - FCx) ~ y.

The next theorem shows how to characterize recursive functions in terms of

recursive relations.

14.4. GRAPH THEOREM. A function F is recursive iff its graph is RE. A

total function F is recursive iff its graph is recursive.

Proof. Let F be recursive and let e be an index of F. Then

Thus Q is RE by 8.4. If Fis total, then the definition
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shows that G p is recursive. If Q p is RE, then it has a recursive selector. But

the only selector for Qp is F. o

As an application, we prove a more general result on definition by cases of

recursive functions.

14.5. PROPOSITION. Let flp ..., RU be RE relations such that for every x, at

most one of ΛΊ(3), ..., R (x) is true. Let F,, ..., F be recursive functions, and
1 771 i TV

define F by

where it is understood that F(~x) is undefined if none of βj(x), ..., Rγffl is true.

Then Fis recursive.

Proof. We have

) «- (Op fa) & Λ,(3)) V ... V (Qp fry) & Λ (ϊ)).
1 n

By the Graph Theorem and the table, the right side is RE; so F is recursive by

the Graph Theorem, o

The next result characterizes recursive relations in terms of RE relations.

14.6. PROPOSITION. A relation R is recursive iff both R and ->β are RE.

Proof. If R is recursive, then ->β is recursive; so R and -*R are RE

by 13.2. Now

β (ϊ,|f) - (Λ(3) & y = 0) V (-Λ(3) & y = 1).
*Λ

If Λ and ->Λ are RE, this equivalence and the table show that G is RE; so R is
XR

recursive by the Graph Theorem, α

14.7. PROPOSITION. A non-empty set A is RE iff it is the range of a

recursive real. An infinite set A is RE iff it is the range of a one-one recursive

real.

Proof. If F is a recursive real, its range A is defined by y € A <— >
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3x(F(x) = y)\ so A is RE. Now let A be an RE set. Let e be an index of A and

let a 6 A. Define a recursive real F by

F(x)*(x)Q if T^WpWj,

z a otherwise.

Clearly the range of F is A. Now suppose that A is also infinite. Define G(n) =

F[H(n)) where #(rc) is the least a: such that F(x) # F(#(ra)) for all m < n. Then

// is defined by course-of-values recursion using only recursive symbols and hence

is recursive; so G is recursive. Clearly G is one-one and has range A. α

All of the results of this section relativize to any finite Φ. For Φ a finite

sequence of reals, we let W be the domain of {e} , and say that e is a Φ— indexc

of W*. Then (1) becomes

(2) W?&~

We can use (1) of §12 to rewrite this as

(3) W*(ϊ)

Using 12.2, we see that a relation is RE in Φ iff it is RE in a finite subset

of Φ; and similarly for Σ,. It follows that 14.1 relativizes to arbitrary Φ.

Similarly, 14.3 through 14.6 relativize to arbitrary Φ.

14.8. PROPOSITION (Post). A relation is Σ^+1 iff it is RE in Π .̂

Proof. If R is EJ^j, then R(x) <-> 3yP(j,y) where P is πj. Then

R is RE in P and hence in -Π .̂

Now suppose that R is RE in Π .̂ By 12.2, R is RE in a finite subset of

EΓ. By the remark after 13.3 and 12.6, we may suppose the relations in Φ are

unary. To simplify the notation, suppose that Φ consists of one relation P. By

(3), we have for some recursive Q

If we can show that z = χj(y) is Σ^ , 1? it will follow by the table that R is

Now
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& lh(z) = y & (Vi

Hence by the table, it will suffice to show that w = χ ( t ) is Σ . Since P is

Π , this follows from
71

w = Xf£i) *-> (w = l & P(z)) V (w = 0 & -P(z))

and the table, α

14.9. COROLLARY. A relation is Δ^ , , iff it is recursive in Π^.

Proof. A relation R i s Δ i f f both R and -«Λ are Σ j hence,

by Post's Theorem, iff both β and ->β are RE in Γr . By the relativized version

of 14.6, this holds iff R is recursive in ΓΓ . α

Since -»β is recursive in R and R = -i- Λ is recursive in -«Λ, 12.4 and the

sho>

corollary.

table show that we can replace Π by Σ in both Post's Theorem and its
H 71

15. Degrees

If F and G are total functions, we let F <D G mean that F is recursive in

G. By 12.5,

(1) F<RF;

and by the Transitivity Theorem

(2) F < R C & G < R / / ^ F < R / / .

Let F ΞR G mean F <R G & G <R F. It follows from (1) and (2) that =R is an

equivalence relation. The equivalence class of F is called the degree of F and is

designated by dg F. By a degree, we mean the degree of some total function.

We use small boldface letters, usually a, b, c, and d, for degrees.

We let dg(F) < dg(<7) if F <R G. By (2), this depends only on dg(F) and

dg((7), not on the choice of Fand G in these equivalence classes. It follows from

(1) and (2) that < is a partial ordering of the degrees, i.e., that

a< a,


